

Page 1

BES500019

BEYOND DYNAMO: THE POWERFUL AUTOMATION
POTENTIAL OF FORGE AND THE REVIT API

Majd Makhlouf
Founding Manager at Building Information Researchers and Developers OÜ

Description
We all love Dynamo. It introduces visual programming to our daily workflows and makes task
automation accessible to non-developers. It's great for prototyping and testing.

However, Revit macros and extensions and Forge APIs offer many automation opportunities
that cannot be technically exposed through Dynamo.

This class aims to help Revit and Dynamo users think outside the box by introducing real-case
customer success scenarios in which these advanced and powerful Forge and Revit features
have been implemented—proving that you can literally "Make Anything" with Forge and Revit
when you explore both solutions deeply enough.

Learning Objectives
• Explore automation opportunities not exposed through Dynamo
• Learn about technical Revit API and Forge features that make automating the

aforementioned cases possible
• Explore real case scenarios where Dynamo non-exposed Revit API functionalities

came to the rescue through add-ins and macros
• Explore real case Forge apps where additional Forge functionalities have been

used to achieve an even better automation

Page 2

Speaker

Majd Makhlouf is a Mechanical Engineer and Design Technologist, with a Master of Science in
Mechanical Engineering. He's an Autodesk Revit Certified Professional and a member of the
Autodesk Developer Network. In January 2020, he founded Building Information Researchers
and Developers OÜ, a software development company based in Estonia and providing services
for the AEC sector worldwide. He specializes in BIM Management, Autodesk Revit and
AutoCAD Add-in development, both public and custom developed, Forge web and cloud-based
apps, Dynamo Zero Touch Node Packs, and mobile VR/AR applications.

Co-Speaker

Ghida Shehadeh is an Electrical Engineer with a Bachelor of Engineering in Electrical and
Computer Engineering degree from the American University of Beirut, where she also worked
as a teacher assistant and collaborated on several research projects as a research assistant.
Her research and documentation contribution within the IoT domain were featured at the 2020
IEEE International Symposium on Antennas and Propagation and North American Radio
Science Meeting, where the IEEE Paper “TU-SP.2P.7”, titled “A Digitally Tuned Flexible
Reconfigurable Antenna for IoT Devices”, which she contributed to as a co-author, was
discussed. Nowadays, she’s an Electrical Engineer at EMDC Group, one of the most renowned
Engineering Design and Consultancy firms in the MENA region, where she benefits from her
Autodesk Revit and Autodesk AutoCAD proficiency and dedicates her passion for engineering
and love for advanced technology and automation to overcome daily challenges, ensure the
highest quality of project deliverables, and contribute to her company’s success.

Page 3

Dynamo: A beloved product
Wherever you may roam around blogs, forums, or social media accounts related to the AEC
industry, everyone is talking about Dynamo, and that’s for a good reason: Dynamo is a great
Revit extension that is a time and life saver to many, as it helps us users reduce tremendous
amounts of time. You may encounter “BIMfluencers” preaching about Dynamo’s benefit,
experienced technologists spreading helpful tips and sharing their experience using Dynamo
and sharing some of the scripts they have built, and users showing off their newly acquired skills
with social media posts that consist of short videos showcasing their Dynamo scripts in action.
Due to its ease of use, great potential, and awesome community, Dynamo has become a
trending topic over the internet and every Revit user is aiming to gain more Dynamo skills.
A question can be asked on that matter: why is Dynamo the trending topic? Why aren’t other
forms of automation as trending as Dynamo? Let’s go back in time to try and explain that.

Revit Automation Throughout History

Back in 2008, a major Revit release saw the dawn of light: Revit 2009. It was a revolutionary
Revit release, as it has, and besides being the first release where an annual naming and
release frequency format were adopted, taken the product to another level. Can you imagine
that all previous versions did not include a functionality to export models into the IFC open
format? Well, they didn’t. They did not include a worksharing monitor either, and the list of newly
added features can go on and on…

Among many of the additions that were introduced back then was a public Revit API. Although
different from what the Revit API looks like today, it was the first step for advanced users to start
automating their repetitive tasks, and many were looking forward to that, as at that time
AutoCAD was still the major dominating platform and the AutoCAD API had been around for
years and any Revit user at the time was one that had recently migrated his/her workflow from a
CAD one into a BIM one, so users were still familiar with AutoLISP and its use to achieve
automation within AutoCAD.

Page 4

Revit 2009 – API Release Notes

Why Dynamo?

As Revit itself is based on the Microsoft .NET Framework, it’s API had to be
based on that framework as well, and knowledge in a .NET environment was
required to start exploring it as a means of automation. Languages required
included Visual C++, VB.NET, F#, but C# stood alone as the most widely used
and documented language for Revit API development.

As our industry consists of non-developers, C# proved to have a relatively steep
learning curve.

In the meantime, more programming environments started to rely on Visual
Programming, and new Visual Programming solutions started to emerge, such as
MATLAB’s Simulink and IBM’s Node-RED. Game engines such as the Unreal
Engine and Unity hopped on the visual programming train and saw many
commonly used functionalities start to be converted into class libraries and
methods that could be in turn visually represented as graphical nodes that a user
or a developer can place in a certain order and connect through “wires” to
achieve a certain desired functionality.

Page 5

Therefore, having a similar visual programming environment within Revit is
nothing but a logical consequence that only needed the right innovator to be hit
by the right apple on the head at the right moment. Now as much as I’m sure that
no apples were harmed during the process, that time came around 2011 and that
innovator was Ian Keough, also known as the father of Dynamo. The rest is
history.

Why should one go beyond Dynamo?
Before going into more details, just be sure that Dynamo is a really powerful tool and that you
would be missing out as a Revit user if you’ve never used it before. Almost all tasks can be
automated using Dynamo, from submittal and export operations, to automated element creation
and placement, to Q/A and model cleanup… All those repetitive tasks can be automated using
Dynamo, which also has the potential of taking you to the next level through Generative Design
and many other advanced R&D ventures that you may be willing to explore.

However, if you’re limiting yourself to the built-in Dynamo functionalities without exploring other
available APIs, you would be missing out on many opportunities that may take you and your
company to an even higher level of automation. Two main topics would be tackled hereafter:
advanced in-product automation through the Revit API, and cloud automation through Forge
and its many APIs, as we’re no longer in 2009 and a long era of Cloud Computing is here.

