

Page 1

AS322747

Optioneering and Optimization Using Generative
Design and Evolutionary Solvers
Maciej Wypych
BVN

Matt Wash
BVN

Description

With the introduction of tools such as Autodesk's Refinery (previously Fractal) and Galapagos,
Octopus and Wallecei plug-ins through Grasshopper and Rhino, the designer can explore an
almost infinite number of design options.

It is however not as simple as it may appear. This talk will give an overview of the principles of
optioneering and optimisation. It will discuss some of the limitations that exist and how you can
get the most out of the tools that are currently on the market.

By the end of the talk attendees should have a sound understanding of how these tools could
be applied to their field of work.

Learning Objectives

 Understanding of the principles of evolutionary solvers
 Pros and Cons of current evolutionary solvers
 Identify how and when these tools could be used within your business

Page 2

Speaker

Maciej Wypych is a Design Technology Coordinator at BVN. Prior to joining BVN Maciej was a Studio
BIM Manager for Warren and Mahoney in Sydney. Maciej is also a sessional Tutor at University of New
South Wales. He is a committee member and frequent speaker at Dynamo User Group Sydney as well
as BUILT ANZ, Wellington Digital Design User Group and other conferences. He has over 15 years’
experience in the architecture and building industry in Australia and UK.

Credits to Matt Wash – Design Technology Coordinator at BVN for creating this presentation

Page 3

The Evolution of Generative Design

The introduction of AutoCAD mimicked the traditional manual drafting process. With the
introduction of BIM tools such as Revit, parametric design was possible, enabling smart
components that would react when an input was changed. These changes were updated in the
BIM in all views that the element was visible in. This was a fundamental change in the evolution
of CAD into a world where “information” was king. Visual programming tools such as Dynamo
enabled manual tasks to be automated by carrying out repetitive tasks in a much faster way.
The user interface was simple to pick up for non-coders and many old school drafter and
technicians began to see the benefits of being able to manipulate their models through a
scripting interface. Until Autodesk introduced “Fractal” (2016) using Dynamo for optioneering
was a manual process of tweaking the variable inputs and seeing what effect this has on the
output. Whilst exploring each option took a matter of seconds, it would take days if not weeks to
explore a full spectrum of options if there were many input variables. “Fractal” allowed the user
to automate the optioneering task, to suggest a range of options, many of which the designer
may not have visualised manually, to filter down the inputs to select the most appropriate
solutions. In November 2018 Autodesk released a beta of “Refinery” which took “Fractal” a step
further offering the possibilities of both optioneering and optimisation.

“The goal of generative design is not to automate the design process, or to replace
human designers with artificial ones”

– Danil Nagy, The Living

Looking beyond the evolution of CAD, BIM and Generative design at Autodesk, McNeel had
offered Rhino and Grasshopper, from which developers have been building optimisation plug-
ins for nearly 10 years.

Page 4

An example of the first use of Galapagos, a single objective optimiser in 2010 by David Rutten.
https://www.youtube.com/watch?v=4wNcUwyyTPk

Octopus, a multi objective optimiser was released a few years later by the Unversity of Applied
Arts, Vienna in collaboration with Bollinger+Grohmann Engineers.

In 2018 a new player entered the market in the shape of https://www.wallacei.com/

How do Evolutionary Solvers Work?

Evolution of a

Charles Darwin (1809 - 1882)
I have called this principle, by which each slight variation, if useful, is preserved, by the term of
Natural Selection.

EVOLUTIONARY ALGORITHMS SELECT THE BEST OPTIONS TO GENERATE MORE
OPTIONS

PRINCIPLES OF BIOLOGIC AND ALGORITHMIC EVOLUTION

VARIATION
Without it, wouldn’t be possible to pick something that is better than something else
INHERITANCE
Qualities of the individuals are transmitted to the next generations
SELECTION
The fittest individuals are likely to survive and have offspring

Page 5

What is the difference between biological and algorithmic evolution?

