

Page 1

BES502811

Auto Generating and Optimizing Modular Air Duct
Layouts in Revit - BES502811
Daniel Kaye
Design Technologist | EvolveLAB

Ben Guler
Partner + CTO | EvolveLAB

Description

What happens when some enthusiastic software developers team up with a few innovative
mechanical designers?

Henderson Engineers is an MEP design firm that's been working on developing a modular
DfMA (Design for Manufacture and Assembly) air duct system for a while now, and has created
some clever Revit families and Dynamo scripts to help its designers model them. The firm
joined forces with EvolveLAB, a Building Information Model (BIM) consulting and software
development company, to create a Revit add-in that focuses on the real-time generative design
of these modular duct layouts.

In this session, we'll review how these companies used some unique properties of the Revit API
to create a co-authoring system that allows a mechanical design to sketch out a main duct
layout in Revit while the computer simultaneously and continually produces the most optimal
layout using the DfMA kit of parts for that sketch. Once the design is finalized, it is converted
into a fully connected Revit duct system.

Learning Objectives

• Experience how Generative Design can be used for mechanical layouts within
Revit.

• See how incorporating DfMA workflows into Revit can streamline the design
process.

• Understand the benefits of utilizing co-authoring and UI/UX design to promote user
adoption.

• Learn about the real-time potentials of the Revit MEP API.

Page 2

Speakers

Daniel Kaye - Design Technologist | EvolveLAB

Daniel Kaye is an architect, computer nerd, and avid rock
climber hailing from snowy Buffalo, New York. He holds a
B. Arch degree from the Syracuse University School of
Architecture, as well as a minor in computer science. As a
licensed architect he has had the opportunity to work at a
variety of firms ranging from a 2-man operation with his
former professor to the third largest AEC corporation in the
world.

During Daniel’s six years walking the line between architect
and BIM Manager on residential, commercial, rail, and
aviation projects across the country he became attuned to
the inefficiencies inherent within the AEC industry.
Combining his knowledge of our digital design tools with his

recreational programming pursuits, Daniel joined EvolveLAB to help improve the software used
to create the built environment in which we live.

Having been raised entirely on the East coast of the United States, Daniel cycled from Boston to
Los Angeles before falling in love with the Rocky Mountains of Colorado, where he now resides.
When not writing code or rock climbing, he can often be found outside sketching or jamming
with friends on his drum kit.

Ben Guler - Partner + CTO | EvolveLAB

As a design technology fanatic, Ben has been a vital driver
for computational design, process management, and
standardization. With a range of technological avenues at
his disposal, he has successfully identified and executed
appropriate solutions for a robust set of project deliveries.

His architectural background, knowledge of BIM platforms
and software engineering allows for a technological bridge
that is critical to being effective in the computational design
paradigm. As a husband and father, Ben enjoys going on
hikes with his wife and daughter and occasional archery
range sessions.

With Ben's experience in C# and Python, he has

experience writing custom Revit Add-ins and stand-alone software to help tie the AEC market
together. Ben has extensive experience using Dynamo to automate task and create solutions to
complex design challenges. He also leverages Dynamo often to storyboard out his custom Revit
add-ins.

Page 3

0 – Introduction & Table of Contents

This paper is a case study of an application built as a collaboration between EvolveLAB and
Henderson Engineers. It is broken down into the six (6) sections outline below:

1 – The Team

A little more about the people and companies behind this application.

2 – The Problem

An overview of the challenges Henderson Engineering was facing, what they had done so far,
and why they reached out to EvolveLAB to collaboration on this application.

3 – The Solution

The application that EvolveLAB developed to allow Henderson Engineers to design and model
optimized duct systems using their modular DfMA kit-of-parts right inside Revit in a user-friendly
and intuitive way.

4 – Simulated Annealing

Let’s dive into Generative Design, and some of the algorithms often used to solve these types of
complex multi-optimization problems and see how and why this tool works under the hood.
Specifically, we look at the pros and cons of two Metaheuristic algorithms – a Genetic /
Evolutionary solver, and Simulated Annealing.

5 – User Adoption

Regardless of what is going on under the hood, a tool is nothing but “expensive marketing
material” without User Adoption. In this section, we highlight some of the techniques we used to
foster adoption among Henderson’s Mechanical Designers and Engineers that would end up
using the tool.

6 – Beyond Ducts

We take a step back and look at some other existing or potential uses for the technology used in
this application.

Page 4

1 – The Team

The people and companies behind the tool.

While there is a bio about Ben and myself at the start of this handout, lets dive a little into the
companies that came together to make this happen

EvolveLAB

EvolveLAB, where both Ben and myself
work, is a diverse collection of Licensed
Architects, App Developers, and BIM
Managers, and more.

EvolveLAB started in 2015 as an on

demand computational design and BIM consulting firm. We work on everything from training
and BIM implementation strategies to computational design software products and custom add-
ins. They are the developers of Glyph (an auto-documentation tool for Revit), Helix (an
interoperability tool for Revit, Sketchup, AutoCAD, and other AEC softwares), and various other
BIM products and services.

Henderson Engineers

Henderson Engineers (partner company
of Henderson Building Solutions) is a
multi-disciplinary engineering firm. They
“provide a wide array of building system
design engineering services across a
variety of building types.”

For this project in particular, we worked with closely with the following team members:

• Adam Roth | BIM/VDC Director, Associate

• Dustin Schafer | CTO

• Nick Boyts | Senior BIM/VDC Application Specialist

• VJ Qureshi | Director of Software Development

https://www.evolvelab.io/
https://www.evolvelab.io/software-beta/glyph
https://www.evolvelab.io/software/helix
https://www.hendersonengineers.com/

Page 5

2 – The Problem

Why can’t the contractor just work it out?

Modularized Ducts

Before reaching out to us, Henderson Engineers had partnered with US Engineering
Innovations to develop a modularized air duct system.

Sean Turner and Adam Roth actually shared a white paper on Autodesk University on the topic,
entitled DfMA for MEP with Generative Design and BIM Automation in 2022, which you can see
at the following link:

https://www.autodesk.com/autodesk-university/article/DfMA-MEP-Generative-Design-and-BIM-
Automation-2022

The question Henderson Engineers had for us was, essentially, how we can design using our
newly developed DfMA kit-of-parts directly inside Revit?

A photo of some manufactured parts from the kit-of-parts modular air duct system Henderson had designed.