Part 1: Advanced Revit API workflows

As stated earlier, Dynamo consists of built-in nodes that users place and connect in a certain
order to build a useful script.

These nodes are actually static methods within class libraries. These static methods are
themselves built on top of the Revit API and are meant to perform a certain task that may be
used repetitively within a certain script.

Therefore, when you are building a Dynamo script, you would be limited to the nodes that you
have available. If any functionality is not available out of the box or hasn’t been developed as a
node by a third-party entity, you’re rather stuck. That’s one of Dynamo’s limitations, and it’s not
Dynamo’s fault: it’s one of visual programming’s limitations. In fact, visual programming doesn’t
give you enough low-level control.

Fortunately, to overcome that limitation, one great node has been made available out of the box.
That node is the Python scripting node which is a “universal” node allowing users to access the
Revit API within Dynamo whenever a non-exposed functionality is needed. Any advanced user
would start diving deep into the realms of the Revit API at a certain tipping point of their
automation journey, driven by a thirst for more “super powers”. That comes to no surprise, as
it’s the natural way of evolution: throughout history, written languages evolved from a
logographic system (ex: Egyptian Hieroglyphs, 4000 BC) into a phonetic, alphabetic system (Ex:

Page 6

the Phoenician Alphabet, 1050 BC) due to the need of a better, more detailed means of
documentation and communication. Even as a human being, learning starts visually for a child,
then evolves into reading and writing as both are needed for him/her to evolve academically.

Therefore, and as the evolution into text-based programming is a must to break free from Visual
Programming’s limitations, isn’t it better to do that within an IDE instead of doing it as part of a
Dynamo script? And wouldn’t that gradually reveal more features that would take your
automation journey to another level? Let’s explore the other forms of Revit automation available
and their benefits.

The Revit API and its forms of automation

There are several ways to implement the Revit API. I can think of four: one is Dynamo of
course. Another is Forge Design Automation for Revit, which will be presented in more detail
later on. For now, let’s talk about two: add-ons and macros, starting with the later which is being
unfairly neglected nowadays.

Revit Macros

Most are familiar with Dynamo’s pushbutton under the Manage ribbon tab. What many
are not familiar with is a colorless, much smaller pushbutton right next to it: it’s the Macro
Manager pushbutton.

A Revit Macro is a form of automation that consists of a script that can be written within
an IDE that ships in with Revit (that IDE is SharpDevelop and is an Open Source
alternative of the more popular Visual Studio IDE). These scripts can be C# scripts,
VB.NET scripts, (Iron)Python scripts, and, for releases prior to Revit 2022, Ruby scripts.

Manage Ribbon Tab

Macros come in two forms: application macros, which are stored locally and accessible
throughout different Revit instances, and document macros, which can be embedded
within a Revit model and can thus be accessed by all the collaborators working on that
model and which can be set to control that model at certain predefined events.

Page 7

One thing that would be recommended if a user is migrating from Dynamo scripting and
wants to start exploring the Revit API is for him/her to start by converting his/her
Dynamo graphs into Revit macros, whether those macros are C# ones or Python ones.
As a matter of fact, and once a user starts to include Python scripts into his/her Dynamo
graphs, the need for graphical nodes decreases and he/she is ready to start writing that
same algorithm as a full text-based script since Visual Programming becomes almost
useless once a user is advanced enough to write his/her own code. Even for Python
scripts, having an IDE with a functioning autocomplete feature and live debugging would
make that process way easier and enjoyable.

Macro development is usually easier to deal with than Add-In development, as the IDE is
easily accessible within Revit, and the macros can be easily tested from within the
Macro Manager (which has an interface that’s similar to that of Dynamo Player with a
more nostalgic vintage appearance) without having to set the environment up for
debugging.

Revit Plugins/Add-Ins/Add-Ons/Extensions

A mystery that will never be solved is the difference between plugin, add-in, add-on and
extension. To many they mean the same thing. What matters for now is their common
definition.

An add-in is a compiled class library that is loaded by Revit on startup and that
integrates within the Revit interface and environment to perform additional functionalities
and modify or monitor built-in ones.

Unlike Dynamo scripts and Revit macros, Add-ins require an external IDE to be
developed (although an experienced developer can use the one that ships with Revit to
develop his own external application). That IDE can be Visual Studio, or, if you’re an
Open Source fan, SharpDevelop.

Add-ins are the ultimate form of Revit Desktop automation. They have one
disadvantage: learning to build them is a bit hard. However, starting an automation
journey with Dynamo, and following it up with Python scripting and macros, should ease
that process and make it an enjoyable venture.

Macros and add-ins offer all the advantages that will be enumerated in the following parts. To
conclude this part, I would like to start with one of those advantages: deployment and
embedding.

Deployment is a challenge for companies, and the bigger the company is, the bigger that
challenge becomes. Dynamo scripts and macros are ideal when a BIM manager is prototyping
or even building a final script that he/she will be using alone. Whenever a certain functionality

Page 8

needs to be used by every team member, deploying Dynamo scripts becomes a nightmare, and
there’s always Murphy’s law to take into account: something may go wrong during deployment
or during operation, especially that these scripts can be edited by anyone. To ensure a safe
deployment, a packaged add-in is the best way to go. An installer can be built to be deployed
remotely on every workstation, which ends up reducing the time required for deployment and
making sure that the end solution would be easily accessible by end users.
As all the components are compiled, there is less risk of having a new inexperienced user
modify the code by mistake. Even if the BIM manager/Developer would generously like to
expose his/her code for educational purposes to the rest of the team, he/she can do so without
worrying about the end solution being altered in case it’s modified later on, as the end solution is
a compiled one and independent of the initial solution.

Many great third-party solutions are attempting and succeeding in solving the deployment issue
of Dynamo scripts. Still, that involves integrating a third-party extension within a company’s
workflow, so it’s back to add-ins.

Another great feature is the document embedding of macros. Embedded macros have the great
advantage of making a script available to all collaborators without any deployment hassles, as
the macros are embedded within the Revit model.