Biological evolution

• Changing environment
• Entities interact with each other
• Gender and complex reproduction processes
• Arbitrariness
• Millions of inputs and variables

Algorithmic evolution

• Stable environment
• Limited or inexistent interactions
• No sex or gender
• Simulated arbitrariness
• Limited amount of inputs

Page 6

Pros and Cons of Evolutionary Solvers

Pros
• Flexible
• Progressive
• Forgiving
• Interactive

Cons
• Slow
• No Guaranteed Solution

Page 7

What is a Gene and a Genome?
A combination of GENES is a GENOME, which outputs a unique SOLUTION

In the case of the ceiling pattern, there were 6 patterns to choose from, each pattern being a
GENE. The combination all those patterns formed the GENOME. Changing the percentages of
the patterns output various SOLUTIONS.

However, the percentage of each GENE were manually manipulated by the designer and there
were no output values, the number of holes or percentage density that a minimum or maximum
value was trying to be reached.

Therefore, in this example Rhino and Grasshopper were used for optioneering only.

Page 8

What is a fit genome and a fitness landscape?
FITNESS is whatever we want it to be. We are trying to solve a specific problem, and therefore
we know what it means to be fit. All the possible solutions conform a FITNESS LANDSCAPE,
which represents the nature of the problem that we are trying to solve.

Fitness Landscape containing 2 genes or variables (A and B)
Unknown at the beginning of the process

Basin of Attraction
Determine in which direction genomes should travel

Start
Random population to approximate the nature of the Fitness Landscape

Page 9

Selection
Only the fittest genomes survive

New Generation
Defined by fittest genomes and basin of attraction

Subsequent Generations
The process repeats until satisfactory solutions are found (or not)

Page 10

Fitness Landscapes

Simple
Basins of attraction will always take you to an optimal result

Complex
Half of the landscape dominated by a basin that attracts to a poor solution

Page 11

Small Basins
Low chances of finding a (good) peak

Discontinuous
Plateaus without ‘improvement’. No basin to an optimal solution

Page 12

Noisy or Chaotic
Impossible to make any intelligible pronunciations regarding the fitness of a local patch

Page 13

Single and Multiple Objective Optimisation
Single objective optimization - Galapagos for Grasshopper

When a problem has only a single fitness function, i.e. only one output is required to be
minimised or maximised, a single objective evolutionary solver will find an optimised solution.
The number of input variables, and the range of these inputs will determine how quickly the
optimised solution will be reached.

In the example of the bounding box, there are only 2 variable inputs, namely the rotation angles.
The fitness function is the minimum volume.

This solution to this problem was found on a simple desktop pc in only a few minutes.

Page 14

Interrogating the results in Realtime
One of the advantages Galapagos is the interaction the user can have once the solver has
started. At any point the any of the better genomes can be reinstated and used as the new
starting point from which to find the optimal solution.

From the image below, it is evident that a genome close to the optimal solution was found after
only 4 generations. This could indicate that because the optimal solution was only marginally
improved upon in the subsequent generations, that the fitness landscape was similar to the
simple example given earlier.

Page 15

Using a single objective optimiser to determine two fitness objectives
Trying to determine the optimal tiling layout considering maximising the number of full tiles and
minimising the waste area can be achieved independently of one another using Galapagos.
Combing the two fitness functions would require an equation that would combine the maximum
tiles and minimised waste area. This could be achieved with a single fitness function of say,
time taken to lay and cut tiles, including the cost of the wastage, but without combining the two
fitness functions, a single objective optimiser will only be able to generate a number of “good”
solutions.

Combing the computational power of the computer with the common sense, intuition and
experience of the human
In the tiling example the three variables included the rotation of the tile. Whilst the evolutionary
solver eventually determined the tiles would be laid parallel to the tile depth along the longest
boundary line, intuitively the human could have predicted this far quicker and ran a few tests
along each boundary line rotation using only the x and y offsets as the variables. A tiler would
also have probably said he would always start from one corner, so the optimal solution to this
problem could have been solved by the human alone in a similar method to the ceiling example
earlier.

Page 16

OPTIMIZATION A - Minimum Waste Area [m2]

Page 17

OPTIMIZATION - Maximum Full Tiles [n]

OPTIMAL SOLUTION
After studying both cases, we can manually set the optimal parameters

Page 18

Multi objective optimization
An alternative to single objective optimisation is the possibility of combining more than one
fitness function to arrive a few “best” solutions. When optimising for more than one outcome, a
compromise will often need to be made.