Image from “DfMA for MEP with Generative Design and BIM Automation” article, www.autodesk.com/autodesk-

university/article/DfMA-MEP-Generative-Design-and-BIM-Automation-2022

https://www.autodesk.com/autodesk-university/article/DfMA-MEP-Generative-Design-and-BIM-Automation-2022
https://www.autodesk.com/autodesk-university/article/DfMA-MEP-Generative-Design-and-BIM-Automation-2022

Page 6

Connecting VAV Boxes to Air Terminals

We started with a very simple and defined problem – how do we connect a Variable Air Volume
(VAV) box to a set of pre-located Air Terminals, in Revit, using the module air duct system that
Henderson has developed?

Input: If you take a look at the above image, the starting condition is defined on the left. We
have:

• A VAV Box, already placed in a specific location.

• 5 Air Terminals, already laid out to distribute air throughout the space.

• A main Branch Duct, presumably drawn by a Mechanical Designer / Engineer, that will
take air from the VAV box and bring it closer to each Air Terminal.

Goal: Now take a look at the image on the right. You will notice that:

• The Branch Duct has been broken up into 5 ‘Duct Modules’, which are unitized modular
pieces that you can construct the branch duct out of.

• Each ‘Duct Module’ has been connected to one (and only one) Air Terminal, via a Run
Out Duct (the straight part connects to the Duct Module) and a Flex Duct (the curve
piece made of little lines that connects to the center of the Air Terminal).

• Note that both the 90-degree mitered corner piece, and fixed length Run Out Ducts, are
also both created from pre-design modular pieces of Henderson’s modular air duct
system.

Page 7

Prototyping with Dynamo & Revit GD

Before approaching EvolveLAB, Henderson Engineers had already:

• Created the parts of their modular system as Revit Families

• Made a proof-of-concept in Dynamo that could layout a basic system using these
modules

• Using Revit’s Generative Design tool to generate and optimize layouts

Dynamo, which comes with Revit, is a great prototyping tool for ideas like this. That, plus the
fact that this system was already built and tested with Revit components, means that Henderson
already knew what was possible to automate. In fact, the first version of our application almost
literally translated and used their Dynamo script to generate modular duct networks.

As Ben likes to say, “Power Users design tools for other Power Users.” The above workflow was
an incredible proof-of-concept, but what Henderson Engineers really wanted was to get their
entire team designing with modules – which is where we, EvolveLAB, really came into play.
How can we take this proof-of-concept and create an intuitive user-friendly tool that works
seamlessly within Revit so all Henderson Engineers’ engineers could use this modular duct
system?

Screenshot of the proof-of-concept – Henderson Engineers’ Dynamo script being run through the Revit Generative
Design tool to product and optimize modular duct layouts.

Image from “DfMA for MEP with Generative Design and BIM Automation” article, www.autodesk.com/autodesk-
university/article/DfMA-MEP-Generative-Design-and-BIM-Automation-2022

Page 8

3 – The Solution

The Mechanical Run-Out Duct Generator

Since this is a case study, we are going to get right down to it and show you the application we
are case studying, which we have dubbed the “Modular Duct Generator App.”

The Modular Duct Generator App

What is it?

Is it a Revit Add-In that generates and optimizes Run Out (and sometimes Branch) Duct layouts,
using a specific set of DfMA modular parts.

It combines both human and computer / generative design input to produce a constructable duct
system, and then when completed, ‘bakes’ the selected design into a fully connected
mechanical system within Revit.

Screenshots from using the Modular Duct Generator App

Page 9

The Modular Duct Generator App 101
A simple ‘how to’ for using your custom mechanical generative design application.’

In case you have never used a Modular Duct Generator App before (which is likely, since this is
the first ever that we know about), we have created a simple 6-step guide!

1. Select VAV Box & Options

The first step is to select a VAV Box, which automatically selects a mechanical zone associated
with that box. You can do this either by selecting a zone from the dropdown or using the mouse
button to select one directly from the Revit model.

Once a VAV Box is selected, you can adjust the many other settings shown in the screenshots,
including:

Modeling Settings
Options controlling how the duct system
gets modeled once you start drawing

Display Settings
Toggles various optional graphics on or off

Design Constraints
Chooses how important each of the design
constraints will be in optimizing your duct
network.

These could be the most important settings
in this application. In this case, we are
working with a multi-objective
optimization problem, which means that we
are trying to optimize multiple competing
metrics, where improving one metric often
makes others worse

For example, if we want to have less Duct
Modules, it will make the Run Out Ducts
lengths longer. Having the sliders allows the
user to change the priorities for each design
constrain, which in turn allows the algorithm
to generate intelligently-optimized results.

Simulated Annealing Settings
Controls how fast and in-depth the
Generative Design algorithm runs. We’ll get
further into Simulated Annealing in the next
section.

A screenshot of some of the settings from the Modular Duct
Generator App.

Page 10

2. Draw Main Branch Duct

Once you have a VAV Box selected and your settings updated, it’s time to draw the main
Branch Duct. To do so, simply click on the ‘Draw Duct’ button at the bottom of the app, and then
proceed to click in your Revit view.

As you click, a modular Branch Duct will automatically be generated. It wills start from the
previously selected VAV Box and connect all of your clicked points in order using the standard
module sizes.

Noe that as you drag the mouse, the math is done automatically for you. You are only able to
draw at 45-degree angles, and the mitered corner pieces and straight duct modules are
automatically placed and sized to best-fit themselves to your mouse clicks.

Screenshots of drawing a main Branch Duct using the Modular Duct Generator App.

Page 11

3. Generate Solutions

As soon as you start drawing a Branch Duct, possible solutions are generating. The longer your
mouse stays still, the better the solutions will get. Although thousands of solutions are being
generated in the background, only the best one that has been found so far will be drawn to the
screen.

Once you have finished drawing your Branch Duct, the solutions will finish generating. This
could take from half a second to 10 seconds, depending on your Simulated Annealing settings.

If you’d like to generate more solutions for the last Branch Duct you have drawn, you can simply
click the ‘Regen’ button in the bottom action bar of the app, and a new set of solutions will be
generated.

Note that for a given drawing, no matter how many times you regenerate solutions, the top
solutions from all attempts will be shown (not just the best from your previous regeneration).
This is useful because you can either get a quick solution or adjust the settings and regenerate
as many times as needed to improve the current solution until you have an optimal one you like.