Runtime Performance Enhancement

Many know that add-ins (and macros) have a better runtime performance than that of Dynamo
scripts (to be fair though, the Autodesk Dynamo team are doing a great job and are closing the
gap with every release).

What many may not be familiar with are the reasons behind that, and the scale of that runtime
performance enhancement.

One of the reasons behind that is also due to Visual Programming: when less control is
available, less optimization can be achieved. As the nodes are prebuilt, there are many
operations that may be common between two successive nodes that cannot be combined within
Dynamo and that can be combined through a conventional text-based script. For instance, and
through text-based programming, the number of iterations and of document commit operations
can be reduced: basically, whenever a document modification is required, a commit operation is
required to modify the document. That operation regenerates all the elements of the model each
time, which ends up affecting performance. This may be happening internally within many (if not
all) nodes, while the entire script may require only one commit operation. That would be one of
the factors that may affect the overall performance and add to the processing delay.

Another disadvantage Dynamo has performance-wise is that, and to avoid DLL conflicts, many
libraries are dynamically loaded, which also increases the processing time.
In addition, and in order to be compatible with the .NET Framework, a Python interpreter that is
built on top of the .NET Framework would be needed, in this case IronPython, or, starting with
Dynamo 2.7, CPython3. IronPython can be 32 times slower that an equivalent solution built
directly on top of the .NET Framework which is another reason to switch to macros and to a
.NET compatible language once text-based scripting is mastered.

Page 9

Here’s a real-case example to illustrate the improved processing time of an extension,
compared with an equivalent Dynamo script: out of the many Dynamo conversion jobs we have
completed, one involved a sheet generation and viewport placement script. The final product
was able to reduce the execution time down to 45 seconds compared to the Dynamo Script’s
execution time of 18 minutes. The original script was a very well-built one, and all it needed was
to be rebuilt into an add-in and optimized. A lighter script may not be worth the trouble, but for
complex ones, it can make a huge difference.

Customized User Interfaces

A user interface is always a requirement for any application, as it allows users to specify the
input required by that application’s back-end engine to do its magic.

Dynamo out of the box doesn’t provide any way to customize the user interface of its scripts.
The only quick access tool for Dynamo scripts is Dynamo Player, which lists the scripts to be
executed by the user. So, the user needs to open Dynamo Player and execute the scripts
manually, which in itself is a waste of time.

Dynamo Player

Add-ins can be built to customize the Revit ribbon, and the developed external commands can
therefore be accessed through pushbuttons like any other built-in Revit command. Keyboard
shortcuts can also be assigned to these pushbuttons for an even quicker access. That itself
would make a huge difference once the automation tools you develop need to be accessed on a
daily basis by every team member.

Again, many third-party developers have built excellent add-ons to map Dynamo scripts to the
Revit ribbon and give Dynamo that same advantage, but again, you’re back to using add-ins, so

Page 10

why not build your own directly, knowing that such add-ins are always risky as they may be a
cause of DLL conflict with some of Dynamo’s libraries.

Creating new pushbuttons is not the only interface customization that one is able to make when
he/she goes deeper into the dark realms of the API: a developer can also override built-in
commands (technically known as command binding) or have a certain routine run prior to a
certain built-in command or right after it. That is useful whenever any built-in command is
required to be disabled for example so that no one uses it. A well-known example is the “Import
CAD” built-in command, which can be overridden and bound to an alternative command that
displays a text message (also known technically as a TaskDialog) denying the user from using
that tool. More customizations can be made as well, if one wanders around libraries that are
“not really part of the Revit API”. One particular example is the AdWindows.dll library, which
would allow you to customize the interface to a greater extent, by colorizing the controls or
moving built-in pushbuttons across tabs…

Revit Ribbon

In addition, creating interfaces where users can specify the input for the algorithm is crucial and
is one of the advantages of the “.NET way”. For a Dynamo exclusive workflow, nodes that are
specified as input nodes can have their values controlled within Dynamo Player which many
times may not be enough, is not straightforward, and is a slower way for users.

Once more, many third-party developers have developed custom Dynamo node packages to
allow Dynamo users to include a Windows interface to their graphs. As great as that is, these
interfaces cannot be customized to the full potential offered by the .NET Framework, for both
WinForms and WPF forms.

In fact, you are able to customize your forms to many degrees: you can customize your form’s
layout, make its shape unusual, make it more compact when a compact form is required, and
expand it whenever an algorithm is advanced enough to require a multitude of inputs.

Moreover, you can build your form to be a modeless one: that form would be opened once per
session and kept open while working, allowing buttons, sliders, checkboxes… to modify
elements dynamically in your model. If you’re looking for an example to inspire you build your
own app, you can check out Bird Tools’ Tag Alignment Tool. It’s an Autodesk App Store add-on
that can control tag angles. It features a modeless Annotation Dashboard that users can open

Page 11

once per session and keep opened wither on the side or on a secondary screen while working.
As soon as a group of tags or text notes are selected, their leader angle can be dynamically
controlled and specified using the slider that can be seen in the following image. For an even
better visualization, you may check out the demo videos that show this feature in action here:
https://www.birdtools-developers.com/tagalign.html

Bird Tools’ Tag Alignment Tool: Annotation Dashboard

An additional UI option one can go with is a dockable panel. Examples of built-in
dockable panels include the project browser, system browser, and property panel. A
custom panel can be built and docked anywhere next to these built-in panels.

https://www.birdtools-developers.com/tagalign.html

Page 12

Revit Events

To take your automation to an even higher level, you can monitor many of the built-in Revit
events through the Revit API and execute an instance of automation as soon as these events
are triggered.

The best way to define Revit events and simplify the concept is to enumerate many of these
events.

Events that are accessible through the Revit API include but are not limited to element
placement, element modification, element deletion, document opening, document closing,
document saving, document synchronizing with central, Revit application instance opening,
Revit shutting down… Whenever one of these actions happens, an already defined monitor can
be triggered to perform a defined action. Even more, it’s also possible to perform custom actions
when the model is completely idle through idling events.

Some of the potential applications of Revit events include auto-saving/synchronizing with central
when a model is idle. Another great use of both Revit macros and events would be an
embedded Revit document macro that sets the active workset automatically as soon as a model
is opened.