If we take the example of optimising a chair for comfort ‘v’ cost, it is highly unlikely that we will
arrive at a single solution that is both the most comfortable and the cheapest. In addition, the
chair problem has the added complexity of defining “comfort”. What is the most comfortable
chair for one person may not be the most comfortable for someone else. Cost, however, is an
ideal input to optimise for the minimum price.

In Architecture there will often be several outputs that cannot be quantified by a number. What
is aesthetically pleasing to one person may not be as pleasing to another.

Typically, our goal in any problem is to minimise the cost and time and maximise the quality.
The first two outputs can be calculated and are not ambiguous. Quality, however can be
represented by many metrics, many of which are personal preferences which cannot be
quantified through an evolutionary solver.

Page 19

The Pareto Front
A collection of options that represent “optimal” solution will for a curve that moves closer and
closer to the axis origin. This is called the “Pareto Front”.

Page 20

In the example of the floor tiles, the Pareto front can be seen to move closer to the axis origin as
the number of generations increases.

Generation 18 Generation 28

Page 21

Generation 46 Generation 52

Pareto Front for 2 Outputs in Octopus for Grasshopper

Visualising the Pareto front is relatively simple when optimising for only 2 outputs, as shown
above. The more outputs that are being optimised, the harder it becomes to visualise the Pareto
front.

Page 22

Optimising for 3 outputs
In the example of the bridge, the objectives were to minimise the length of the bridge, minimise
the deviation from the train clearance and maximise the position of the end of bridge to be as
close to the train station as possible.

Fixed parameters Variables Optimised outputs

Segments Length Kink Position Minimise Length
Landings Length End of the bridge Minimise clearance deviation
Ramp Gradient Minimise distance from
station
Landing Gradient
Ramp Width
Train Clearance

Page 23

Pareto Front Mesh for 3 Outputs in Octopus for Grasshopper

Page 24

Comparisons of multi objective optimisers
For this study we compared three multi-objective optimisers, namely Octopus and Wallecei,
which are free plug-ins for Rhino/Grasshopper and Refinery for Dynamo.

Octopus for Grasshopper/Rhino

Need to add some things in here about the ability to interrogate the model

Wallecei for Grasshopper/Rhino

Wallecei is the most recent addition to the market of multi-objective optimisers having been
released towards the end of 2018. The free plug-in from Grasshopper enables users to have far
more interaction with the evolutionary process and the data that is being generated.

The grasshopper script required to run the optimisation runs in a similar way to Galapagos and
Octopus regarding its inputs, the difference is the ability to take the data for further analysis as
the user sees fit.

In the example of the tile optimisation routine, Wallecei focuses on maximising computation by
focusing on the data and minimising the visual output of the tiling pattern. The benefit of this in
terms of time taken to find the optimised solutions is evident.

The pattern was generated post analyse, once the results had been interpreted to minimise the
number of unwanted patterns.

Page 25

Deconstructing the Wallecei data to generate the tiling patterns - Script

Deconstructing the Wallecei data to generate the tiling patterns – Output Patterns

Refinery for Dynamo

“An Autodesk generative design beta for the architecture, engineering and construction industry
that gives users the power to quickly explore and optimize their Dynamo designs.”

Refinery was release around the same time as Wallecei and is an extension of Autodesk’s
Project Fractal.

Page 26

Refinery Generation Methods
Within the Generation Method inside refinery the user has 4 No. options to choose from.

Generation Method - Randomise Solutions – (Optioneering)
Selecting “Randomise” allows the user to carry out some “optioneering” by selecting the variable
inputs that are to be included in the randomisation and the “number of solutions” to be explored.
The “Seed” is just a number to control where the randomisation starts. Any number can be
entered here. The choice of number cannot be consciously added to positively or negatively
affect the outcome. Selecting a different “Seed” each time the solver is ran which just generate
a different starting point for the possible solutions.

In the tiling example, after we had learned that going straight to “Optimisation” before
“Optioneering” a study of 100 possible random solutions was used as an initial study.
This took approximately 5 minutes to run. The results for which are noted below.