Screenshots of generating duct layout solutions using the Modular Duct Generator App.

Page 12

4. Examine Solutions

Once solutions have been generated, you can use the Top Solutions section of the app to
compare different solutions.

If you hover or click on a particular colored bar, the corresponding solutions will be shown in the
Revit view.

Each color represents a different metric of that design. The number inside the bar graph is the
actual value of the metric – for example, the number in the blue ‘Run Out Lengths’ section is the
total length, in feet, of all Run Out Ducts in that solution.

The width of the bar, however, corresponds to the weight, or importance, of each metric. For
example, in the solution that has a large yellow bar, the ‘1’ indicates that that solution has one
detected intersection. Even though it is only 1, the penalty for intersections is quite high, since
they are usually not constructable, so the width of the yellow bar makes up over 1/3 of the score
for that solution. In this case, a lower score, AKA shorter bar, is better.

If you hover over any bar for a few seconds, even more detailed metrics about that solution will
be shown (not pictured, see gif in presentation slides).

After analyzing your solutions, you can redraw the branch duct, or adjust relevant settings, and
then regenerate more solutions, until you find one you are happy with.

Screenshots of examining multiple duct layout solutions using the Modular Duct Generator App.

Page 13

5. Bake to Revit

Once you’ve settled on a solution, simply click on the ‘Bake to Revit’ button in the action bar at
the bottom of the app, and your design will be created as a fully-connected mechanical duct
system in Revit, using a mix of native Revit duct families and the pre-built modular duct families
Henderson Engineers has created. Even though we have only been looking at the tool in plan
view so far, everything it’s been doing and generating has been happening in 3D.

I’d like to give a small shoutout to the Revit MEP API, which is incredibly powerful. It was added
after the original release of the Revit’s public API and affords us a lot of flexibility to take
advantage of the agnostic ‘connectors’ present in all mechanical, electrical, and plumbing
families to manipulate systems and create properly connected parts! If you are interested in
learning more about the Revit MEP API, I suggest checking out The Building Coder (AKA
Jeremy Tammik) blog post on it here:

https://thebuildingcoder.typepad.com/blog/2009/09/the-revit-mep-api.html

The ability to ‘Bake to Revit’ allows your models to be a bit less sacred. What I mean by that is –
without a tool like this, if you had to modify or redo part of your mechanical model, you may
encounter resistance due to the time and effort it took to originally make the model, as well as
even the thought of having to redo a lot of work to re-make it. With tools like this, modeling
complex systems is reduced to the click of a button – so making changes (perhaps later than
you would like in the design schedule) is much easier – you can simply regenerate, and bake a
new one. This also allows you to quickly model and test more options in the earlier schematic
design phases, without worrying about wasting effort on creating detailed systems too early in
the design process.

Before (top left) and after
(bottom left) baking a duct

layout solution to Revit
using the Modular Duct

Generator App. Note the
‘Back to Revit’ bottom in

the bottom right of the App.

https://thebuildingcoder.typepad.com/blog/2009/09/the-revit-mep-api.html

Page 14

6. Auto-Gen Branch Duct

This final (optional) step is to let the app draw the Branch Duct for you, instead of manually
drawing it as we did in step 2.

This feature is still in beta, but I think it’s important to mention because it allows you to imagine
the possibilities of where this, or similar tools, could go with more time.

Starting with a well-defined problem like we did here, allows us to quickly produce a tool that
can be tested and used in production right away. It provides instant user feedback, and a time-
saving return-on-investment for Henderson Engineers. This is all part of the Agile development
process, commonly used by software development teams. The basic idea of Agile is to ‘deliver
value early.’ If you are unfamiliar with the term, I think a Dave Griffiths’ YouTube videos provide
an excellent explanation:

https://www.youtube.com/c/DavidGriffithsEsq/videos

As this app grows , we could expand the tool to start slowly optimizing other tasks. We already
started on this Auto-Gen Branch Duct feature, but in the future, we could see this tool also
diving into:

• Auto-Generating Duct Layouts for multiple VAV Boxes
and zones at once

• Layout out Air Terminals

• Optimizing VAV Box placement

• Creating mechanical zones throughout the building

We will dive more into this in the final section ‘6 – Beyond Ducts’, but in my mind, the
possibilities are really endless.

An example of a
Branch Duct path
generated by using
the ‘Auto-Gen Path’
beta tool, which is
located in the
bottom-left of the
app’s UI.

https://www.youtube.com/c/DavidGriffithsEsq/videos

Page 15

4 – Simulated Annealing

The brains behind the brawn BIM

Now that we have a basic understanding of what the tool does, let’s dive into how and why it
works – How does it find the ‘best’ optimized solution from all the potential possibilities?

Fair warning – this section gets a bit more technical. In my opinion, it also gets a bit more
interesting too. Let us dive in!

Generative Design

What is Generative Design?

This is one of the most popular buzz words in the AEC industry right now, and there are a wide
range of interpretations of what it means. Autodesk provides a few definitions which I like,
quoted below, but for our purposes, I would simply describe it as “an iterative process from a
computer’s point of view.”

Here's those Autodesk quotes:

“Quickly generate high-performing design alternatives—many that you’d never think of on your
own—from a single idea. With generative design, there is no single solution; instead, there are

multiple great solutions. You choose the design that best fits your needs.” -Autodesk

“Generative design is a design exploration process. Designers or engineers input design goals

into the generative design software, along with parameters such as performance or spatial
requirements, materials, manufacturing methods, and cost constraints. The software explores
all the possible permutations of a solution, quickly generating design alternatives. It tests and

learns from each iteration what works and what doesn’t.” -Autodesk

Both quotes are from this page on Autodesk’s website:

https://www.autodesk.com/solutions/generative-design

https://www.autodesk.com/solutions/generative-design

Page 16

The Generative Design Process

The ‘Manual’ Way

An easy way to understand the generative design process is by first looking at how we
traditionally create designs:

• First, we sketch out an initial idea

• Next, either individually or as a group, we look over our design and suggest edits and
improvements.

• This cycle continues, until the design is complete and correct enough to construct

Of course, in real life the process is not always as simple as the diagram describes, but it will
help us understand how this compares to generative design as performed by a computer.

Diagram of the ‘manual’ design process for generating designs.