Let’s illustrate that with another real-case example that we worked on at Bird Tools. Back when
BIM 360 Design was first introduced, the old Revit communicator was dropped and since the
worksharing monitor doesn’t support BIM 360 models, a worksharing monitor was needed for
BIM 360.

After being requested by many of the Autodesk forum, we decided to build our own and make it
public. It’s called “Raven” and what it does is monitor worksharing events and report these
events back to a central cloud hosted server, which in turn sends a notification to an instant
messenger that the entire team uses, whether it’s the instant messenger that comes with
Raven, or whether it’s any of the popular team communication platforms out there such as
Zoom, Microsoft Teams, Slack, Webex Teams… This is a great example illustrating Revit
events that can be found here for your own inspiration: https://www.birdtools-
developers.com/raven.html

https://www.birdtools-developers.com/raven.html
https://www.birdtools-developers.com/raven.html

Page 13

Raven, reporting worksharing notifications for a BIM Collaborate Pro Revit model

Getting Started with the Revit API

The best way to get started with the Revit API is to start converting your Dynamo scripts into
Revit macros. While you do that, you can attend to many technical difficulties on the spot and if
you’re stuck, you can always look for a solution on the spot through a simple search over the
internet (although that would be less fun).

To ease that journey, here’s a list of online resources and tools that will come in handy:

 Revit API Docs – It’s the official Revit API documentation converted into an online

database: https://www.revitapidocs.com
 Jeremy Tammik’s “The Building Coder”, which features many code examples

https://thebuildingcoder.typepad.com
 The Revit Developer Center, where one can download the official Revit SDK, which is

full of examples and useful documentation: https://www.autodesk.com/developer-
network/platform-technologies/revit

 Revit Lookup: This is a must have tool for developers and users alike, allowing users to
explore elements within a Revit model and their hidden API properties and methods.
Again, this is a must have! https://lookupbuilds.com

 Boost Your BIM, by Harry Mattison, one of the oldest Revit users and developers ever:
https://boostyourbim.wordpress.com/

 The official Revit API forum, where many of the issues one would face have already
been discussed and potentially solved: https://forums.autodesk.com/t5/revit-api-
forum/bd-p/160

https://www.revitapidocs.com/
https://thebuildingcoder.typepad.com/
https://www.autodesk.com/developer-network/platform-technologies/revit
https://www.autodesk.com/developer-network/platform-technologies/revit
https://lookupbuilds.com/
https://boostyourbim.wordpress.com/
https://forums.autodesk.com/t5/revit-api-forum/bd-p/160
https://forums.autodesk.com/t5/revit-api-forum/bd-p/160

Page 14

Part 2: Forge

This is no longer 2009. People nowadays are using cloud storage and cloud computing to
collaborate in every domain, and the AEC sector is no exception.

Cloud services have been offered by Autodesk for a while now, from BIM Collaborate Pro
(formerly known as BIM 360 Design), to Autodesk Docs, to the Autodesk Construction Cloud, to
digital twin platforms such as Autodesk Tandem.

Ever wondered how these platforms are built? Ever wanted to automate any of your cloud
workflows? One word answers both questions: Forge.

Forge is Autodesk’s answer to cloud automation. It’s a cloud developer platform that aims to
automate anything cloud related.

Even Autodesk’s own cloud services are actually built on top of Forge, and you can even build
your own custom system on top of Forge.

To be able to automate all cloud services, and since there are several different cloud services
offered by Autodesk, several APIs had to be conceived for each service, and they are all
gathered in their masses under the Forge umbrella.

The following sections aim to enumerate these APIs, explain what each API is and what it can
help you automate, along with a couple of tips for the reader to start diving into the realms of
Forge automation, and a couple of real-case Forge automation success stories, both public, and
privately developed by us at Bird Tools, to help demonstrate the powerful potential of Forge.

Forge BIM 360 API

The first API that we’ll be talking about is the BIM 360 API. The BIM 360 API aims to automate
anything BIM 360 related.

For instance, BIM 360 operations such as company creation, project creation, permission
assignment for each user, activating services, cost management, issue management, issue
creation, PDF export straight from BIM 360, Model Coordination and managing the clash results
obtained within the BIM 360 model coordination feature, RFI management… can all be
automated through the BIM 360 API.

Forge Data Management API

Simply put, the Data Management API is meant to give the developer control over all cloud
storage and file transfer operations related to BIM 360 and Autodesk Docs.

For instance, if you ever wanted to automate or schedule file backup operations, then the Data
Management API can allow you to automate and schedule model downloads.

Page 15

Operations such as file uploads, attachments, publishing cloud models, deleting files and
restoring deleted files, can all be automated through the Data Management API.

Forge Viewer

The Forge viewer, in its API aspect, consists of a 2D-3D JavaScript rendering library (based on
Three.js). Through the Forge viewer, you can make your Autodesk compatible model, whether
it’s an AutoCAD 2D drawing, a Revit model, a Revit family, and Inventor part or assembly…
compatible with any web browser, where anyone can access that model, navigate it and access
its element properties.

Being compatible with any web browser also implies that your model is compatible with any
platform, whether a Desktop one or a mobile one. You can thus create your own company’s
Common Data Environment (CDE) and share your data across locations, whether with office
workers, or with site workers that can access all that on site though their own tablet devices.

With IoT integration within BIM being projected to be a trend in the upcoming years, Forge
Viewer is already equipped with an IoT toolkit that can remotely integrate with any number of
sensors/devices and report any captured data in real-time straight into the viewer, where that
data would be displayed as sprites, heat maps, timelines… Such a feature is ideal in case you
are not satisfied with any of the digital twin solutions commonly available, as it can be integrated
within any bespoke Digital Twin platform you may conceive.

Forge Model Derivative API

Integrating a model within Forge Viewer requires another API to convert that model into a
compatible file format. That file format is the SVF file format, and that API is the Forge Model
Derivative API.

In addition to making your Revit model, AutoCAD drawing, Inventor part… compatible with
Forge Viewer, the model derivative API can be a quick an easy way to convert and extract
geometry information into other universal formats, such as OBJ or SAT.