Page 27

The refinery user interface allows for interpretation of the results in real-time and once the solver
has finished. If a trend is observed during the solving stage, the process can be stopped,
settings modified and re-ran.

Visualising Random Options – Completed Tiles (Y-Axis) against Tile Rotation (X-Axis)

It could be interpreted that the maximum number appears to be maximised when the tile
orientation trends towards 90 degrees.

Visualising Random Options – Partial Tiles (Y-Axis) against Tile Rotation (X-Axis)

This theory is backed up when looking at the minimum number of partial tiles, where the
optimised rotation appears to be 0 or 90 degrees.

Without even running the simulation, logic would suggest that aligning the tile to the longest
boundary edge on either the short or long edge of the tile would be a good starting point. These
graphs support that logic.

Page 28

The results can be visualised by viewing all the combinations of each genome, in graphic and
numeric form. The results can be sorted (smallest/largest) via the numeric chart or filtered by
dragging over a single input.

Visualising Random Options – Genome combinations with numeric values ordered by
maximum completed tile

Visualising Random Options – Genome combinations with numeric values ordered by
filtering the tile orientation to approximately 75-90 degrees only

In this study, these graphs are much harder to interpret, but filtering by tile orientation close to
90 degrees does highlight that these solutions are generally in the least partial tiles and most
completed tile range.

Page 29

Generation Method Optimize (Evolutionary Solver – Population/Generation)

Optimised Settings

Generating an optimisation study for a population size of 48, with 100 generations took
approximately 45 minutes to run.

Although 4800 possible options were analysed, only one single solution was suggested from
each generation.

Page 30

Visualising Optimised Solutions – Completed Tiles (Y-Axis) against Tile Rotation (X-Axis)
The interpretation of the randomisation generation that the maximum number of complete tiles
occurs with the tile orientation of 90 degrees has been confirmed by the optimisation method
above. All of the optimised solutions fall between 88-90 degrees.

Page 31

Visualising Optimised Solutions – Partial Tiles (Y-Axis) against Tile Rotation (X-Axis)

Again, the tile orientation required to minimise the number of partial tiles for the optimised
solution only has a range of 88-90 degrees.

Visualising Optimised Solutions – Genome combinations with numeric values ordered by
maximum completed tile

Page 32

A criticism of the graphical tiling layout is that it is not clear where the tiles are laid length ways
along the longest edge, for 0 degrees and short ways for for 90 degrees.
This is much clearer in the earlier Wallecei example.

Visualising Optimised Solutions – Graphical Tile Layout

Page 33

Generation Method - Cross Product
For those familiar with the cross-product lacing option within Dynamo, input variables will be
tested with every combination possible. Therefore, a total of 42 solutions will be computed with
an input with 6 items combined with an input of 7 items.

Cross Product Lacing within Dynamo

Page 34

As it would often lead to an almost infinite number of solutions when using this approach in the
tiling example, when using the cross-product function within Refinery the user can specify the
number of variations of each input from all variables.

In the example below, the solver ran 125 designs in around 5 mins based on the cross-product
options with 5 variations for each input (5x5x5) dividing the input range equally.

Cross Product Settings

Page 35

Visualising the parallel coordinate view, it is evident that the optimised solution for any of the
output values is not coming from the tiling orientations of 67.5 degrees and that the offset width
or length make little difference to the output values. All possible solutions return neither good or
bad solutions.

Visualising Cross Product Solutions Filtering for tile orientation of 67.5 degrees

Filtering for 22.5 degrees indicates most of the solutions are undesirable

Visualising Cross Product Solutions Filtering for tile orientation of 22.5 degrees

Filtering for 22.5 degrees indicates most of the solutions are undesirable with a larger spread of
results for completed tiles, partial and discarded tile area

Page 36

Visualising Cross Product Solutions Filtering for tile orientation of 45 degrees

Filtering for 90 degrees indicates most solutions are optimal solutions but it is clear that a
solution to achieve maximum complete tiles, minimum partial tiles, partial tile area and
discarded area will not be possible, and a compromise will need to be made.