Page 17

The ‘Computational Design’ Way

Generating designs with a computer can follow a similar pattern – all you have to do is place
your diagram icons inside of monitor icons!

That’s a joke of course, but the basic premise is the same:

• First, the computer generates an initial design.

• Next, the computer assigns that design a numeric score. This is somewhat analogous with
the ‘Evaluate’ stage from the manual process diagram above.

• Then, the computer ‘mutates’ the design, which means it makes a new slightly altered
design.

• This cycle continues, until the design is complete and correct enough to construct

At this point you may have wondered why, with today’s computers, we can’t simply just
generate all possible designs – instead of the generate-score-mutate loop – and then just pick
the best one.

Let’s take a step into the computer science world for a bit, to understand why that just isn’t
feasible.

Diagram of the ‘Computational Design’ process for generating designs.

Page 18

The Traveling Salesperson Problem
A yet unsolved problem

A Google Map image of the USA that illustrates the Traveling Salesperson Problem by showing 13 major cities, and
arrows depicting one potential path to connect them all.

To explain why you cannot simply try all possible solutions, we are going to look at the Traveling
Salesperson Problem.

The basic idea is that you have a list of cities, and a traveling salesperson needs to visit them
all, in any order. The problem is finding the shortest possible route that connects all the cities.

An analogous example would be
to think of an Amazon Prime
delivery truck route. The truck
needs to deliver a certain number
of packages to a specific list of
addresses. What would be the
fastest way for the drive to get to
each address?

In the field of computer science,
believe it or not, this problem has
not been definitively solved yet.

Page 19

The number of possibilities is equal to the factorial of the number of cities. For example:

• With 6 cities…
o There are 720 possibilities (6!)
o 12 seconds to solve*

• With 8 cities…
o There are 40,320 possibilities (8!)
o ~11 minutes to solve*

• With 50 cities…
o 30.4 vigintillion possibilities (50!)

▪ 30,400,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000 possibilities (50!)

▪ FYI: 1 vigintillion = 1063
o ~ 16,055,627,510,117,791,688,711,465,754,571,818,807,680,369,975,739,946

years to solve*

*This solver tries 60 solutions per second. It is, of course, possible to generate solutions much
faster, this speed was chosen to create meaningful and understandable animations. This
number is the amount of time it would take, at 60 tries/second, to try all possible solutions for
the given number of cities.

Look at the exponential jump in
the number of possible paths
just by increasing the city count
by 2 (from 6 to 8)! Even with
modern supercomputers, we
do not have the time to solve
for this problem with 50 cities.

While that may seem like a lot
of cities, imagine the design of
a building – there are typically
way more than 50 different
variables, and each variable
can often have an almost
infinite number of possibilities.
For example, a single duct can
be placed in many different 3D
locations and orientations
within the ceiling plenum – in
the TSP with 50 cities, each
city only has 49 other finite
options of other cities it can
connect to.

The EvolveLAB TSP Solver, working on a TSP problem with 6 cities, using a
‘Lexicographic Order’ algorithm

Page 20

Check out the screenshots of
our TSP solver spread across
these two pages. The point
here is, even with today’s
computing power, we are
nowhere close to being able to
brute force this problem, let
alone the design of a
mechanical system.

So the question becomes, how
do we solve problems with
such a huge possible solution
space?

The above screenshots are from a Traveling Salesperson Problem (TSP) solver developed by
EvolveLAB to test out, compare, and explain various algorithms. This TSP solver animates the
entire process, so actually watching it run can makes it easier to understand what’s going on.
You can find animated GIFs in the PowerPoint file for this class, or you can even play with the
interactive open-source solver at the link below:

https://editor.p5js.org/danno484/full/uWgbvmUlu

The EvolveLAB TSP Solver, working on a TSP problem with 8 cities, using a

‘Lexicographic Order’ algorithm

The EvolveLAB TSP Solver, working on a TSP problem with 50 cities, using

a ‘Lexicographic Order’ algorithm

https://editor.p5js.org/danno484/full/uWgbvmUlu

Page 21

Metaheuristics
Educated Guessing

Metaheuristics is certainly a big word, and I feel smart on those rare occasions when I get to
use it in conversation. If we break it down into two parts, it’s a bit easier to digest:

“meta” – “heuristics”

Let us start with “heuristics.” Basically, a heuristic is an educated guess. When we have a
problem for which we do not know the answer, and to figure out the exact right answer is either
too complicated, too time consuming, or impossible. Instead of trying to solve it, we take our
best guess. As Wikipedia currently states:

“Examples that employ heuristics include using trial and error, a rule of thumb or an educated
guess.”

Heuristics is a field itself in many different areas, including Psychology, Anthropology, Law,
Philosophy, and more.

Meta (no, not the company that owns Facebook) is a Greek prefix meaning ‘big’ or ‘overall.’ It
has even come back into light in recent years as a slang word, defined by Urban Dictionary as:

“...seeing the thing from a higher perspective instead of from within the thing.”

When you string them together, metaheuristics is basically making large overall educated
guesses in attempt to find a good-enough solution to a complex problem in a short amount of
time.

Page 22

Metaheuristic Algorithms
A computer’s best guess

A metaheuristic algorithm is just an algorithm that tries to solve a problem using a metaheuristic
approach. There are tons of them out there. The chart below by Johann "nojhan" Dréo attempts
to diagram and organize some of the more popular ones.’

Each has its own pros, cons, and use cases. Many are also nature inspired, including the two
we are going to look at today.

First up, we’ll look at a Genetic algorithm (circled below), as this is easy to understand, and is
what Revit’s Generative Design tool uses (specifically, it uses the non-dominated sorting genetic
algorithm II, or NSGA-II)

“Different classifications of metaheuristics shown as a Euler Diagram” by Johann
"nojhan" Dréo, 28 August 2011 , with the genetic algorithm
circledhttps://commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg

Page 23

Genetic Algorithm
It made us, so that’s something right?

Genetic algorithms are inspired by Darwin’s theory of evolution. Unfortunately, they can also be
slow – like the evolutionary process.

Essentially, the algorithm will take a ‘parent’ (or parents) and use it/them to generate a specific
number of ‘offspring.’ The offspring are simply slight mutations (remember that word from the
Diagram of the ‘Computational Design’ process earlier?), together referred to as a generation.
Then, each offspring will be scored, and the best offspring will be used as the parents for the
next generation. It is like selective breeding!

