C1500019

Underground Utility GIS Features to Civil 3D Pipe
Networks with Dynamo

Jae Kwon
SolidCAD

Maxime Carrier
SolidCAD

Learning Objectives

e Import GIS object into Civil 3D

e Create Civil 3D pipes and structures from electric utility GIS objects using Dynamo
for Civil 3D

e Transfer attributes between Civil 3D objects and GIS objects

o Create MAPEXPORT friendly objects ready to be consumed by GIS

Description

Local governments are gradually more involved with 3D infrastructure designs: on one hand,
they are managing their existing infrastructure, like storm/sanitary sewers and aqueducts
networks, through georeferenced databases, and the other hand designing their proposed
infrastructures through Civil 3D objects.

Civil 3D never had a perfect fit to connect with GIS data, from recreating existing 3D
infrastructures to better connect them with proposed designs. Until Dynamo came into the
picture!

This presentation covers efficient workflows using Dynamo for Civil 3D, mapping electric utility
GIS data to automatically create Civil 3D pipe network objects, using custom pipe catalogs. It
also covers attribute transfers involving both object data and property sets.

Speaker(s)

Jae Kwon is a professional technologist in New Brunswick, with a focus on highway and
municipal civil engineering technology. After joining Crandall Engineering, Jae took lead in a
wide range of projects, including highway design, GIS implementation, Lumion rendering and
CAD standard management. Notable past projects include Irving Oil rail terminal expansions,
Cabot Trail highway realignment, Ritchie Lake trunk sewer in Quispamsis, Shediac/GSSC GIS
database, and Perth/Andover Redevelopment Design. He has also developed a full suite of
standards, templates, scripts, and a knowledge base system with for Crandall that greatly
improved efficiency. Jae provides training and support on Autodesk civil engineering products

with a focus on AutoCAD and Civil 3D. He is a strong advocate for practices that emphasize
project efficiency, elimination of error, strong organization, and responsive feedback.

Maxime Carrier is a geomatics engineer, member of the “Ordre des Ingénieurs du Québec” and
has worked since 2008 on a wide variety of projects in cartography and 3D modeling. Officially
graduated from Laval University in 2013 and immediately hired as a technology integration
specialist at Groupe VRSB inc., a survey firm, Maxime takes charge of innovative projects, such
as the implementation of drones and LIDAR scanning in surveying methods, the use of aerial
imagery at different scales in the planning of a natural gas distribution network and the "as-built"
3D modeling of sites upstream of BIM projects. A Cansel employee since June 2018, Maxime
recently joined the SolidCAD team as a bilingual technical consultant in civil engineering and
geomatics. He currently covers consulting, implementation, training and support services for
civil engineering and geomatics.

Bridging the World of Civil 3D Design and GIS Asset Inventory

Introduction
The Problem
There is a gulf between the objects that Civil 3D designers work with and the objects that
GIS technicians work with.

Utility Design GIS
In Civil 3D Utility Asset Inventory

TYPICAL UTILITY OBJECTS IN CIVIL 3D AND GIS

Increasingly, Civil 3D designers must prepare their data in a form that is easily digestible
by a GIS asset platform, as municipalities and corporations face more pressure to have
a detailed asset management program for funding and subsidies.

GIS technicians, on the other hand, tend to receive request for information that is
needed by designers to digitally reproduce existing assets, and often find that much of
the needed information is lost.

Consequently, there is a need to accurately and comprehensively transfer data between
the two worlds. However, the process to translate from one to the other is typically a
manual, labor intensive process involving a lot of data entry, prone to human error. The
laborious nature of the process places tremendous pressure on the technicians to make
decisions of which data to keep - decisions that may not necessarily agree with their
present or future colleagues.

Why Dynamo?
There are three types of solutions available to the problem.

At one end of the spectrum, are pre-made tools for the process. Some examples include
the Export to SDF tool that can be installed as a Civil 3D add-on and the ArcGIS
connector. These are easy to use, but rather inflexible when it comes to custom needs of
an organization. The exported properties are few, may not be the ones needed, or may
be exported in a way that it takes additional schema mapping work that adds to the
labour.

At the other end of the spectrum is custom coding using one of the traditional languages
such as Lisp, VBA, and .NET. This solution is the most powerful and customizable
solution available, but it requires a significant time commitment to get started if one is

new to it. Few organizations have development teams available to take on the task in-
house, and others find outside development a costly venture.

Somewhere in the middle is Dynamo, a visual scripting solution. It has a balance of

flexibility and accessibility that many technicians find attractive. It is a custom solution
with a great deal of power that is within immediate reach for most organizations.