Visualising Cross Product Solutions Filtering for tile orientation of 90 degrees
Possibly the most interesting results are when the tile orientation is filtered to 0 degrees.
The number of partial tiles. Whilst it has been noted that a tiler would set out from the longest
edge at one of the ends, would it have been possible to predict whether lying the tiles along the
longest or shortest length would have achieved an optimal outcome? For the four outputs that
could be optimised, none of the solutions in this study come from a 0-degree tile angle.

Page 37

Visualising Cross Product Solutions Filtering for tile orientation of 0 degrees

Generation Method - Like This
The “Like This” method carries out a minor variation to the noted inputs.

Tile Orientation is limited to 73-90 degrees

Width offset is limited to 0.05 – 0.40 degrees

Page 38

Length offset is limited to 0.05 – 0.40 degrees

From the results above, it is not clear how far the “like this” option deviates from the selected
inputs

How can we learn from the Generative Design Process?
In all the examples we tested it was clear that generative design is not a process which is solely
achieved by the computer alone. As a simplified process we can look at the workflow below.
This could be extended to separate the process to carry out “optioneering” first, to better inform
the constraints and goals to speed up the “optimisation process”

Evaluating the data from the evolutionary solver engine
The ability to understand the algorithmic evolution

Page 39

Generative Design Workflow Tips

1. Understand what you want to achieve
2. Define your problem – what decisions are best suited to the computer and what can the

human resolve (in the tiling example, tile orientation could have been limited to 0 and 90
with possibly a few options between to confirm the gut feel to align to the longest edge)

3. Decide on ways to measure success
4. Run a series of random “optioneering” solutions
5. Evaluate the options to see if you can identify trends
6. Minimise the range of input variables
7. Run a small number of optimized solutions
8. Repeat steps 5-6
9. Run a larger number of optimized solutions
10. Repeat steps 5-6 and increase number of optimized solutions if required
11. Think about how to review the results
12. Select a range of “best” solutions
13. Try to assign a weighting to the optimized outputs
14. Refine best solutions with all stakeholders

Page 40

Conclusions
 Often the unmeasurable will take precedence over optimised solutions

 Application for using optimisation - use where appropriate. Use to think outside the box

but remember the steps to always evaluate and refine - tiling example was a good rest
for human logic and computing power to proof assumptions

 Try to combine into a single fitness function of possible or add weighting to optimised

outputs

 Evolutionary Solvers are powerful tools to be used on specific or partial problems.

 To formulate the right fitness function and the set the key variables is crucial.

 The process helps to understand the nature of the problem.

 They are slow because of the amount of options to be tested and depending on the

complexity of the problem, the efficiency of the script, the platform we are using and the
hardware capabilities.

 Galapagos is a robust built-in GH tool which is ideal to solve single objective

optimization problems.

 Octopus is a multi-objective optimization plugin for GH which tackles more complex

problems and enables user interaction and solutions exploration.

 Refinery is a multi-objective optimization beta product by Autodesk that computes

Dynamo scripts faster than within the Revit / Dynamo environment (but still slower than
Rhino / GH).

 Unlike its GH competitors, access to the evolutionary data is harder to access, behind

which is a valuable information to identify good solutions and improve fitness functions.

Page 41

Lessons Learnt / Possible Issues
Testing the Beta for Refinery didn’t come without it’s challenges. Here are some of the lessons
learnt and issues.

 Step Value in Dynamo appears not to be respected in Refinery – We set a step value of
0.1 for the tile offsets. When the results came back in Refinery the Dynamo input
updated to 15 decimal places

 Always remember to save your Dynamo Script when you want to run a new study

 When using Custom Nodes, ensure these are saved into the

c:\users\<yourname>\AppData\Roaming\Dynamo\DynamoRevit\2.0\definitions

 Ensure you have updated all packages to those that run in Dynamo 2+

 How a script is built can have a significant effect on the speed to analyse within Refinery

Page 42

Useful resources
https://github.com/DynamoDS/RefineryPrimer

https://dynamobim.org/london-hackathon-stealthy-roofscapes/

https://www.keanw.com/2019/04/revisiting-mars-for-au-london-2019.html

https://www.grasshopper3d.com/group/octopus

https://www.grasshopper3d.com/group/galapagos

https://discourse.mcneel.com/t/wallacei-evolutionary-and-multi-objective-optimization-engine-
integration-to-revit-via-rhino-inside/80942