Geometry extraction is not the only purpose of the Model Derivative API. In fact, any type of
data can be extracted through this API. Examples include the extraction of element properties,
such as information about rooms, spaces…

Webhooks

As stated above, monitoring events through the Revit API proved to be highly useful. Cloud
events can also be monitored, and Forge includes a series of webhook events that can be setup
to automatically trigger an action or send notifications to another listening server, or to another
incoming webhook that users can setup within apps such as Slack, Zoom or Microsoft Teams.

Page 16

Cloud events that can be monitored through these webhooks are file
creation/modification/deletion, folder creation/modification/deletion, model modification,
synchronization, model publish operations, model version modification… You can, for example,
receive a notification inside Microsoft Teams as soon as a model is published.

Forge Reality Capture API

This API is an interesting API as it’s one that uses machine learning to perform many of its
functionalities.

In fact, this API aims to handle and convert raster images into geometry elements supported by
common CAD platforms, such as meshes, or other Reality Capture Data formats, such as point
clouds.

It is ideal to convert satellite images or aerial images into elements such as 3D topography for
example.

Forge Design Automation API

Last but definitely not least, this API is the one that is the most disruptive in my opinion.

The Forge Design Automation API is in itself a service that can run a software instance remotely
over a cloud remote server.

Think of it as a remote machine that can run AutoCAD, Revit, Inventor, 3DS Max over models
without you having to cache them locally or download them, and that has very high resources: a
powerful processor, 32 GB of memory as of October 2021, and almost infinite storage…

The potential of this API is just enormous. Not just does it eliminate the time wasted to
download and synchronize models back, and not just does it eliminate the time needed to open
and close and display a user interface, it also does everything in less time as its server is way
more powerful than anything desktop based, and its interface is not limited to the
Revit/AutoCAD…interface, nor to any platform: the interface can be anything your heart desires,
including a web page that can be accessed from any device. If you’re dedicated enough, you
can combine it with Forge Viewer to build your own web version of Revit. More examples about
this API will be presented in the following sections.

Getting Started with Forge

Now that almost every Forge API has been presented in detail, it is only natural to start
exploring these APIs and building on top of them. Here are some of the resources and tutorials
to be followed, and some of the tips based on my own experience with Forge.

The first step one needs to take when starting to build his/her own Forge solution is determining
which functionalities he/she needs and in turn determine which APIs are needed to create that

Page 17

functionality. For example, if one needs to batch assign user permissions within BIM 360, then
he/she needs to refer to the BIM 360 API. The previous section should be able to give you a
clear idea about each API and should help you with that step.

Once you’ve determined which API is required for your First Forge solution, it would be time to
start learning how to build that solution based on the chosen API. As per Paolo Coelho’s
masterpiece, “The Alchemist”, “there’s only one way to learn. It’s through action”, which in our
case means that the best way to learn how to develop on top of Forge is to actually start with
the project and learn as you move along.

For that, Autodesk has provided some awesome step-by-step tutorials that you can literally
follow to develop your own solution. Each of the functionalities that can be automated through
the Forge API in question has its own step-by-step tutorial that you can follow to build your own
solution. You can find these step-by-step tutorials here:
https://forge.autodesk.com/developer/documentation
https://learnforge.autodesk.io

One great place to check as well is the Forge Community Blog. Here’s a link:
https://forge.autodesk.com/blog

If you have questions, stackoverflow.com is a great place to ask them. Make sure to tag your
inquiries with “autodesk-forge”: https://stackoverflow.com/questions/ask?tags=[autodesk-forge]

Here are some tips to ease that for you: when you go through the step-by-step tutorials,
something that you will encounter a lot is cURL. cURL is a multi-platform command line tool
allowing you to test all the web calls and data transfer operations that all of the Forge APIs
involve. If you’re a windows user you can find a windows version of cURL that you can integrate
within your system and use as per the step-by-step tutorials.

However, it is important that you keep an open mind about that as all of the cURL syntaxes you
may encounter are actually universal REST requests that can be performed using any
programming language, whether JavaScript, C#, Python, or any other language. The most
recommended one would definitely be JavaScript as it’s the most universal. Therefore, make
sure to try and write the equivalent of those cURL statements in your own language. To get you
started with that, here’s the equivalent of the 2-legged token cURL approach featured in the
step-by-step tutorial, in C#, JavaScript, and Python. Make sure to replace your client id and
client secret with your own of course.

Curl:

curl -v 'https://developer.api.autodesk.com/authentication/v1/authenticate'
 -X 'POST'
 -H 'Content-Type: application/x-www-form-urlencoded'
 -d '
 client_id=obQDn8P0GanGFQha4ngKKVWcxwyvFAGE&
 client_secret=eUruM8HRyc7BAQ1e&
 grant_type=client_credentials&
 scope=data:read
 '

https://forge.autodesk.com/developer/documentation
https://learnforge.autodesk.io/
https://forge.autodesk.com/blog
https://stackoverflow.com/questions/ask?tags=%5bautodesk-forge

Page 18

C#:
(make sure to add references to the System.Net, System.Net.HTTP, and
System.Net.Http.Headers libraries and namespaces)

using (var httpClient = new HttpClient())
 {
 using (var request = new HttpRequestMessage(new
HttpMethod("POST"),
"https://developer.api.autodesk.com/authentication/v1/authenticate"))
 {
 var contentList = new List<string>();
 contentList.Add("client_id=" +
“obQDn8P0GanGFQha4ngKKVWcxwyvFAGE”);
 contentList.Add("client_secret=" + “eUruM8HRyc7BAQ1e”);
 contentList.Add("grant_type=client_credentials");
 contentList.Add("scope=code:all data:write data:read
bucket:create bucket:delete");
 request.Content = new StringContent(string.Join("&",
contentList));
 request.Content.Headers.ContentType = new
MediaTypeHeaderValue("application/x-www-form-urlencoded");

 ServicePointManager.SecurityProtocol =
SecurityProtocolType.Tls12;
 HttpResponseMessage response = await
httpClient.SendAsync(request);
 string responses = await
response.Content.ReadAsStringAsync();

 }

 }

JavaScript:

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {
 //do your additional work here
 };

xhttp.open("POST",
"https://developer.api.autodesk.com/authentication/v1/authenticate", true);
 xhttp.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");
 xhttp.send("client_id= obQDn8P0GanGFQha4ngKKVWcxwyvFAGE&client_secret=
eUruM8HRyc7BAQ1e&grant_type=client_credentials&scope=code:all data:write
data:read bucket:create bucket:delete");