In the diagram below, you can see the process at work – starting from two average folk, and in
this case trying to produce some construction workers with really cool looking eye protection:

Diagram of a ‘Genetic Algorithm’ going through 100 (C) generations in attempt to produce a construction worker with
really cool sunglasses. As a side note, this (and most diagrams produced in this class) were made exclusively from
Icons provided by Autodesk, of which I am quite proud!

Page 24

Can you imagine doing a similar process, but with a mechanical duct design? To understand
how that might work, you can pretty much substitute the people in the diagram above with
mechanical duct layouts, illustrated in the diagram below. Same process!

The same diagram as before, but now with mechanical designs instead of people. Can you see how it could work in a
very similar way?

Page 25

Genetic Algorithm applied to TSP

Let’s jump back to the Traveling Salesperson Problem (TSP) for a bit. In the below images, we
pit a genetic algorithm against simple lexicographic ordering (AKA trying every single possibility
in order). The screenshots show each algorithm after a certain number of seconds:

Note that these algorithms were run at the exact same speed (the same number of guesses per
second). Therefore, in 10 seconds, they both made 600 guesses. The key point is that the
genetic algorithm made better guesses. That’s metaheuristics at work!

The lighter lines in the background are related to animating how each algorithm works. Notice
that in the genetic algorithm images, the background gray lines all offspring in the current
generation. Check out the animated GIFs in the PowerPoint to really get the gist!

After 1
seconds

(60 guesses)

After 5
seconds

(300 guesses)

After 10
seconds

(600 guesses)

Lexicographic Algorithm

(trying every single possibility)
Genetic Algorithm

Screenshots from the EvolveLAB TSP animated solver highlighting differences between a
lexicographic and genetic algorithm.

Page 26

Cons of Genetic Algorithm
Local maxima / minima

The downside to using a Genetic Algorithm is that they can often get suck in what are called
local maxima and minima. Even with extra mutations, just like evolution the variation in each
generation tends to decrease.

Looking at the diagram below, as each generation (1, 2… through 8) is generated, the variation
decreases. Even though the ‘best’ offspring are picked each time to create the new generation,
if that variation is not enough to get from one peak or valley to another, the results will tend to
cluster at what is called a local maxima. Where we really want to get to is the global max.

Please note that animated diagram makes this concept a bit more clear, so please refer to the
class video or power point presentation for more information on this concept.

Diagram of how a genetic algorithm can get stuck in a local maxima, showing generations 1-3

Diagram of how a genetic algorithm can get stuck in a local maxima, showing generations 1-8

Page 27

Simulated Annealing

Simulated annealing is another metaheuristic algorithm that tends to be a bit faster than a
genetic algorithm and is much better at avoiding local minima and maxima.

It is also a nature inspired algorithm. In this case, it is inspired by the process of annealing a
metal, which is explained further on the next page.

Simulated annealing also tends to be a bit more customizable than a genetic algorithm,
provided you with more variables, functions, and options to adjust to tweak it to your needs.

“Different classifications of metaheuristics shown as a Euler Diagram” by Johann
"nojhan" Dréo, 28 August 2011 , with the simulated annealing algorithm circled.

https://commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg

Page 28

Annealing Diagram
Strengthen a metal by quickly heating and then slowly cooling

While most people are familiar with the natural process of evolution, not everyone outside
metallurgy is familiar with annealing.

When you anneal a metal, you quickly apply heat, and then slowly let the metal cool. The idea
being that as you heat up the molecules of the metal, they will have more energy and start
moving around. As the metal slowly cools, the molecules will slowly settle and fill in any gaps
and inconsistencies, ultimately creating a stronger material once the cooling process is
complete.

In the diagram below, the annealing process is represented as Tetris pieces:

A diagram of the annealing process using Tetris pieces

‘Simulated’ Annealing Diagrams
A ‘cool’ way to find a solution

Similar to the natural process, the ‘simulated’ annealing algorithm also uses a
temperature, which starts high and is slowly decreased.

The temperature is correlated to what is called an acceptance probability. The
higher the temperature, the more likely that the algorithm will temporarily accept
a bad solution.

Page 29

If we invert the above graph, and place score, not temperature, on the left, you can see that as
time goes on, a solution’s score needs to be higher in order to be acceptable.

Instead of ‘generations,’ a simulated annealing algorithm continues to mutate, or iterate on, the
same design. The algorithm will take a design, and continue to change it until either:

(1) (red) The designs score becomes unacceptably bad (which is relative to the current
temperature), or

(2) (blue) The design becomes the best solution that’s been found yet!

Page 30

Consider the following two diagrams. In the ‘red’ one, the score gets up to 71, but then
continues to get worse until it’s unacceptable.

A diagram of a simulated annealing algorithm iterating on an idea until it becomes worse than the current temperature
(AKA unacceptable solution score) will allow.

A diagram of a simulated annealing algorithm iterating on an idea that eventually becomes the new ‘best’ solution,

because it stays within the ‘acceptable score’ zone, even as the temperature decreases as time goes on.

The key points here are that sometimes, a solution needs to be allowed to get worse before it
can get better, like what happens in the blue graph. In the red graph, even though a new high

Page 31

was reached (71), it’s quite possible that from that idea, it would be impossible to iterate to
anything better – and only worse solutions would be produced from that idea. In a genetic
algorithm, 71 would have been a local maxima that the algorithm got stuck at.

Sometimes you have to accept a worse solution to get to a better one. We couldn’t have
invented the car by simply continuing to iterate on the horse. Sometimes you need to take a
step back!

To understand this concept further, I recommend checking out this section of the class via the
video recording, as the explanation along with the animated diagrams makes things a bit more
clear.

Simulated Annealing applied to TSP
Traveling Salesperson Problem reprise

Looking back at the TSP again, let’s compare the Simulated Annealing (SA) to the genetic
algorithm from earlier. As we saw before, the Genetic Algorithm has 1 generation’s worth of light
gray ‘offspring’ paths in the background. The SA, however, has three types of lines:

• Black – the shortest path found so far

• Gray – the last path that was tried

• Red – what I will call the ‘currently annealing’ path. This is not the best path, but it is the
one that is currently being iterated on.

Note how, in the SA column, early on, the red line can be very different from the black ‘best’
path. But as time goes on, and the temperature drops, the red line deviates less and less from
the current black ‘best’ solution. Again, this becomes extremely clean when looking at the
animated diagrams in either the PowerPoint file or the class video.