W CXpuIL W our \ﬂ
& esri ﬁ ﬂ

PRE-MADE VISUAL SCRIPTING CUSTOM CODING
Export to SDF Dynamo for Civil 3D Lisp
ArcGIS connector FME VBA

NET
More customizable

Easier setup & maintenance

AVAILABLE SOLUTIONS

Dynamo Packages Used

This project was only possible because of the packages that dedicated community
leaders put together.

EE=T =

DATA-SHAPES CIVIL 3D TOOLKIT CLOCKWORK
Mostafa El Ayoubi Paolo Serra/Safi Hage Andydandy

PACKAGES USED

The primary package that was used, of course, was the Civil 3D Toolkit by Paolo Serra
and Safi Hage. This package contained the pipe network, GIS feature, OD table nodes
and other nodes that formed most of the graphs we put together. We would like to thank
Paolo especially for the timely updates to OD table nodes in response to our reports on
Github.

For Ul, we relied heavily on Data-Shapes by Mostafa. It allowed us to gather information
about the drawing before presenting the user with Ul choices; further, it allowed us to
bypass the Dynamo player so that we could split the task into several smaller graphs
and use them in various combinations via macros. Initially, we were simply looking for a
way to present a drop-down. In the end it ended up restructuring our project altogether
that gave us added flexibility.

Finally, we used the Clockwork package by Andydandy to control the flow of data and
measure the run times of various node groups to troubleshoot any performance issues.

Presentation Structure
The discussion of this topics is divided into two parts.

First, the GIS to Civil 3D data flow is presented. The task involves connecting to map
features and creating pipe network objects based on the geometry and data tables of the
map features. Further, additional asset data is transferred from the map feature data
tables to the pipe network Object Table records.

Second, the Civil 3D to GIS data flow is presented. Information is gathered from pipe
network objects, then AutoCAD objects are created with object data tables storing the
additional pipe network object information. If there is any information stored as property
sets, it is converted to object data. All the geometry and object data information are then
exported to GIS-ready formats.

Map SDF
Features

Pipe Network
Structures &
Pipes + OD

FLOw OF DATA

Downloadable Content

P B &

Samples of all graphs used in the presentation are offered here for free download:
https://files.solidcad.ca/index.php/s/KgTaHHpD4ZBgiZg

The following are the graphs available for download:

GIS to Civil 3D
pnet fdo to c3d_DYNdata.dyn - Creates C3D pipe network objects from map feature
layers

pnet_fdoData_to_c3dData.dyn - Transfers asset data from map features to C3D pipe
network objects

Civil 3D to GIS

pnet_c3d_to_acad.dyn - Creates AutoCAD objects from C3D pipe network objects
pnet_ps_to_od_definition.dyn - Defines object data tables from property set definitions
pnet_ps_to_od_values.dyn - Transfers values from property sets to object data tables

https://files.solidcad.ca/index.php/s/KgTqHHpD4ZBgiZq

pnet_transfer_od_to_cad.dyn - Transfers object data from pipe network objects to
autocad objects

The above graphs will require minor modifications to function with your own drawings
and catalogs (e.qg. file paths, pipe network names, feature layer names).

While snippets of the graphs are included as screenshots in this document sometimes,
they are only meant to help locate the relevant parts of the actual graph. Not much
actual graph information will be shown in these screenshots.

The presentation is a high-level overview of the implementation that we show. This
document aims to clarify some of the main issues for the task of converting between
Civil 3D and GIS utility data, as well as some discussion on various details of the graphs.

This project has been very educational for us, and hopefully we can make the process
easier for others who are considering jumping into a Dynamo solution to the data
conversion task. We are sure that many of you have implemented similar Dynamo
graphs to accomplish the task, and if you have any tips for improvement, we would be
very grateful.

Transferring Data from GIS to Civil 3D

From GIS to Civil 3D

Typically, we pull information from GIS for Civil 3D design for context of existing conditions.
Usually, it is not clear to the Civil 3D designer how the GIS information should be represented in
the Civil 3D environment, as key information is often missing. But if the Civil 3D DWG and the
GIS information is faithfully passed back and forth without loss, what used to be Civil 3D as-built
objects stored in the GIS database can be easily reconstructed as pipe network objects.

Setup and Schema Considerations
Required Setup for the GIS-to-C3D Graphs (graph name)
A few preparations are needed to run this graph.

First, a connection needs to be made to the GIS data source and added to the current
drawing as feature layers. The data source can be anything that Map 3D can handle; it
may be a set of shape files, SDFs, WFS, and so on.

[v]EO ity Utilities Dynamo Data
¥ @ G-MAPEXPORT-STRUCT

= G-MAPEXPORT-PIPE
FEATURE LAYER CONNECTION IN MAP 3D

Second, a pipe network parts list needs to be created with all the families and part sizes
required to recreate the objects that are in the GIS data source. Often, this will require a

custom part catalog to be loaded, since the parts used in utilities are typically different
that what is available for gravity pipe networks in Civil 3D.

| Pipes lStructures lSummary]

€ Pipe Network Catalog Settings X
& 115mm - 3 x 2 conduits - Arme
& 115mm - 2 x 4 conduits - Arme Catalog folder:
@ 115mm - 4 x 2 conduits - Arme \ D:\Temp\cad2gis_dynamoPipes CatalogH([=

PARTS LIST AND MAP 3D CATALOG

Schema Considerations

One of the central considerations when converting Civil 3D and GIS data is the data
schema. Civil 3D operators would know them as either object data definitions, property
set definitions, or the list of built-in properties of pipes and structures. GIS technicians
would know them as data headings, data types and their constraints.

We must decide what format we store the data in. When transferring data ready for GIS
consumption, what property names and data types do we use? This will require a
comparison of Civil 3D's object data capabilities and the constraints of the desired data
format for importing into the GIS platform. Is the GIS database relatively new and allow
for restructuring of the data? Or is it mature and everything needs to conform to the body
of data that already exists?

In our sample implementation, we are dealing with a new GIS database with only a
handful of existing data stored as SDFs, extracted by FME (Safe Software). The
property names are uninformative and confusing; luckily, we are free to setup new
property names and definitions. to keep things simple, we simply used the names that
the Dynamo nodes use. Those property names will be preserved by exporting to either
SQLite files, which seems to be the most compatible format in the current propriety and
open source software.

A Dynamo graph was constructed to import the data from these existing files
(pnet_fdo_to_c3d_FMEdata.dyn). Once the data is incorporated into the new schema,
this conversion graph is no longer be needed.

26 num13

= Structure.RimElévatibn(;cl)f
27 numl4 = Structure.RimToSumpHeight(t1);
28 numl7 = Structure.Rotation(t1);

29:str8 = Structure.Shape(tl);

30 num1l@ = Structure.station(t1);
31 numl6é = Structure.SumpDepth(t1);
32 num2@ = Structure.SumpElevation(t1);
4
RimElevation RimToSumpHeight Rotation
160.11 1.75 4,7202782464492472
160.15284187406732 ’ 1.835 5.2889053292975685
160.81847603014248 | 1.835 5.8073881230258069
160.85307051445494 ‘ 2.6 4.5000309506994913
1
aec_stru01 aec_stru02 aec_stru03 aec_strul4
163.491 <Null> 0 159.98031391888856
162.7703386986262 ' <Null> 0 160.11548429653047
162.11284370035472 | <Null> 0 160.12420069677754
162 <Null> 0 160.47358307475224

FROM DYNAMO AND EXISTING SCHEMA TO NEW SCHEMA
From GIS to Civil 3D
Step 1 - Convert Map Features to Civil 3D Pipe Network Objects

o= Data-Shapes | Multi Input Ul ++ >

Create Pipes/Structures from Map Features

Structure MAP Layer to Conwvert | G-MAPEXPORT-STRUCT] e |

Fipe MAP Layer to Convert |G-MAF‘E§(POHT—F‘IPE v |

Target Pipe Metwaork |Ur1derground Blectric e |
Cancel Create

PNET_FDO_TO_C3D_DYNDATA.DYN

First step is to create the Civil 3D pipe network structures and pipes using the
information from the map features. Only the core information is used to construct them;
other data will be transferred over in a separate graph.

i A‘

UNDERGROUND UTILITY MAP FEATURES

First, we get from the user three inputs: 1) the map feature layer that the structures are
in, 2) the map feature layer that the pipes are in, and the target pipe network that pipe
network objects will be created in. By leveraging Data Shapes Ul, we can scan what
map layers and pipe networks exist in the drawing and let the user make the selection
with drop down menus. We have taken care to keep the structures and pipes on
separate layers because eventually it will make the process a lot easier when the data is
eventually ready to be exported back to GIS.

Next, we pull all the individual features from the feature layers. While we could have built
in a location or text filter of some kind, we chose to leave any filtering for the map task
pane, as Map 3D has an excellent filtering Ul. Within the Dynamo script, we simply
passed the feature layer through a text filter without any text input to get all features.

From those map features, key information is extracted. These include the geometries
and spatial properties such as structure rotation, rim elevation and pipe start/end inverts.
The extra spatial information is key to ensuring that structures and pipes are fitted
together properly.

Perhaps the most important information is identifiers that tie the features to specific parts
in the pipe catalog - The part size name and the family name. These names are required
to find the correct part size object. But since family names cannot be extracted from
pipes and structures, we simply gather all part size names for all families and do a
search for what we need. This means that all needed part sizes need to be loaded into
the parts list.

Get structure fa name by searching feature PartSizeName in DWG's part list

Object.identity [part size name) R

EXTRACTING THE CRITICAL FAMILY NAME AND PART SIZE NAME

Structures and pipes are then created using this information. For a mature GIS
database, the part size name is most likely not stored in the GIS data, nor is there an
option to add that to the database easily. A mechanism to identify the appropriate part
size based on properties such as size and material might be needed in that case.

Finally, the coordinates of the structures are compared to the start/end coordinates of
pipes; those that overlap are connected.

For each pipe start, find any structures at same coordinate -
Connect structures to start of pipes
o seametry double x > . ™ = int

AFTER CONVERSION TO PIPE NETWORK PARTS, PLAN VIEW

AFTER CONVERSION TO PIPE NETWORK PARTS, 3D VIEW

Now that the pipes and structures have been created with the correct part definition,
position, rotation, and elevation, we can transfer in other data, whether it's extra
pipe/structure data or custom asset data about these objects.

Step 2 - Transferring Additional Data from Map Features to Civil 3D Pipe
Network Objects

) Data-Shapes | Multi Input Ul ++ X

Transfers Custom Data from Map Layers to
Structures/Pipes as OD

Data Source Structure MAP Layer G-MAPEXPORT-STRUCT] “
Data Source Fipe Map Layer |G-MAPEXPORT—PIPE w |
Target Pipe Network |Undergr0und Blectric ~ |
JSONM containing custom property definition Open

Cancel Transfer

PNET_FDODATA_TO_C3DDATA.DYN

Let's look at the second step - that of transferring in extra data from the map features to
the structures and pipes created by the last graph. Some of the extra data might include
structure or pipe properties not reproduced by the correct selection of the part in the
catalog, such as rim-to-sump height, sump depth and sump elevation. Other data
include custom asset properties that will have to be attached as object data.

class cond const_by const_yr funding insp_by last_insp los_cur los_dem lup_yr manufact notes priority proj_no Featld
sub fair Har 2020 0 MC 2021-03-24 | high moderate | 2020 OSsF expected los increase | low JDH2934 1

sub fair HQT 2020 0 MC 2021-03-24 | high moderate 2020 OsF expected los increase | low JDH2934

sub fair Har 2020 0 MC 2021-03-24 | high moderate 2020 OSF expected los increase | low JDH2834 3

sub fair HQT 2020 0 MC 2021-03-24 | high moderate 2020 OsF expected los increase | low JDH2934 4

sub fair HaT 2020 0 MC 2021-03-24 | high moderate 2020 05F expected los increase | low JDH2934 5

sub fair Har 2020 0 MC 2021-04-01 | high moderate | 2020 OSF expected los increase | low JDH2934]

ASSET DATA IN MAP FEATURE TABLE FOR CONVERSION TO OBJECT DATA

We ask the user for the same data as last time: 1) structure feature layer name, 2) pipe
feature layer name, and 3) target pipe network name.

Next, object data tables need to be made that mirror the data structures of the map
feature layers. The data structures have already been captured during converting data
the other way (from GIS to Civil 3D) and saved as a JSON file. We can simply read this
JSON file and unpack the property definitions. This is then used to construct the Object
Data table.

Define OD Table and Create OD Records from JSON

Object.ldentity (custom property json file path) FileSystem.ReadText Data.Parse]SON Dictionary.ValueAtKey

json > result dictionary > value

— key >

a0

Code Block

UNPACKING PREVIOUSLY STORED SCHEMA FROM JSON TO OD

Once the Object Data tables are created, we attach the structures and pipes to these
tables and transfer the values over from the map features.

: PROPERTIES [~1[Tep][2D Wireframe]

Pipe

OD:CustomAssetProperties

ASSET DATA SUCCESSFULLY TRANSFERRED FROM MAP FEATURE DATA TABLE TO PIPE OBJECT DATA

Transfer attributes between Civil 3D objects and GIS objects
The journey back to GIS

Now, we need to transfer our final design or as-built Civil 3D .DWG plan back to our GIS
database. The designer might have added and removed pieces in our network and updated the
metadata on the remaining parts. To apply these alterations back to GIS, a GIS user or
database administrator would run these automated actions :

Read our proposed pipe network and any metadata attached to it.
Keep intact in the database all untouched existing components
Update all components that were identified as “modified”
Remove all components that were marked “to be removed”

Add all new components to our database

Currently, Dynamo does not handle these actions back into a GIS database. That’s because
Dynamo, while it can totally take GIS information as an input, has a limited ability to write back

data to the database. It has nodes that can read and modify existing elements through the FDO
connector, but it cannot create new elements or erase existing ones.

For that reason, the user will have to develop a workaround procedure to update their GIS
database.

At this point, it could even be for the best, since most GIS administrators will work within their
own GIS software with some automated routines that will validate any planned modifications
and new data entry prior to apply direct edits to their GIS Database. The GIS database act as
an archive for your utilities for years to come, so it needs to be protected, standardized, and
properly maintained.

In that regard, we can still do some legwork with Dynamao.

From Civil 3D to AutoCAD

Most GIS software will read DWG files directly, but they won’t detect nor extract any data from
Civil 3D objects. With that said, some GIS software are compatible with Civil 3D (like FME from
Safe Software or ArcGIS through Civil 3D’s ArcGIS connector), but when they do, to our
experience, they won’t grab every info needed to fully recreate your pipe networks afterward
and they won’t reach to every possible place where you can put your utility metadata.

Here is the most “full-proof” way we’ve developed with Dynamo to grab everything that you’d
need, not only to recreate a full 3D pipe network later, but to grab every single metadata you
added to your pipes and structures, and “digest” all this information in AutoCAD objects that can
be easily read back into your current GIS database.

Note: In this part of the demo, we’ve used customized buttons in our tool palette to launch our
scripts. If you ever want to create your own buttons, see the Launching Dynamo Scripts from
the Tool Palettes section of this document.

To ensure that we can gather information from every possible angle, we split our procedure
into 4 steps.

Step 1 — Convert Civil 3D Pipe Networks to AutoCAD Objects

The first script reads all pipe networks in the current drawing, creates AutoCAD objects
(lines and blocks) from them on target layers, and transfer the “standard” pipes and
structures properties into them. You can even specify which block in your drawing will be
used to represent your structures.

{5 Data-Shapes | Multi Input Ul ++ pe

Create lines and blocks from pipes and

structures

Target pipe layer v

Target structure layer |G-MAPEXF’ORT-STRUCT ~ |

Mame of block to use for structures |_ClosedFiIIed \/|
W SHJCAD

Cancel Create

PNET_C3D_TO_ACAD.DYN

Note: After running a Dynamo script that creates either AutoCAD or Civil 3D objects, you
will have to switch to a layout then back to model space to make the new objects
appear. A simple REGEN command will not do the job.

If you select one of the newly created AutoCAD obijects (either a line of a block) and look
at its object properties, you will see every info required to eventually rebuild your pipe
network, all stored within a Map 3D Object Data table that can be easily read by GIS
software or exported with the MAPEXPORT command into GIS objects (like ESRI
Shapefiles and Autodesk SDF files).

Since the script grabs info directly from your parts (and not the part catalog), and it
should work with any custom part catalog you have used in your networks without extra
adaptations of the script.

The way this script constructs the pipe/structure data schema might require some
explanation. The property names come straight from the Dynamo node names for these
properties. The following are the steps:
1. Get various structure or pipe properties with Dynamo structure/pipe nodes
2. Covert those nodes to a code block with node-to-code
3. Copy-paste the node-to-code into a string node
4. Manipulate the text to extract a list of property nhames and its corresponding
data type (see "Generate OD field names and data types from copy-paste of
node-to-code" group)
5. Use these lists to define an object data table.

COPY-PASTE

Step 2 — Create An Object Data Table Structure From Any Property Sets
(Extended Data Tab)

The next two scripts will work within a target pipe networks to gather all your custom
utility metadata into a more versatile Object Data table.

We first recreate the table structure of a target Property set assigned in the Extended
data tab, respecting all preset data types for each data fields (characters into characters,

integers into integers, real into real).

{i% Data-Shapes | Multi Input Ul ++ ot
Create Object Data tables from Property Set
tables.

Property Set Table Name [CustomAssetProperties| v|
Pipe Network Name |Underground Electric v]

Cancel Create

PNET_PS_TO_OD_DEFINITION.DYN

i PROPERTIES

Structure

DOCUMENTATION
Hyperlink B
Notes =
Reference d.. EH (0)
PROPERTY SETS
CustomAssetProperties
class sub
cond fair
const_by HQT
const_yr 2020
funding 0
insp_by MC
last_insp 2021-03-24
los_cur high
los_dem moderate
lup_yr 2020
manufact OSF

notes expected los increase

priority low
proj_no JDH2934

= _
PROPERTY SET AVAILABLE UNDER THE EXTENDED DATA TAB, USED TO STORE OBJECTS METADATA

¢ PROPERTIES

Structure

OD:CustomAssetProperties

const_yr 0
manufact

last_insp

cond

notes

const_by

insp_by

proj_no

los_dem

funding
priority
lup_yr
class

Information

Style Standard
OBJECT DATA TABLE BUILT BASED ON A PROPERTY SET AND ATTACHED TO A STRUCTURE

Step 3 — Transfer Property Set Values to Object Data Tables

The third step will transfer the target Property Set content to the target Object Data table
(newly created). It was much easier for us to separate the table creation from the content
transfer into two separate scripts, but you can easily launch them back-to-back under a
single Tool Palette button (see the Launching Dynamo Scripts from the Tool Palettes
section of this document).

{1 Data-Shapes | Multi Input Ul ++ X

Transfer Values from Property Set to Object Data

Property Set Name | stomAsset Propertie i |

Pipe Netwark Mame |Undergro|.|nd Blectric [|

".E SoidCAD
B S i) B iy

Cancel Create

PNET PS TO OD_VALUES.DYN

PROPERTIES

Structure

OD:CustomAssetProperties
const_yr 2020
manufact OSF
last_insp 2021-03-24
cond fair
notes expected los increase
const_by HQT
insp_by MC
proj_no JDH2934
los_dem moderate
los_cur high

funding 0

priority low
lup_yr
class sub

FILLED OBJECT DATA TABLE IN THE STRUCTURE PROPERTIES

Step 4 — Copy The Object Data Table From Pipe Network Parts To AutoCAD
Objects

The fourth step will transfer the target Object Data table from a target pipe network to
correspondent AutoCAD objects (line segments and blocks) located on target layers.

Our script identifies correspondent “target” blocks and lines based on common
coordinates of insertion points (for structure) or mid-points (for pipes).

{#i® Data-Shapes | Multi Input Ul ++ pod

Transfers OD data from C3D pipe network
to AutoCAD blocks and lines

Select source pipe network | v |
Select layer of (pipe) lines |G—MAPEXPORT—PIPE o |
Select layer of (structure) blocks |G-MAPEXPORT-STRUCT w |
Object data table to transfer |Cust0mAssetPropenies W |

Cancel Transfer

PNET_TRANSFER_OD_TO_CAD.DYN

PROPERTIES

Block Reference

Scale Y

Scale 7
Misc

Name

Rotation

Annotative

Block Unit

Unit factor

OD:C3D_to_GIS_Structures

OD:CustomAssetProperties
const_yr 2020
manufact OSF
last_insp 2021-03-24

cond fair

notes expected los increase
const_by HQT

insp_by MC

proj_no JDH2934

los_dem moderate

BLOCK PROPERTIES WITH THE STRUCTURE OBJECT DATA TABLES (METADATA AND PART PROPERTIES)

A GIS administrator could easily use one of your many custom properties to
automatically assign an action back to the GIS database, like using the original
component layer name to split your design by unchanged parts, modified parts, added
parts and parts to be removed.

From AutoCAD to GIS
While it was discussed in fewer details in the demo, there is a couple of scenarios to send back
your pipe network as AutoCAD objects back to GIS. Let's explore 2 of them:

1. Using the MAPEXPORT command to create GIS files.
2. Using a 3" party GIS integration software, in this case FME from Safe Software.

Using the MAPEXPORT Command

The MAPEXPORT command is a powerful feature within Map 3D/Civil 3D. It allows the
user to export AutoCAD objects into a GIS friendly format, like these:

Autodesk SDF (" sdf)

CityGML (*.gml. * xml, *.gz)

EO00 (Esri Arcinfo Export) (*.e00)

Esri Arcinfo Coverage

GML (Geography Markup Language) (*.gml, *xml, *.gz)

Google KML (" kml, * kmz)

Maplnfo MIF/MID (*.mif)

Maplnfo TAB (MITAB) (*tab)

MicroStation File V7 (*.dgn)

MicroStation File V& (*.dgn)

Shape Multiclass

SQLite Spatial (*.sqlite)

Wector Markup Language (VML) (*.html)
MAPEXPORT EXPORTABLE FILE FORMATS

The most commonly used/known format in that list would be Shapefiles, but keep in
mind that Shapefile is an old format that has limitations in characters and content (i.e.:
the length of property/column name, limited to 8 characters) that could lead in a loss of
data, as you export your pipe network.

While the demonstration showed briefly how to export your pipe network in a SDF file, it
is a proprietary format to Autodesk rarely compatible with GIS software.

We would suggest, like in the following procedure, that you export your objects as in
SQLite Spatial database (a more open, versatile, and superior option to Shapefiles).

Launch MAPEXPORT and select all objects on the chosen layers:

A Export - .\Underground Electric.sqlite

Selection | Feature Class I Options |

Select objects to export

(@ Selectall () Select manually Eﬁh ?

Filter selection

Layers: |G-MAPEXPORT-PIPE G-MAPEXPORT-STRUCT || &£

Objectclasses:

Select polygon topology to export

MName: <None>

Group complex polygons Q

Saved profiles

Current profile:
Load... Save..

Automatic selection
MAPEXPORT MENU, ONCE YOU HAVE CHOSEN A FILE TYPE TO EXPORT

Under the Feature Class tab, select the Create multiple classes [...] option, base on
Layers, then specify the target geometry type for your structures and pipes, and then
select the “...” button for each feature type to select which attributes to export:

A Export - .\Underground Electric.sqlite X
Selection Feature Class l Options l

Choose how to organize the selected drawing objects

Objectto Feature Class Mapping

(C) Create a single class from all selected objects

@ Create multiple classes based on a drawing object

Drawing objectto use: Layer v|

Select Aftributes flzlsesc;sropeme? amlbuteﬁexponto all feature

Drawing Object Feature Cla *eometw
FIG-MARPEXPORT-PIPE [G-MAPEXPORT-FIPE =|Line

G-MAPEXPORT-STRUCT|G-MAPEXPORT-STRUCT |Paint

[]Show schema names

Saved profiles

Current profile:
Load.. Save..

Automatic selection
MAPEXPORT FEATURE CLASS TAB, ALLOWING YOU TO STRUCTURE THE OUTPUTTED DATA

For pipes and structures, click the checkboxes of the appropriate Object Data tables to
export. In this case, we will merge part properties and metadata into a single data table.

A Select Attributes e

Expression:

-] b= Properties | 0K | :

B I ObjectData

-7 MR C3D_to_GIS_Pipes Cancel (
F-_1] C3D_to_GIS_Structures
-] %iii | CustomAssetProperies (Help

---] M= Object Properiies

THE SELECT ATTRIBUTES MENU, ALLOWING YOU TO BUILD A DATA TABLE BASE ON AUTOCAD OBJECT PROPERTIES

Once this is fixed for both your pipes et structures, press the | >3 putton to

create an Exportation Profile that will streamline this whole setup process next time your
launch MAPEXPORT for this purpose.

Using FME To Translate CAD Data Back To GIS

FME is a visual scripting environment meant to do data translations and quality control
“from point A to point B” for all your spatial and non-spatial data. While it can read Civil
3D obijects directly within your DWG file, it reads a limited amount of information, so we
would suggest that you read only the AutoCAD objects previously created with Dynamo.

Here is a simple translation (called “workspace”) from our previous AutoCAD DWG file,
that will split up our pipe network parts into Removed, Updated, Added and Unchanged
categories (based on an object attribute value), then will take specific actions based on
these categories directly in an existing ESRI FGDB database.

¥ 2-Translation from ACAD to FGDG)

- = 3-Adions taken on an existing ESRL FGDB file i)
Manages actions on

the database based on

w 1-AutoCAD DWG file with Object Data tables ik attrbute value --{ DatabaseDeleter_2 {@} ~ Delete structures

Renaming the Shape AttributeRilter 2 6% e
AutoCAD hbcks (reprensenting underground attrbute to ShapeC3D » Removed I _ DM Updates modified structures

structures) located a "to be exported” ayer

—Mt ibuteRs 2 =
: S EEIRIGIDRE {:} | Add new structures
(@) cmreorrsaucr 5B —

DatabaseDeleter {CZ? — Delete pipes
AutoCAD ines (representing underground pipes) +-{ DatabaseUpdater {C} @ Updates madified pipes
located a "to be exported” byer

Renaming the Shape

attrbute to ShapeC3D mﬁﬂjg‘ﬁbmbf og
- | S0 e database based on
D el attrbute value
——{AttributeRenamer {5
P Output B— i« —

Add new pipes

AttributeFilter
& @ 4-Report on unchanged objects 453

o ()
>
: foges (=)

OVERVIEW OF THE WORKSPACE BUILT IN FME WORKBENCH

b <Missing>

b <Unfiltered>

On the left side, our “exportable” layers from our DWG file are read directly, and

attributes (like the Shape one) will be renamed to dodge a naming convention conflict as
we write into our ESRI FGDB database.

¥ 2-Translation from ACAD to FGDG

¥ 1-AutoCAD DWG file with Objedt Data tables <3k

Renaming the Shape
AutoCAD blocks (reprensenting underground attrbute to ShapeC3D [_
structures) located a "to be exported” layer

.-r—DEAttrl buteRenamer_2 {9’}] /
@.}m -MAPEXPORT-STRUCT {&{@-—— P Output

AutoCAD Ines (representing underground pipes)
located a "to be exported” yer

@) b G-MAPEXPORT-PIPE {SHD)——

Renaming the Shape
attrbute to ShapeC3D

——{tAttributeRenamer o}
P Output B— 1 —

OVERVIEW OF THE WORKSPACE BUILT IN FME WORKBENCH

On the right side, we split objects based on attributes (as “actions to be applied”) and
branch them in different actions in our ESRI FGDB database.