Page 19

Python:

import requests

headers = {
 'Content-Type': 'application/x-www-form-urlencoded',
}

data = {
 'client_id': 'obQDn8P0GanGFQha4ngKKVWcxwyvFAGE',
 ' client_secret': 'eUruM8HRyc7BAQ1e',
 ' grant_type': 'client_credentials',
 ' scope': 'data:read'
}

response =
requests.post('https://developer.api.autodesk.com/authentication/v1/authentic
ate', headers=headers, data=data)

So keep in mind that you can perform these requests using any programming language you
prefer. You will encounter the cURL statements for all of the step-by-step tutorials of all Forge
APIs so hopefully the sample conversions above of the very first tutorial will be of help. You can
proceed the same way for the rest of the tutorials and convert the cURL statements into your
preferred programming language in a similar manner.

On Forge Design Automation for Revit: DA4R apps consist of two components: a back-end
application and a front-end interface. The front-end interface can be anything you want: a web
page, a mobile application, a desktop application… the back-end application is essentially a
Revit add-in stripped away from any reference to the “RevitAPIUI” library, as the UI part is
handled by the front-end user interface that is developed separately. Setting up the server will
require REST requests similar to the ones above. These can be found in the DA4R step-by-step
tutorials. As of the date when this document was written, Dynamo scripts can’t be executed
within DA4R and won’t be for a period of time, which is an additional reason to dive deeper into
the Revit API and master Revit plugin development, as the transition from a Revit plugin into a
DA4R application is rather easy when you are a master of the Revit API.

Real-Case Forge Success Stories

Wherever you may wander over the internet these days, you may here the expression “Forge is
the future” which is totally inaccurate: Forge is here. Many R&D projects have already emerged
that are Forge dependent, and, according to my own daily experience, many firms have already
started reaching out to integrate bespoke internal Forge solutions, and many of these projects
have been completed for a while now. These projects include automating BIM 360 operations
such as project creation and permission assignment, automatic cloud data backup applications,
customized Common Data Environments (CDEs), remote cloud model processing applications
that perform remote automated operations over cloud models without locally opening and
caching the models in question…

Page 20

Throughout this section will be showcased four real-case projects that have been built on top of
Forge and its APIs, three of which I have worked on personally.

MX3D Bridge – Amsterdam

This is an R&D project that you are most likely familiar with as it has been all over the
news. Probably the first robotically 3D printed structural entity ever created, this bridge is
located in Amsterdam and is a smart structure in a sense that it is monitored by all types
of sensors. What you may not be familiar with is that a customized digital twin platform
for this bridge was developed by the Autodesk research team as part of Project Dasher,
and that this platform itself is built on top of Forge. All the data that these sensors pick
up is processed by that platform, and can be accessed live by anyone. You can check it
out here: https://www.smartbridgeamsterdam.com/

MX3D Bridge Inauguration

MX3D Bridge – Sensor Data

https://www.smartbridgeamsterdam.com/

Page 21

From AU 2020: EMDC Group’s Forge Integration Success Story

For those of you who have missed last year’s AU class, the whole session was
dedicated to showcase the following two projects that we have collaborated on with
EMDC Group and to discuss the machine learning algorithms and Forge technologies
involved with these projects.

It’s hard to find a firm that embraces automation as much as EMDC Group and one that
is open to sharing its internal automation workflow, as many firms are a bit reserved
regarding to that and try to keep everything confidential, and that early adoption of
automation and emerging technologies and sharing spirit is one of the secrets of EMDC
Group’s success as a leading design and consultancy firm in the MENA region, in
addition to them being hard-workers and to their vast experience in the field.

One of the challenges that EMDC Group faced a couple of years ago was automating
the issuing of their deliverables for a huge project consisting of tens of thousands of
sheets. The project they modeled consisted of a series of Revit models which is only
natural these days, while the deliverables were required to be submitted as AutoCAD
drawings. A simple export may seem to be the answer but specific DWG standards were
required so a custom exporter was required. Among these standards, having the tags
submitted as multi-leaders and according to a certain multileader style was a major
requirement. Revit out of the box exports these as exploded entities and the manual
work involved with regrouping the already placed Revit tags was a pure waste of time.

Exported Revit Tag – Entities not grouped into multileaders

The solution developed used machine learning, particularly clustering, to regroup the
tags as soon as the drawings were exported to avoid any manual labor, and due to the
high number of Revit models involved and to the fact that this involved interoperability
between Revit and AutoCAD which is ideal for Forge Design Automation as it reduces
the time needed to open and close the drawings, the final solution ended up being an
interoperability Forge Design Automation application for both Revit and AutoCAD, while
its interface was a web page that any team member could access from anywhere to
submit the required drawings, which in turn are sent automatically to the client.

Page 22

Forge Multileader Processor – Web Interface

Another application where machine learning has been combined with Forge to automate
project setup is the Forge View Placement App, which was built on top of the Forge Data
Management API to retrieve the models that were used as a learning set, that was in
turn fed into a supervised learning Forge DA4R application that was used to find
patterns and correlations between view parameters and the parameters of the hosting
sheets. The goal was to use fuzzy logic within Forge DA4R to place views on sheets
automatically and without any human interaction, based on the statistical relation found
by the first supervised machine learning application. DA4R was definitely the way to go
for this project as thousands of sheets needed to be processed and hundreds of models
needed to be automatically processed, which implied a great amount of time that DA4R
could save by reducing operations such as downloading, opening, and closing models.

For more information about these two apps and more details about the technologies
used to build them, you may check out this highly insightful AU 2020 class:
https://www.autodesk.com/autodesk-university/class/Combining-Forge-and-Machine-
Learning-Automate-Time-Consuming-Tasks-2020

https://www.autodesk.com/autodesk-university/class/Combining-Forge-and-Machine-Learning-Automate-Time-Consuming-Tasks-2020
https://www.autodesk.com/autodesk-university/class/Combining-Forge-and-Machine-Learning-Automate-Time-Consuming-Tasks-2020
https://www.autodesk.com/autodesk-university/class/Combining-Forge-and-Machine-Learning-Automate-Time-Consuming-Tasks-2020

Page 23

Forge Sheet Generator – Web Interface

Bonus Example: Dynamo Multiplayer

This example is a bonus example that wasn’t featured in the original video presentation
as the app wasn’t released yet back when the session was recorded.

Batch processing is one of the most highly demanded features for any software, and for
Revit, building a universal batch processor is a challenge as Revit’s commands involve
interface interactions, unlike a product such as AutoCAD where all commands are script
based.

In order to achieve a universal Revit batch processing tool, what we built was a tool that
can batch open and save Revit files, and which can run a sequence of Dynamo scripts
to process files individually. That tool was called Dynamo Multiplayer.

Building the tool is not too much of a challenge for offline models as the path can be
accessed through a regular file browsing dialog.

Page 24

Dynamo Multiplayer - Interface

However, most people are nowadays using BIM 360, and unlike other types of Revit
files, these are remotely hosted and can’t be accessed through the legacy file browsing
method.

The way to access these files is to use Forge Data Management API to retrieve the BIM
360 hubs and project directories and model cloud paths, along with the BIM 360 API to
retrieve BIM 360 projects which the user has access to and a high enough permission
level to edit, which is exactly what has been built within this app: a customized file and
directory browser that can list BIM 360 hubs, models and directories.

Page 25

Dynamo Multiplayer – Forge BIM 360 Directory and File Crawler

This is a great example of an integrated Forge workflow within a Revit extension, and of
the possibility of combining all of the three technologies that are discussed throughout
this document (Dynamo, Revit API, and Forge) into one solution, and that showcases
the power of Forge to at least retrieve BIM 360 models and list BIM 360 directories, and
that demonstrates how an advanced knowledge in both the Dynamo API and the Revit
API is capable of pushing Revit extensions to the next level and to even extend the built-
in capabilities of Dynamo.

The app is a free public Revit add-in called Dynamo Multiplayer. If you want to check out
its videos and give it a test to get a feel of the new possibilities that Forge offers when
integrated within a Revit API workflow, you can find it here: https://www.birdtools-
developers.com/dmu.html

https://www.birdtools-developers.com/dmu.html
https://www.birdtools-developers.com/dmu.html

Page 26

Conclusion

To conclude all of the above, this document’s main aim is to invite everyone to go as deep as
possible into the realms of automation and to try to inspire you with new ideas by the real case
examples presented above: as much as you may know, there’s always more for you to learn,
and automation opportunities are endless.

If you haven’t explored Dynamo yet and are still new to automation, you have to. Dynamo is just
great and will turn you into an internal superhero at your company and give you superpowers.
Hop on that train today.

If you already have Dynamo superpowers, there are “megapower” hidden within the Revit API
and “gigapowers” hidden within Forge that you are yet to explore. As you can see, the AEC
world has started to integrate Forge solutions so if you’re postponing that, you’re going to be left
behind.

If you prefer to focus on the technical or managerial aspects of your jobs in case that is your
passion rather than automation, and although I recommend that you add automation to your
skills as well because it’s not just useful, it’s also entertaining and may become your new hobby,
you may find someone to do it for you. It may be a team member, or a third-party Autodesk
Authorized Developer or Forge Systems Integrator. Create the idea, start the project, and find
the entity that suits you best and have them do it for you.

Whatever you have to do, just make sure to hop on the automation train today, because, as per
Tom Preston-Werner (founder of GitHub), “you’re either the one that creates the automation
or you’re getting automated”.

References

 https://www.shutterstock.com/image-vector/evolution-human-primitive-present-stone-

age-1129231658
 https://chucknorris.io
 https://nodered.org/
 https://gettingsimple.com/ian-keough
 https://i.pinimg.com/474x/d4/55/02/d4550223009d9f452cb474ae6517269e.jpg
 https://www.gannett-cdn.com/-mm-

/993aafba25524310832cb4f280d0c82221b7cbdf/c=0-0-1996-1127/local/-
/media/2015/09/02/Phoenix/Phoenix/635768148971498776-henry-ford.jpg

 https://w9spd3lpn271hexb03czvhiy-wpengine.netdna-ssl.com/wp-
content/uploads/2020/01/Screenshot-2020-01-14-at-3.42.12-PM.png

 https://www.azquotes.com/quote/621568?ref=think-outside-the-box
 https://www.revitapidocs.com/

https://www.shutterstock.com/image-vector/evolution-human-primitive-present-stone-age-1129231658
https://www.shutterstock.com/image-vector/evolution-human-primitive-present-stone-age-1129231658
https://chucknorris.io/
https://nodered.org/
https://gettingsimple.com/ian-keough
https://i.pinimg.com/474x/d4/55/02/d4550223009d9f452cb474ae6517269e.jpg
https://www.gannett-cdn.com/-mm-/993aafba25524310832cb4f280d0c82221b7cbdf/c=0-0-1996-1127/local/-/media/2015/09/02/Phoenix/Phoenix/635768148971498776-henry-ford.jpg
https://www.gannett-cdn.com/-mm-/993aafba25524310832cb4f280d0c82221b7cbdf/c=0-0-1996-1127/local/-/media/2015/09/02/Phoenix/Phoenix/635768148971498776-henry-ford.jpg
https://www.gannett-cdn.com/-mm-/993aafba25524310832cb4f280d0c82221b7cbdf/c=0-0-1996-1127/local/-/media/2015/09/02/Phoenix/Phoenix/635768148971498776-henry-ford.jpg
https://w9spd3lpn271hexb03czvhiy-wpengine.netdna-ssl.com/wp-content/uploads/2020/01/Screenshot-2020-01-14-at-3.42.12-PM.png
https://w9spd3lpn271hexb03czvhiy-wpengine.netdna-ssl.com/wp-content/uploads/2020/01/Screenshot-2020-01-14-at-3.42.12-PM.png
https://www.azquotes.com/quote/621568?ref=think-outside-the-box
https://www.revitapidocs.com/

Page 27

 https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Egypt_Hieroglyphe4.jpg/26
0px-Egypt_Hieroglyphe4.jpg

 https://bubble.io/blog/visual-programming/
 https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRnEs3VtgkCtc-