Page 32

In this example, we used 15 cities, instead of the 12 we used in the previous lexicographic /
genetic TSP comparison diagram, which as you now know adds quite a bit more complexity. In
this case, the left genetic algorithm got stuck in some sort of local max and did not improve
much from 5 to 10 seconds. Notice how in the SA algorithm, as time goes on and the
temperature drops, the red currently annealing solution that is being explored (even though it is
not the current best) changes less and becomes less different form the ‘best’ black solution as
time goes on and the temperature decreases.

After 1
seconds

(60 guesses)

After 5
seconds

(300 guesses)

After 10
seconds

(600 guesses)

Genetic Algorithm Simulated Annealing

Screenshots from the EvolveLAB TSP animated solver highlighting differences between a
genetic and simulated annealing algorithm.

Page 33

Simulated Annealing for Duct Layouts
What was this class about again?

Bringing it back to Air Duct layouts – a simulated annealing algorithm is what is running in the
background, creating, and iterating on various layouts. We don’t draw all those light gray and
red line options – we only draw the current best solution (the black line from the previous
diagram) to the screen.

If we revisit some of the settings we
talked about in section ‘3 – The Solution’,
you might recognize some of the terms
now! The Simulated Annealing Settings
have a dropdown of presets – or there’s
a custom option that lets you adjust all of
the simulated annealing values
individually. Notice there’s a starting and
ending temperature – yup, that’s the
same temperature we discussed above
that controls an SA algorithm. You can
also set the SA Cooling Rate, which is
how fast the temperature drops, as well
as a Max Frames to add a safety
time/iterations cap (you can always hit
Regen to iterate further!).

The Latest Solution Result second
contains information about the current /
latest algorithm run. You can see the
initial and final ‘score,’ as well as the
number of guesses (Number of Solutions
Tried) and the number of times a tried
solution was better than and replaced
the current ‘best’ solution (Number of
Times Improved).

These stats and settings allow for a lot of
flexibility. You can let the algorithm run
for 10 minutes to find a super optimized
solution, or limit it to about 5 seconds,
and just get a good-enough draft.

Notice that the ‘Number of Solutions
Tried’ is only 2,300. There have got to be
millions, or possibly vigintillions of
possibilities here, but a pretty decent
solution was able to be found with only
this many guesses!

Page 34

Again, if you watch the animated gifs in the video or PowerPoint, you’ll notice that the duct
layout updates a lot as you draw. The application is always drawing the best solutions it has
found so far (the black line from the previous TSP diagram), but constant iterations are still
happening in the background – it’s just not all rendered to the screen for clarity.

We found that having the current best solution drawn, even if it is not that good, is extremely
helpful from a UI/UX perspective. The designer can get some insight into how the algorithm is
thinking, and a preview of if their current branch duct will end up being a good or bad path. It
produces much better results, from a user adoption standpoint, to have instant feedback, rather
than waiting a few seconds after the designer finishes drawings to see only the best / final duct
layout. We’ll dive further into this in section ‘5 – User Adoption’.

Simulated Annealing Recap

Here’s a quick summary of section ‘4 – Simulated Annealing’, because this section covered a
lot. Some of the things we discussed includes:

• What Generative Design is, in the context of this application

• You might now be sick of the Traveling Salesperson Problem (TSP)

• Metaheuristics – a big new word to impress your friends, meaning basically large-scale
educated guessing to find pretty good solutions to huge problems fairly quickly.

• Genetic algorithm – a nature-inspired way to generate designs, inspired by Darwin’s
theory of evolution

• Local minima / maxima – one downside of genetic algorithms is that they can get stuck
in these

• Simulated Annealing – inspired by annealing metal, this algorithm uses a temperature to
allow the exploration of bad ideas early, in hopes of exploring a wider solution space,
and finding overall (globally) best solution.

Now that we understand how this application works, we are going to give into what is probably
an even more important topic – how we actually got people to use it!

Page 35

5 – User Adoption

Without adoption, your tool is just expensive marketing material

This is a point we’d like to emphasize, because we’ve seen many tools that had incredibly
clever or useful functionalities, but ended up ultimately failing because nobody wanted to
actually use them. In this section, we will highlight a few aspects of this application that we feel
helped to foster strong user adoption. Let us dive in!

Integrated within Revit
Minimize Learning New Behaviors

This app was built to work directly in the Revit canvas, to minimize the amount of new behavior
a user would have to learn. For the most part, if you are familiar with Revit, you will be able to
use this app with little to no training.

The air duct layouts are drawn directly in your current Revit view, so you can use all the same
Revit navigation controls and keyboard shortcuts to get around. The drawing of the main branch
duct also mimics the same click-release pattern that most native Revit drawing tools use.

The application also creates fully native Revit geometry (ducts, duct fittings, duct accessories,
etc.) so that, once baked to Revit, the user can take the duct layout and modify or document it
however they normally would with any other Revit content. This allows the application to
integrate with other design methods, so it can be used for just a small part, or a majority, of the
design!

Working fully within Revit reduces friction and allows for a seamless modular duct designing
experience with a low barrier-to-entry.

Page 36

1. An initial air duct layout, with a VAV Box and Air
Terminals creating using Revit elements, and
temporary geometry showing the branch and run out
paths created using the Modular Duct Generator app.

2. Some of the Air Terminals have been moved slightly
by the user. The moves are depicted using the orange
arrows. This is done using the native Revit move
command.

3. The Modular Duct Generator App was run again,
and the new branch and run out duct paths updated
and adjusted to the new positions of the moved native
Revit air terminals.

4. After baking to Revit, the temporary duct layout was
converted into native fully connected Revit mechanical
elements, including ducts, duct fittings, duct modules,
and flex ducts.

Page 37

App Architecture Tradeoffs
Supporting Co-Authoring

To really promote user adoption of this application, there were a number of tradeoffs that had to
be made during the design and development of the Modular Duct Generator. These were all
made with the consideration of useability and adoption sometimes at the cost of functionality or
performance.

Interactivity over Speed

There’s nothing more frustrating than waiting for an application with no visual feedback.
We wanted to app to never feel like it was frozen, even if the application was still
‘thinking.’ The largest decision we made to achieve this was to always display results or
feedback to the user, even if those results were yet incomplete.