FGDG e
_ w 3-Adions taken on an existing ESRI FGDB file 4%

Manages actions on
the database based on
attribute valug %DalabaseDeleter_z @(3 — = Delete structures |
AttributeFilter_2 %)

P Removed : /\.E[)alabaseUpdater_Z {E’}(@* — Updates modified structures |

I+ Updated

-/ > Added b STRUCTURE 'E == Add new structures
P> Unchanged

P <Empty> p
P =Missing> = ‘{Daml’ﬁseDeleter @(@— Delete pipes
B <Mull=

& <Unfiltered > ;:E[)alabaseUpdaher {é}(@ ~ Updates modified pipes

Manages actions on
the database based on 3 & PIPE g @ = Add new pipes
attrbute value ——

— 14 —{:{ AttributeFilter %)
> Removed - v 4-Report on unchanged objects <%
~
(rdd b {Logger (=
Clogs
(v osngs (- (Cr I C)
eI 2 _
I <Unfiltered> (— t’

OVERVIEW OF THE WORKSPACE BUILT IN FME WORKBENCH

This workspace was oversimplified to display the potential of automated GIS actions but
could easily be improved with extra quality control features and create all sorts of
automatic reports and quantity take-off documents with the filtered objects.

Launching Dynamo Scripts From The Tool Palettes

Here is the procedure to launch our Dynamo scripts (or any Dynamo scripts) from your Tool
Palettes:
i TOOL PALETTES - DYNAMO SCRIPTS

Ind
#1 C3D pipe network to AutoCAD

« #2 Proper Sets to OD table structure

+ #3 Proper Sets to OD table content

« #4 0D table from Pipe Network to ACAD objects

ript launches

« PS/OD to AutoCAD (3 last scripts in 1)

« (3D Pipe networks to AutoCAD (4 scripts in 1)

FILLED OBJECT DATA TABLE

Create a line segment, select it, and drag-and-drop it into a Tool Palette:
-0 X g & TOOL PALETTES - DYNAMO SCRIPTS

Polyline
Color O Bylayer

Layer 0
Linetype Bylayer

i TOOL PALETTES - DYNAMO SCRIPTS

Db Polyline
Cut
Copy
Delete
Rename

Specify image...

Properties...

In the Tool Properties menu, assign a proper name for your new button and change the Use
flyout parameter to No:

. Tool Properties X
Image: MName:
I Dynamo Script #1 I
Description:
Command i
Use flyout IND I

Flyout options

Command st... |

General 7
Color \:| Bylayer
Layer 0
Linetype BylLayer
Linetype scale 1.000
Plot style BylLayer
Lineweight — Bylayer
OK Cancel Help

Then, in the Command string input, copy-paste the following command line (where the full path
name can be changed to your own dynamo script):
AC/Caeccrundynamoscript

"C:/AutodeskUniversity/Temp/cad2gis _dynamo/2 pnet c3d to acad/pnet c3d to acad.dyn"

Be aware that copying paths from Windows Explorer creates backslashes [\] that needs to be
replaced by forward slashes [/].

Through the Command string input, you can load back-to-back as many scripts as you want
like this:
AC”Caeccrundynamoscript
"C:/AutodeskUniversity/Temp/cad2gis_dynamo/2_pnet_c3d_to_acad/pnet_c3d_to_acad.dyn";
aeccrundynamoscript
"C:/AutodeskUniversity/Temp/cad2gis_dynamo/2B_pnet_c3d_data_xfer/1-
pnet_ps_to_od_definition.dyn";aeccrundynamoscript
"C:/AutodeskUniversity/Temp/cad2gis_dynamo/2B_pnet c3d_data_xfer/2-
pnet_ps to_od_values.dyn";aeccrundynamoscript
"C:/AutodeskUniversity/Temp/cad2gis_dynamo/2B_pnet c3d_data_xfer/3-
pnet_transfer_od to_cad.dyn"

[*C] means pressing the <Escape> key once.
[aeccrundynamoscript] is the command to launch a script at a specified file path in “quotes”.
[;] means pressing the <Enter> key once.

This way, each following script will wait for the previous script to finish before launching itself,
making it an easy way to divide your scripts for clarity’s sake while streamlining a set of actions
under a single button.

See the following page to explore more “special control characters” available to build your own
Command string:

https://knowledge.autodesk.com/support/autocad-It/learn-
explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-L T /files/GUID-DDDB6E26-75E1-4643-
8C6A-BEAEBA83A424-htm.html

Conclusion

The potential connectivity between GIS and Civil 3D through Dynamo scripts was shown, using
complex Civil 3D objects like pipe networks. Further, we could adapt this workflow without any
problems to other Civil 3D and AutoCAD object.

We hope that this demonstration will lead to further conversations in the Autodesk community to
expand these kinds of applications, connecting Map 3D and Civil 3D through Dynamo for Civil
3D.

https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-LT/files/GUID-DDDB6E26-75E1-4643-8C6A-BEAEBA83A424-htm.html
https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-LT/files/GUID-DDDB6E26-75E1-4643-8C6A-BEAEBA83A424-htm.html
https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-LT/files/GUID-DDDB6E26-75E1-4643-8C6A-BEAEBA83A424-htm.html