EyJXY1RQHGW-XJAmmuTZtzA&usqp=CAU
 https://help.autodesk.com/cloudhelp/2014/ENU/Revit/images/GUID-3E56B42A-41D4-

48C0-B7B4-E4FC79B613B2.jpg
 https://dynamobim.org/wp-content/uploads/forum-assets/martin-staceymatterlab-

co/03/26/revit02.png
 https://www.darrenjyoung.com/wp-content/uploads/2020/02/Revit_Dynamo.jpg
 https://www.alliedmarketresearch.com/bim-in-construction-market-A10290
 https://www.maxpixel.net/static/photo/1x/Party-Event-party-Night-party-Events-

Celebration-3005668.jpg
 https://www.techture.global/wp-content/uploads/2018/03/Autodesk-Forge-big.jpg
 https://static.thenounproject.com/png/1581158-200.png
 https://labs.blogs.com/.a/6a00d8341caed853ef0240a4483ba2200c-pi
 https://developer-dev.static.autodesk.com/coverpage_images/bim1.png
 https://developer.doc.autodesk.com/bPlouYTd/475/_images/dms_overview.png
 https://developer.doc.autodesk.com/bPlouYTd/475/_images/MD-overview-diagram.png
 https://developer.doc.autodesk.com/bPlouYTd/412/_images/overview1.jpg
 https://developer-dev.static.autodesk.com/coverpage_images/wh_1.png
 https://developer.doc.autodesk.com/bPlouYTd/475/_images/reality_capture_high_level.p

ng
 https://www.azquotes.com/picture-quotes/quote-i-must-create-a-system-or-be-enslaved-

by-another-mans-i-will-not-reason-and-compare-william-blake-2-88-41.jpg
 https://through-the-interface.typepad.com/.a/6a00d83452464869e20282e111e0e2200b-

pi
 https://www.smartbridgeamsterdam.com/wp-

content/uploads/2021/07/MX3D_Bridge_Opening_YourMajestyTheQueenMaxima_ByAd
riaandeGroot-scaled.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Egypt_Hieroglyphe4.jpg/26%200px-Egypt_Hieroglyphe4.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Egypt_Hieroglyphe4.jpg/26%200px-Egypt_Hieroglyphe4.jpg
https://bubble.io/blog/visual-programming/
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRnEs3VtgkCtc-EyJXY1RQHGW-XJAmmuTZtzA&usqp=CAU
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRnEs3VtgkCtc-EyJXY1RQHGW-XJAmmuTZtzA&usqp=CAU
https://help.autodesk.com/cloudhelp/2014/ENU/Revit/images/GUID-3E56B42A-41D4-48C0-B7B4-E4FC79B613B2.jpg
https://help.autodesk.com/cloudhelp/2014/ENU/Revit/images/GUID-3E56B42A-41D4-48C0-B7B4-E4FC79B613B2.jpg
https://dynamobim.org/wp-content/uploads/forum-assets/martin-staceymatterlab-co/03/26/revit02.png
https://dynamobim.org/wp-content/uploads/forum-assets/martin-staceymatterlab-co/03/26/revit02.png
https://www.darrenjyoung.com/wp-content/uploads/2020/02/Revit_Dynamo.jpg
https://www.alliedmarketresearch.com/bim-in-construction-market-A10290
https://www.maxpixel.net/static/photo/1x/Party-Event-party-Night-party-Events-Celebration-3005668.jpg
https://www.maxpixel.net/static/photo/1x/Party-Event-party-Night-party-Events-Celebration-3005668.jpg
https://www.techture.global/wp-content/uploads/2018/03/Autodesk-Forge-big.jpg
https://static.thenounproject.com/png/1581158-200.png
https://labs.blogs.com/.a/6a00d8341caed853ef0240a4483ba2200c-pi
https://developer-dev.static.autodesk.com/coverpage_images/bim1.png
https://developer.doc.autodesk.com/bPlouYTd/475/_images/dms_overview.png
https://developer.doc.autodesk.com/bPlouYTd/475/_images/MD-overview-diagram.png
https://developer.doc.autodesk.com/bPlouYTd/412/_images/overview1.jpg
https://developer-dev.static.autodesk.com/coverpage_images/wh_1.png
https://developer.doc.autodesk.com/bPlouYTd/475/_images/reality_capture_high_level.png
https://developer.doc.autodesk.com/bPlouYTd/475/_images/reality_capture_high_level.png
https://www.azquotes.com/picture-quotes/quote-i-must-create-a-system-or-be-enslaved-by-another-mans-i-will-not-reason-and-compare-william-blake-2-88-41.jpg
https://www.azquotes.com/picture-quotes/quote-i-must-create-a-system-or-be-enslaved-by-another-mans-i-will-not-reason-and-compare-william-blake-2-88-41.jpg
https://through-the-interface.typepad.com/.a/6a00d83452464869e20282e111e0e2200b-pi
https://through-the-interface.typepad.com/.a/6a00d83452464869e20282e111e0e2200b-pi
https://www.smartbridgeamsterdam.com/wp-content/uploads/2021/07/MX3D_Bridge_Opening_YourMajestyTheQueenMaxima_ByAdriaandeGroot-scaled.jpg
https://www.smartbridgeamsterdam.com/wp-content/uploads/2021/07/MX3D_Bridge_Opening_YourMajestyTheQueenMaxima_ByAdriaandeGroot-scaled.jpg
https://www.smartbridgeamsterdam.com/wp-content/uploads/2021/07/MX3D_Bridge_Opening_YourMajestyTheQueenMaxima_ByAdriaandeGroot-scaled.jpg

	BES500019
	Revit Automation Throughout History
	Why Dynamo?

	The Revit API and its forms of automation
	Revit Macros
	Revit Plugins/Add-Ins/Add-Ons/Extensions

	Runtime Performance Enhancement
	Customized User Interfaces
	Revit Events
	Getting Started with the Revit API
	Forge BIM 360 API
	Forge Data Management API
	Forge Viewer
	Forge Model Derivative API
	Webhooks
	Forge Reality Capture API
	Forge Design Automation API
	Getting Started with Forge
	Real-Case Forge Success Stories
	MX3D Bridge – Amsterdam
	From AU 2020: EMDC Group’s Forge Integration Success Story
	Bonus Example: Dynamo Multiplayer