As soon as you start drawing a new branch duct, the app starts trying out solutions. The
current best solution, even if it’s the app’s terrible first guess, is always displayed, so the
user knows that the app is indeed working. As soon as a better layout is found, it is
immediately drawn to the screen instead. This provides lots of instant feedback at the
start, but the longer the mouse hovers in the same spot, the better the currently
displayed solution is, and therefore the less frequently the app updates. It gives you the
feeling that the app is slowing down, as if it is ‘settling’ on a solution – which it actually is!

It is ok to have partial success, as opposed to seeing nothing until the algorithm is
completely finished. The current best solution is rendered to the screen at 30 frames per
second, so the animation appears super smooth. There is, of course, a performance
cost to this – always display the current best at this speed results in the simulated
annealing algorithm running a bit slower – but that’s the tradeoff with this technique.

We also made sure to include loading animations on ‘active’ buttons, so it’s easy to tell if
the app is still thinking and might come up with more or better solutions.

Speed over Accuracy

As we touched on in the Simulated Annealing section, the choice of metaheuristic solver
was to prioritize speed over accuracy. We would rather get a decent result super fast,
then wait a long time to get a near-perfect result. The idea being, since everything is
integrated with Revit – you can always tweak and edit the layout after baking it to Revit.

The 80-20 rule says that often times, the final 20% takes 80% of the work. In this case,
we let the app take care of the lower-hanging fruit and automate most of the process, but
instead of spending a ton of extra effort to cover all edge cases that would make up the
final 20% - we allow the user to fill any inaccuracies. Again, since everything is right in
Revit, you can use the app as far as you want, and take over with manual design
wherever it makes sense to maximize efficiency.

Page 38

Simplicity over Customizability

In general, the app does not expose that many settings. They are all saved externally,
and loaded every time the application is open. The idea is to minimize clicks and make
drawing a duct network as simple as drawing a wall.

There are tons of settings, that can be edited by an administrator, if needed, in a
backend config file, but most of these are hidden from the average user. Presenting too
many options can be intimidating, and actually decrease user adoption, so we tried to
make an application that appears as simple as possible – sacrificing some
customizability for the sake of simplicity.

Specific over General

When trying to create custom tools to automate your workflows, starting from a well
defined problem could make all the difference. Typically, trying to create a tool that is too
general, but does not cover any specific task that well, ends up creating a tool that isn’t
that useful to users – and ultimately hurts user adoption.

In this case, the problem was very modularized – a fixed VAV Box and Air Terminal
Layout, and pre-designed modular pieces. Once you solve your specific problem well,
you can slowly branch out to more specific problems to widen the tools scope. But going
too broad, too soon, can hurt initial user adoption. Often times, once someone has tried
a tool and didn’t like it, it somewhat taints their view of the tool for future tests, and could
hurt adoption potential in the future, even if the tool did improve a lot!

Page 39

UI Design

The UI design of any application is always extremely important, and often undervalued. Take a
look at the below example, from the Bulk Rename Utility tool for Windows:

Screenshot of the Bulk Rename Utility tool, a small application for Windows that allows users to rename multiple files
at once using a complex array of settings.

At first glance, the above UI may seem quite overwhelming! Even though I personally love this
tool and it is extremely feature-rich, trying to visually parse the UI to understand how it works
can be quite difficult and time consuming at first.

The Modular Duct Generator App UI was designed around some basic UI principles, the first of
which is its vertical organization. Many applications, and most webpages, follow this format
these days – so you can tag onto more already-learned user behaviors. The app was designed
to be horizontally compact, so that you could easily use it while still being able to see the Revit
view you are working inside of.

Page 40

It's not just the orientation that is vertical, but the app is also used from top to bottom. All inputs
are placed at the very top, followed by the settings in the middle. As you continue to scroll down,
the results are in the bottom portion. The very bottom of the UI is what we call an action bar – a
static horizontal band that is always visible, and contains the buttons that trigger the main app
features (Draw, Delete, Bake to Revit, etc).

All settings were kept as simple as possible – in this case they are all either sliders or on/off
toggles. If you need to know a bit more, all the tools have tool tips that display more detailed
information when you hover the mouse over them. This allows the UI to remain generally
uncluttered, but still have a depth of information when it is needed.

The bar graphs in the Top Solutions section are an adapted version of the ‘parallel coordinates
plot’ you may be familiar with from Revit GD or other tools. The overall bars are always sorted in
order from shortest (AKA best) at
the top, and longest (AKA worst
score) at the bottom. This gives
you a quick overall ranking of
each solution. However, the
lengths of each individual bar
show the portion of the score
determined by each scoring
component. As noted earlier,
hovering over each bar will
provide even more detailed
information above each potential
solution.

Screenshot of the UI of the Modular Duct Generator App, broken down into sections, each labeled with their general
function.

An example of a ‘parallel coordinates plot’ from Revit Generative Design

Page 41

UX Design

Having a thoughtful User Experience design is also extremely important for user adoption. This
is what helps a user build trust in the application, and without trust it’s very hard to get people
onboard with a new technology.

One main goal was to never make the user wait because in general, people are impatient,
especially when it comes to technology. That’s why, as describer earlier, we are always
constantly displaying the latest and greatest duct layouts to the user – even if they aren’t fully
resolved yet.

We used very minimal lightweight geometry to display the duct layout output (before you’ve
baked it to Revit), so that we could technically achieve what feels like an instant response from
the app. As soon as you move the mouse, the layout adjusts, and the algorithm starts running
on and improving the design based on your new position. On the backend this is actually quite
difficult to do, but worth the effort when you see the result – it really inspires what you can do
within Revit.

I recommend checking out the ortho mode on/off gifs in either the PowerPoint or the class
Video, as it is hard to describe with static images how smooth the app actually feels when you
are drawing with in!

Workable Output

We have mentioned this a few times before, but it’s so important we have a whole section on it
– whatever the result of your tool, it really does need to be easily malleable by the user. If they
can’t get exactly what they want from the tool, and they can’t tweak it afterwards, they will
become frustrated which leads to much lower user adoption.

This app created a fully connected mechanical system using Revit families. Once it’s in Revit,
the user can tweak, change, or even delete the whole thing if they want. This allows for partial
success – even if the tool’s proposed solution doesn’t get you 100% of the way there – it likely
still saved a lot of time, and you can just do the last bit manually. And the best part is that, since
everything is connected, you can move one Duct Module, and the whole branch and flex duct
will also adjust accordingly to keep everything connected. That is all just native Revit behavior!
You can also run any analysis, takeoffs, or scheduling just as you normally would.

Of course, we’d like the app to get it right every time, but developing a tool to cover all possible
edge cases is way more work than covering the most common cases, and letting the users fill in
the gaps. This way, we can always improve the tool to handle more situations when needed, but
we won’t waste resources by writing a lot of code coverage that ends up having a diminishing
return-on-investment.

Page 42

Make It Fun

It sounds cheesy, but it’s true! The more fun and satisfying an app is to use, the more likely
users will continue to utilize it. It’s really rewarding to a mechanical designer when they can
complete their task faster, and the interactivity between the designer and the app really does
make it a joy to use. There’s something really satisfying about pressing the Bake to Revit, and
having all those Revit components generate almost instantly in front of your eyes.

There is always a correlation between how much effort is required to learn a new tool, and how
much automation it offers. The point being – if nobody wants to use your tool (AKA low user
adoption), then it really doesn’t matter how good the algorithm is. Our choice of metaheuristic
solver isn’t the fastest or most accurate possible, but the UI/UX benefits of the interactivity and
instant feedback in a way make up for that.

Again, you don’t want to invest a lot of time and money in the perfect algorithm if the tool that
allows the users to interface with it is frustrating. It’s a balancing act, where the useability of the
app is just as important, or perhaps more-so, than the features that it packs.

A screenshot of the Modular Duct Generator App output inside 2 Revit views – a plan and a 3D view – after a
generated layout has been baked to Revit.

Page 43

6 – Beyond Ducts

Other potential applications for this technology

Now we are going to take a step back from the world of modularized air duct layouts for a bit
and try to look at the bigger picture. What else could the ideas and technologies used in the
Modular Duct Generator App be used for? Could you apply them to lighting layouts? Egress
path optimization? Schematic building design?

Below, we are going to take a look at just a few examples of where these ideas could potentially
be used, explore the possibilities beyond just ducts.

Schematic Plan Generation
Using physics to create designs

This was a project for an architectural client that wanted to generate interactive and scored
schematic floor plans. It used a physics-based metaheuristic generative design algorithm, not
too dissimilar from the Simulated Annealing one used for the Modular Duct Generator App.

The tool employs similar co-authoring techniques. Even though it runs on a very different
platform, it still exports to Revit. The main difference might be that this project had over 30
different optimization targets, with a design constraint slider (similar to this app) for each one!

It uses very similar underlying principles, but the results are much more schematic and in the
architectural layout space instead of a fully-designed modular system! I could give a whole talk
just on the algorithm(s) used in this project – maybe at a future Autodesk University!

Screenshot of a schematic plan generator tool, in the
earlier stages of generating a layout.

Screenshot of a the same schematic plan generator tool

in the later stages of generating a layout.

Page 44

Morphis
A space layout and array tool gone wild

Morphis is a generative space layout and complex array tools that is currently being developed
by EvolveLAB. This one, similar to the Modular Duct Generator App, operates completely inside
of Revit.

It uses similar techniques to create a very responsive and snappy UI with immediate feedback
and results to the designer. Currently, it lays out perimeter spaces and central arrays, and uses
a metaheuristic generative design engine to optimize the results based on the UI slider inputs.

Another similarity is that it bakes the completed geometry into chosen native Revit elements –
like rooms or model groups! It is essentially a tool built on similar ideas, but generates space
arrays instead of ducts. Keep an eye out for the beta release in the near future from EvolveLAB.

Screenshots of the Morphis tool in Plan View, showing various design constraint UI sliders, and a generated layout
that gets baked into Revit spaces and Model Groups.

Screenshots of the Morphis tool in a 3D View, showing again the various design constraint sliders in the UI, and a
generated layout that gets baked into Revit spaces and Model Groups.

Page 45

Endless Possibilities
What else can you do with this technology?

Thinking back to section 3 – The Solution, I can easily see this tool continuing to improve on
that beta auto-generate branch duct feature. I could also see this tool expand to layout and
optimize the Air Terminal Placements, move the VAV Boxes around, and even create optimized
mechanical zones for the building.

The point being, there are really endless possibilities for similar tools, in other disciplines
(structural, electrical, fire protection, etc.) and even beyond MEP (architectural design,
construction optimization, etc.).

Below is a list of a few of the other ideas we’ve had. Some of these we have worked on in the
past, or are working on now, and others are just a few of the ideas for other similar tools that we
could imagine in the future.

• Expand on Mechanical Duct Generator
o Air Terminal Layouts
o Branch Duct Paths
o VAV Box Locations
o Zoning Efficiency

• Electrical
o Lighting layouts

• Fire Protection
o Sprinkler Plans
o Gravity-drained Pipe Layouts

• Plumbing
o Fixture arrangements
o Pipe Routing

• Architectural
o Schematic plan layouts
o BOMA rental unit optimization
o Stadium, auditorium, and conference hall seating and booth layouts
o Facade design and optimization
o Curtain wall layouts

• Construction
o Panel board placement optimization
o Modular wall panel segmentations

Looking at the above list, do you have any ideas we missed? Can you see where some of these
ideas could be implemented in your particular area of expertise?

Page 46

Recap

[What] did we learn?

First, we talked about the problem that we were trying to solve – generating modular air duct
layouts right inside Revit in an intuitive way that Henderson Engineer’s staff would be willing to
try.

Then, we gave an overview of the Modular Duct Generator App with a simple 6-step explanation
of how to use it. Basically, you draw a line, and it generates modular duct layouts.

In the middle, we dove into generative design, metaheuristic algorithms (genetic, simulated
annealing), and talked about how they work and their pros and cons.

Most importantly, we covered how to promote user adoption of a tool like this through various
design choices and UI/UX techniques.

If there’s one takeaway form this, it is understanding that the concepts discussed above are not
at all specific to modular ducts – they could be applied to a whole bunch of problems. Let’s let
the computers do the optimization they are good at, and let the humans do the higher-level
thinking, design work, and tweaks we are good at. With this approach, we can create ever more
tools that help make all sorts of architectural, engineering, and construction tasks more efficient
– to get more work done more efficiently and better in less time!

Have any questions on this course? Want to geek out even more about simulated annealing?
Are you inspired to try making your own tool?

Feel free to reach out to Daniel and Ben anytime! We love to talk about this stuff:

