Optioneering and Optimization Using Generative Design and Evolutionary Solvers

Maciej Wypych

Design Technology Coordinator at BVN

Credits to Matt Wash

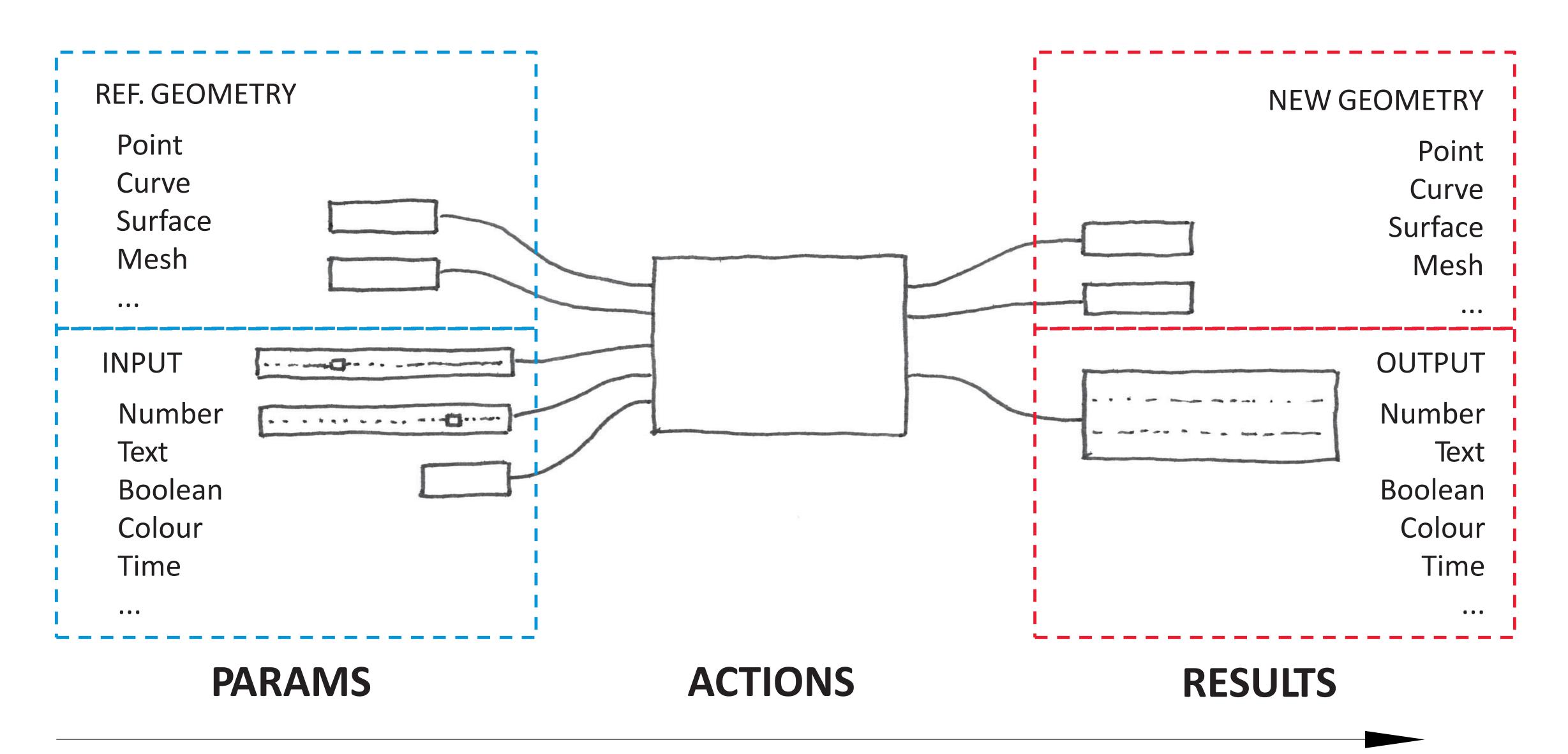
Design Technology Coordinator at BVN

About the speaker

Maciej Wypych

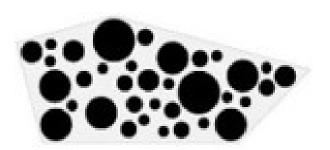
Maciej is a Design Technology Coordinator at BVN, and Design Information Management Sessional Tutor at UNSW. He is a committee member and frequent speaker at Dynamo User Group Sydney as well as BUILT ANZ, Wellington Digital Design User Group and other conferences. He has over 15 years' experience in the architecture and building industry in Australia and UK. Maciej brings extensive knowledge in architectural design technology, parametric 3d modelling and the rationalization and delivery of geometrical complex designs.

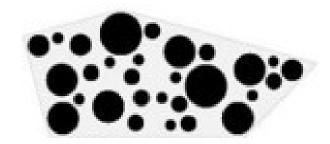
FLOW OF INFORMATION IN A SCRIPT

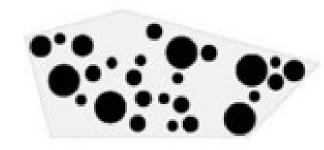


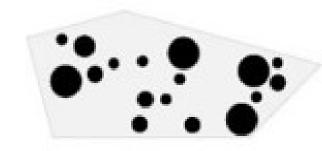
12 CREEK ST. THE ANNEX CEILING, BRISBANE PROJECT

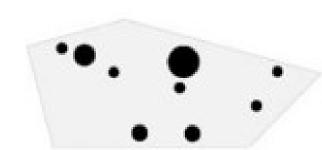
REF. GEOMETRY

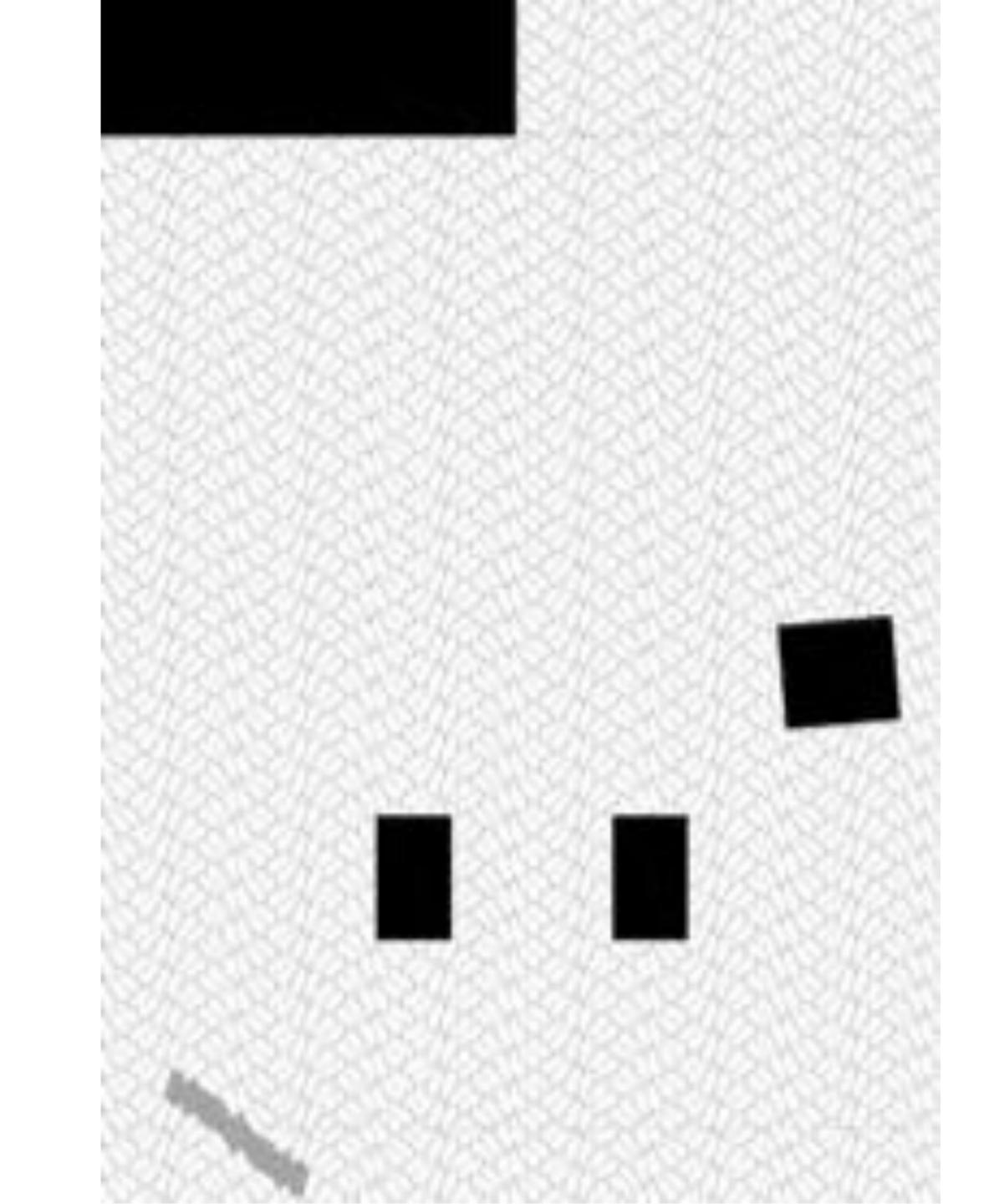








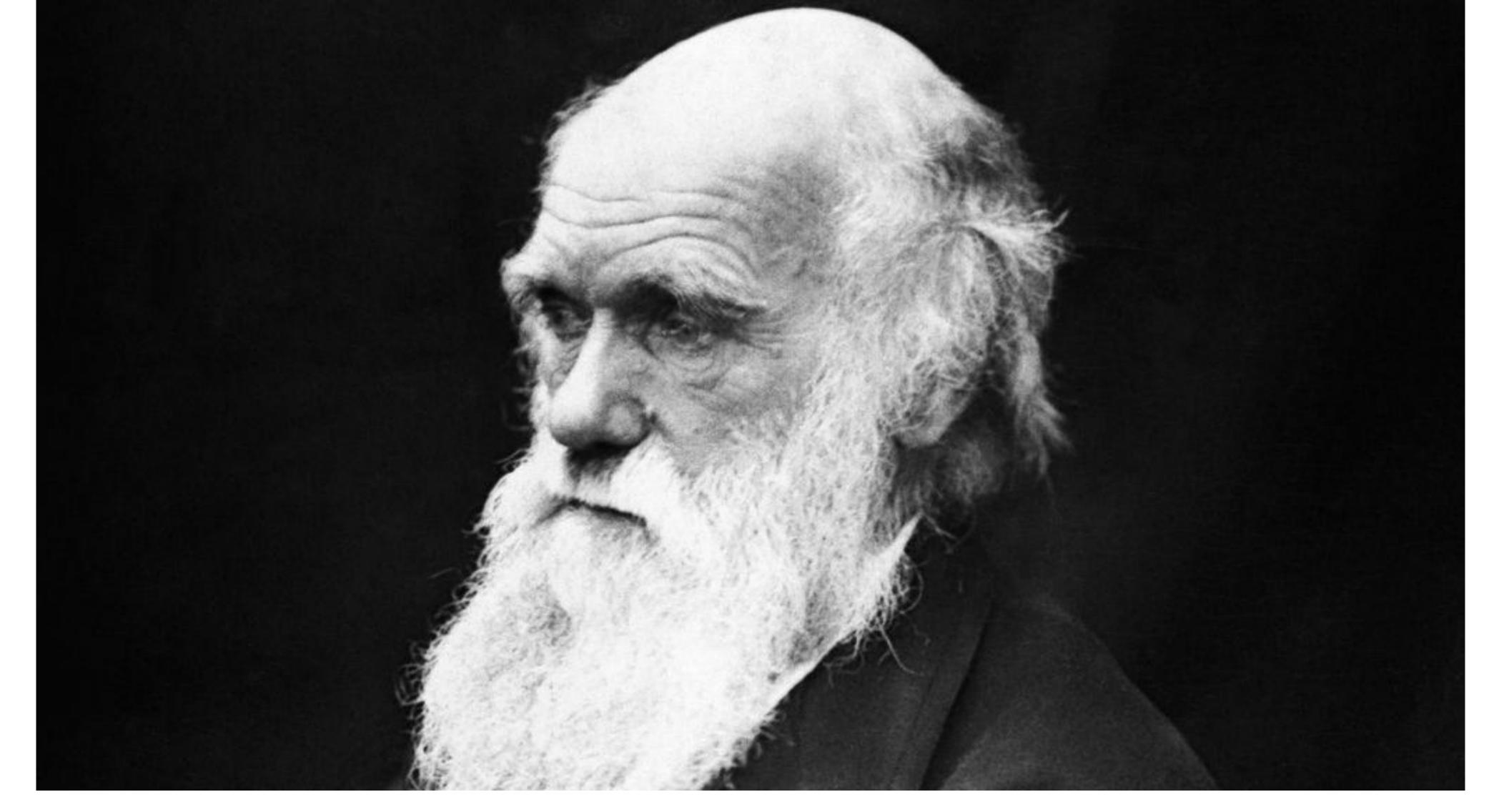




%	Α	В	С	D	Е	F	G	Н		J
P. 1	7	17	5	29	4	29	3	30	18	0
P. 2	14	17	10	24	4	29	30	3	21	6
P. 3	21	17	14	19	17	17	3	30	24	16
P. 4	35	17	19	14	17	17	30	3	21	25
P.5	21	17	24	10	29	4	3	30	12	31 22
P. 6	0	17	29	5	29	4	30	3	3	22
RRE SULT ING GEO MET RY										
HOL	528.1k	505.2k	353.3k	656.8k	325.4k	684.4k	421.6k	588.8k	613.8k	337.8k
DEN SITY	23%	23%	15%	31%	13%	32%	20%	25%	28%	14%

THIS IS OPTIONEERING!!

HOW CAN WE USE THIS INFORMATION TO REACH BETTER SOLUTIONS?

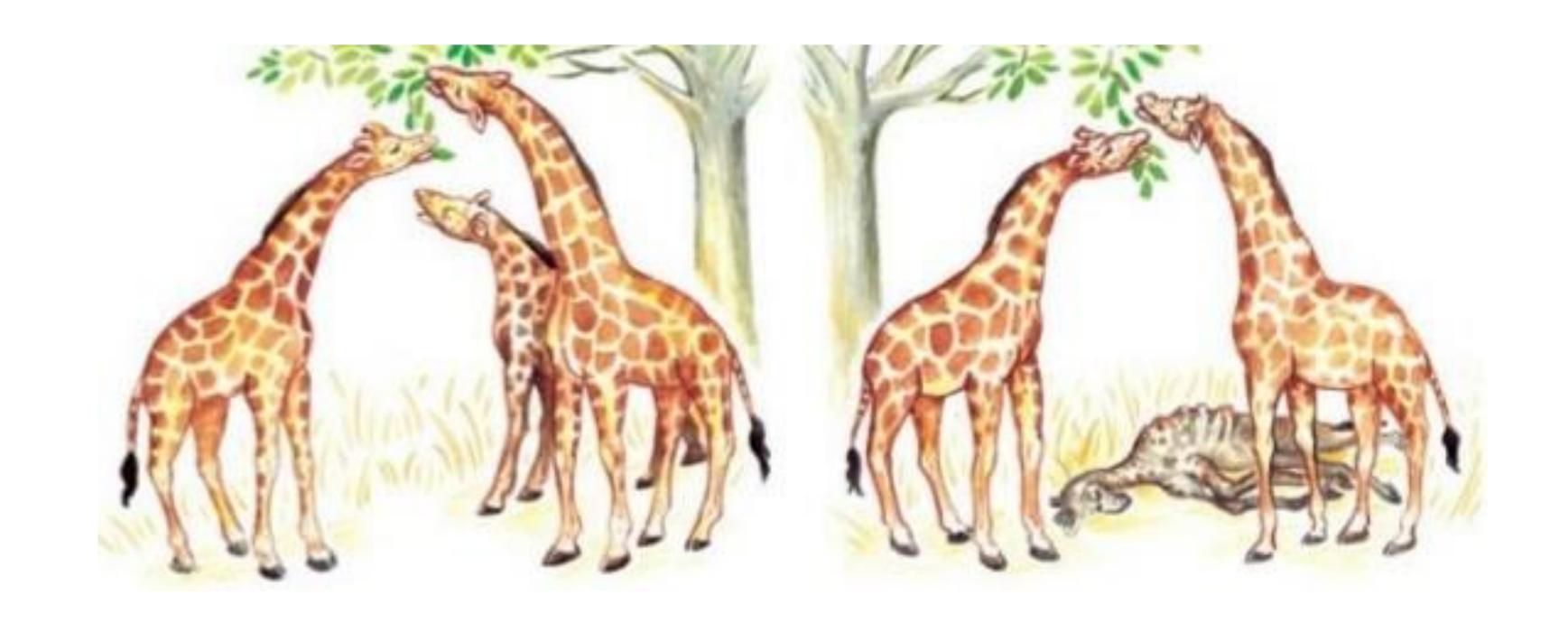


Charles Darwin (1809 - 1882)

I have called this <u>principle</u>, by which each slight <u>variation</u>, if useful, is preserved, by the term of <u>Natural Selection</u>.

EVOLUTIONARY ALGORITHMS SELECT THE BEST OPTIONS TO GENERATE MORE OPTIONS

GENERATION AFTER GENERATION, THE ALGORITHMS HELP US TO UNDERSTAND THE NATURE OF THE PROBLEM AND FIND OPTIMAL SOLUTIONS TO IT



PRINCIPLES OF BIOLOGIC AND ALGORITHMIC EVOLUTION VARIATION

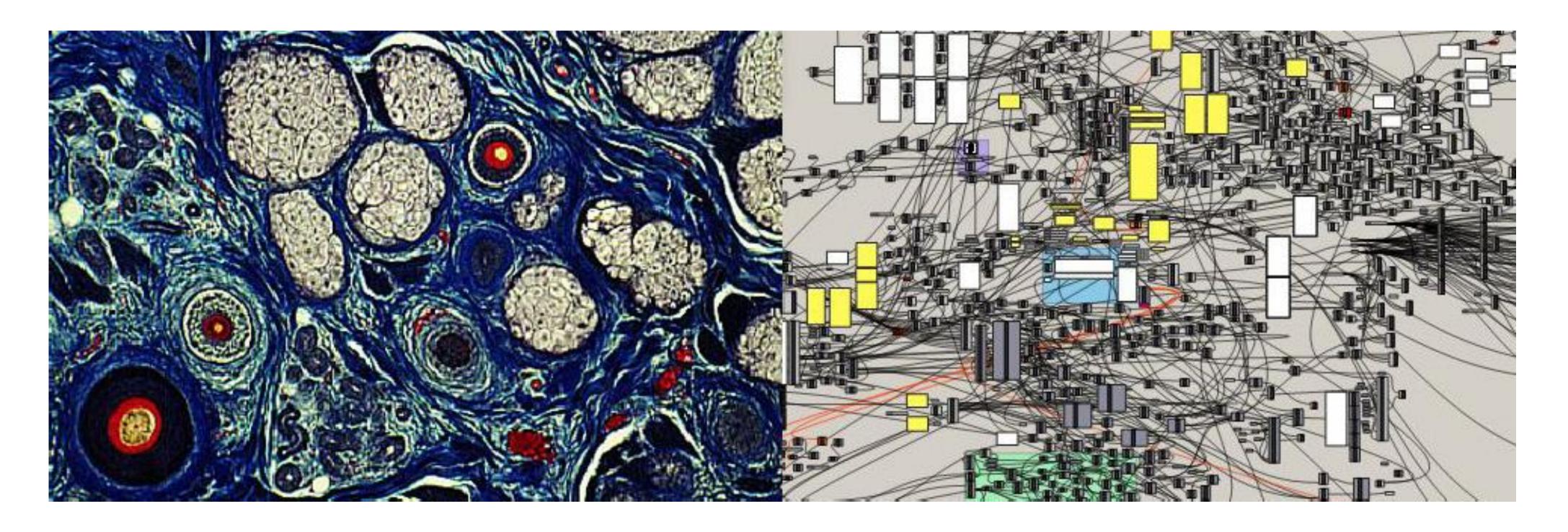
Without it, wouldn't be possible to pick something that is better than something else

INHERITANCE

Qualities of the individuals are transmitted to the next generations

SELECTION

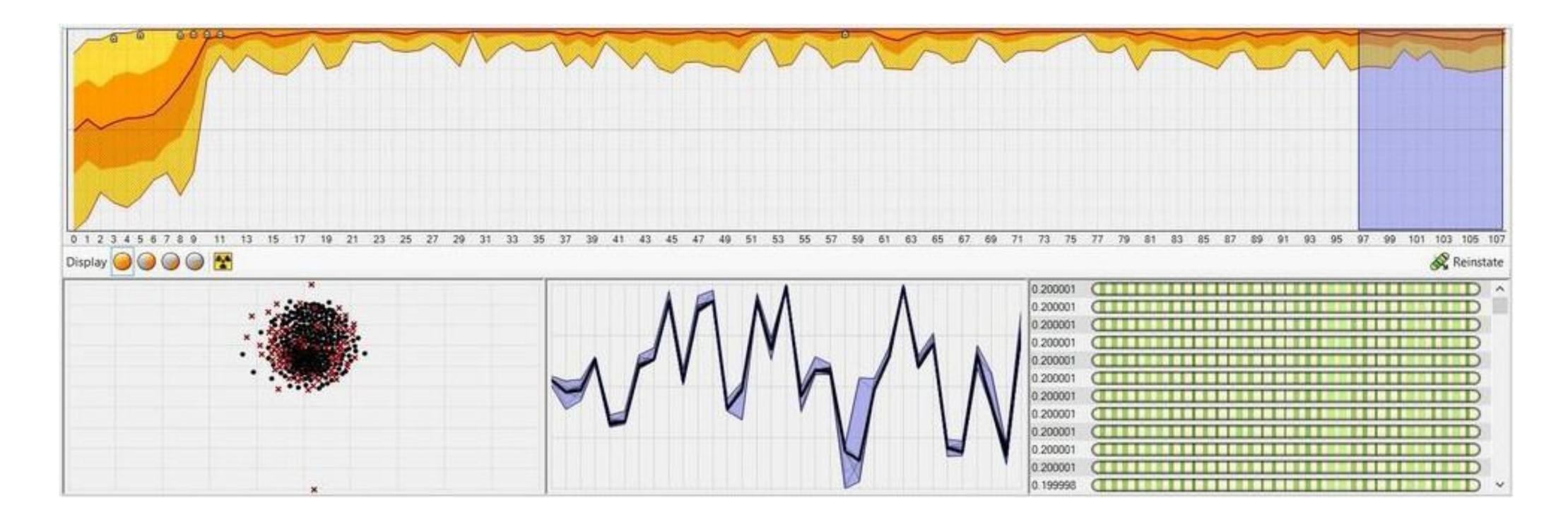
The fittest individuals are likely to survive and have offspring



DIFFERENCES BETWEEN BIOLOGICAL AND ALGORITHMIC EVOLUTION

- Changing environment
- Complex interactions
- Complex gender reproduction processes
- High degree of arbitrariness
- Millions of variables

- Stable environment
- Limited interactions
- No gender
- Simulated arbitrariness
- Limited variables



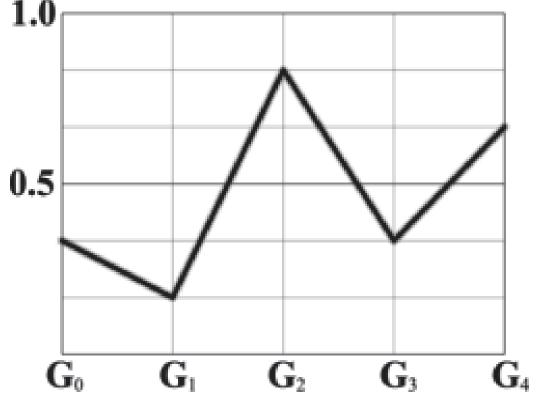
PROS AND CONS OF EVOLUTIONARY SOLVERS

- Flexible
- Progressive
- Forgiving
- Interactive

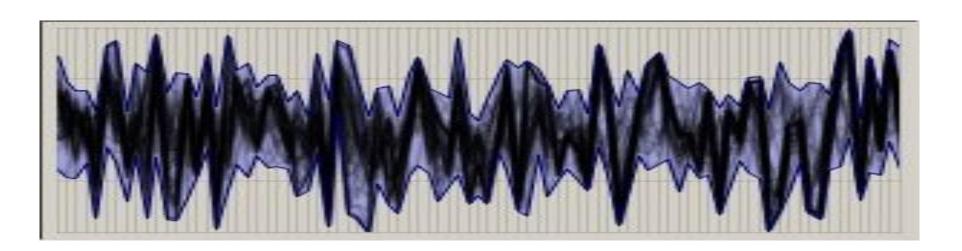
- Slow
- No Guaranteed Solution

A GENE IS A VARIABLE

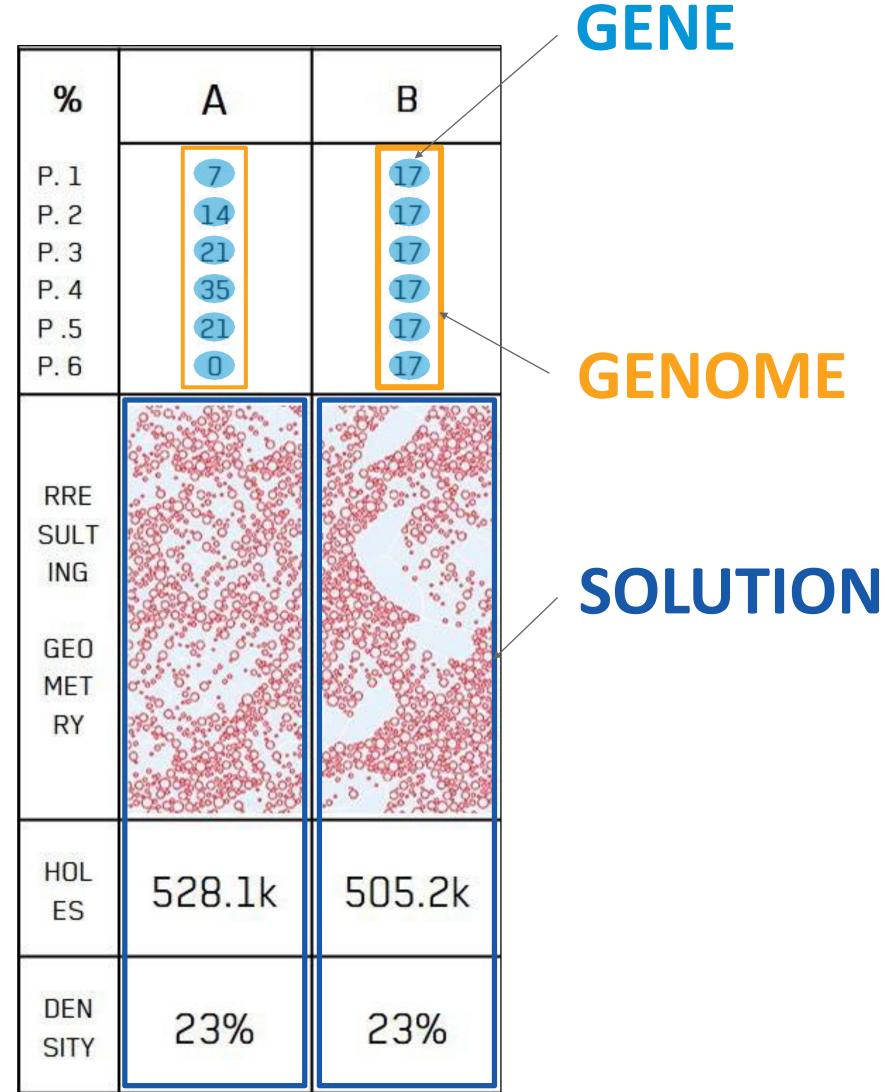
A COMBINATION OF GENES IS A GENOME, WHICH OUTPUTS A UNIQUE SOLUTION 1.0 GENOME GENOME



Representation of a genome



Combination of genomes



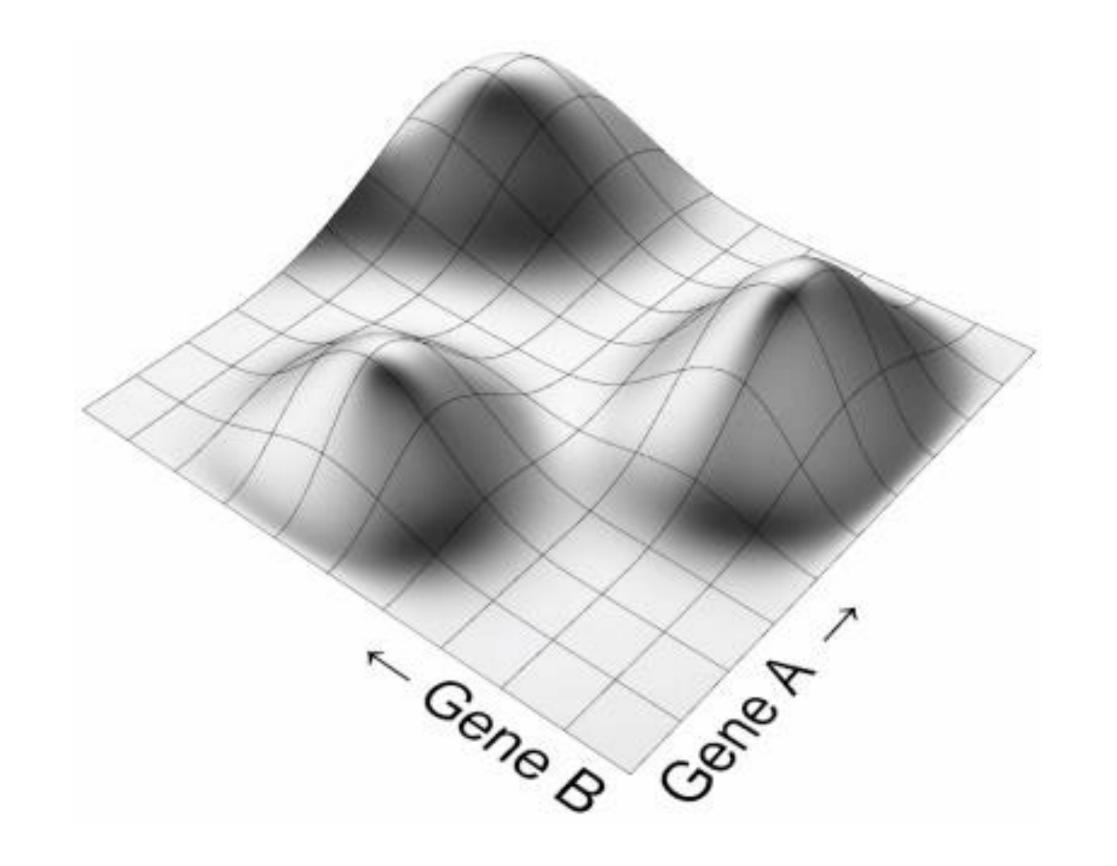


FITNESS is whatever we want it to be.

We are trying to solve a specific problem, and therefore we know what it means to be fit.

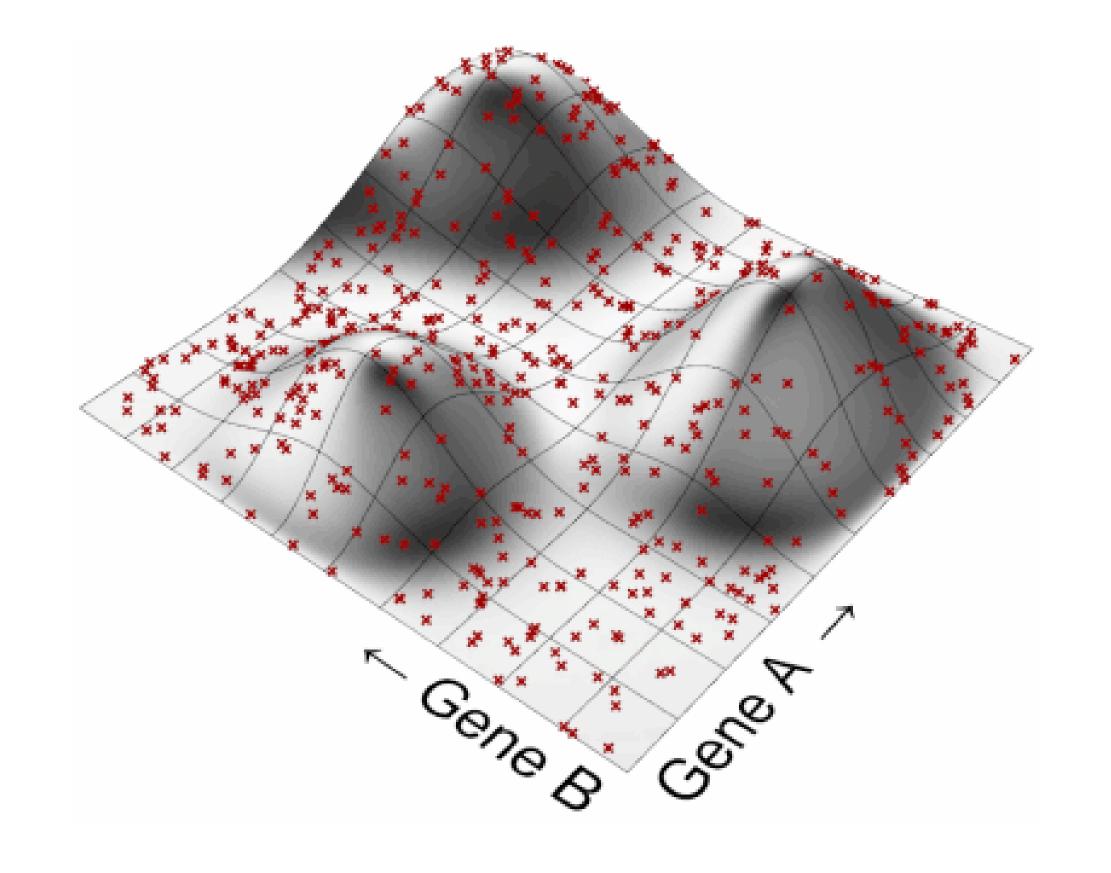
A FIT GENOME outputs a better solution to a problem than other genomes.

All the possible solutions conform a **FITNESS LANDSCAPE**, which represents the nature of the problem that we are trying to solve.



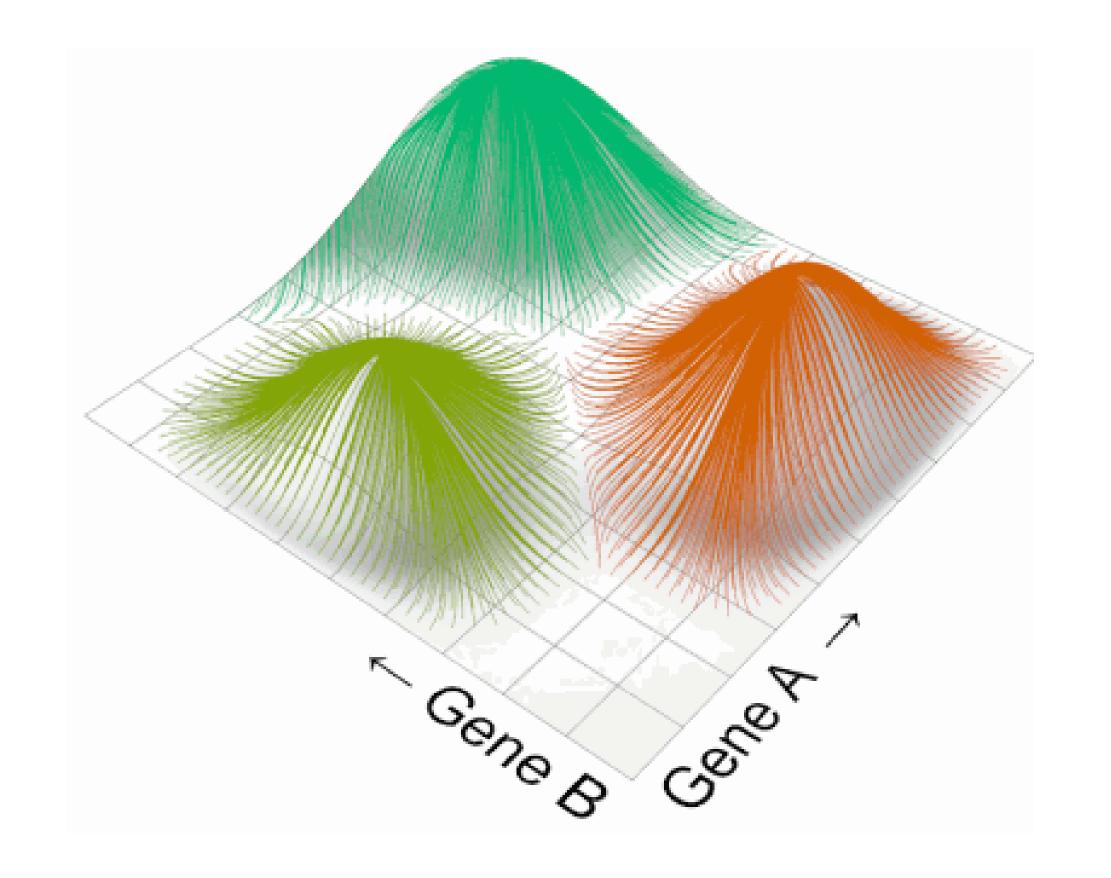
Fitness Landscape containing 2 genes or variables (A and B)

Unknown at the beginning of the process



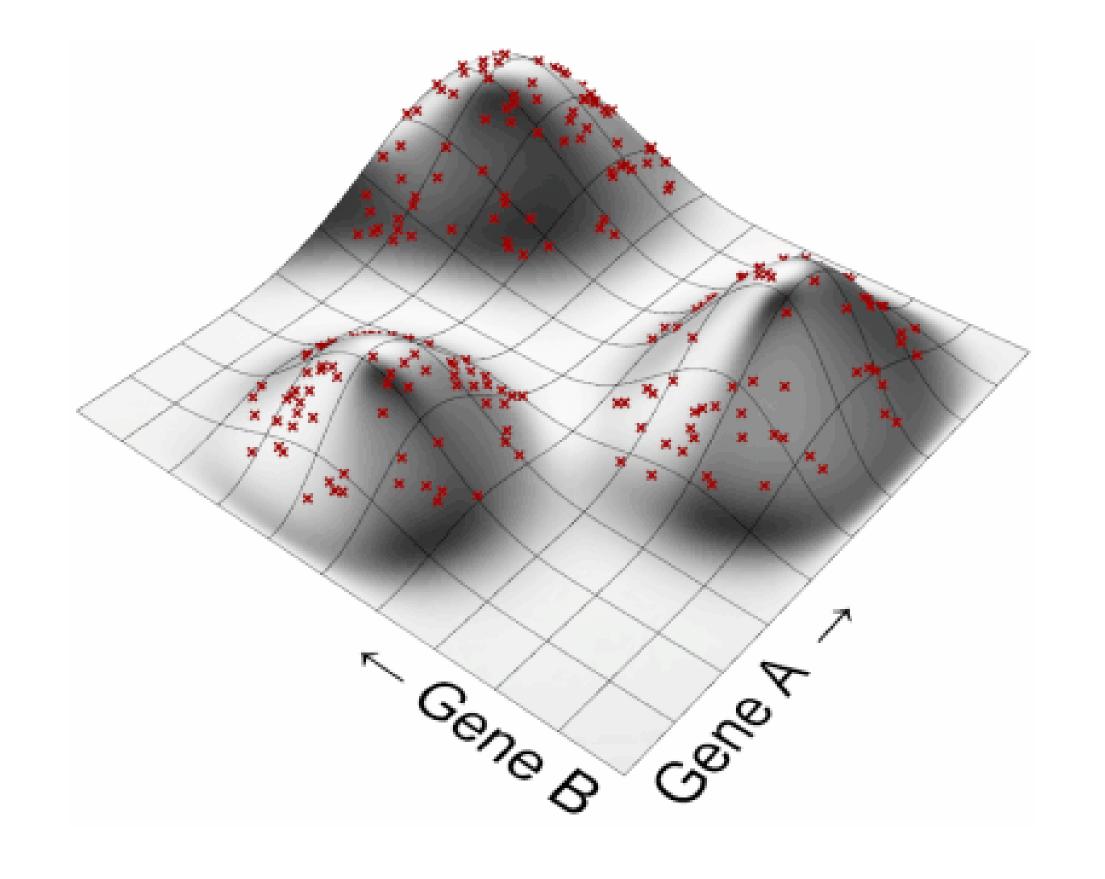
Start

Random population to approximate the nature of the Fitness Landscape

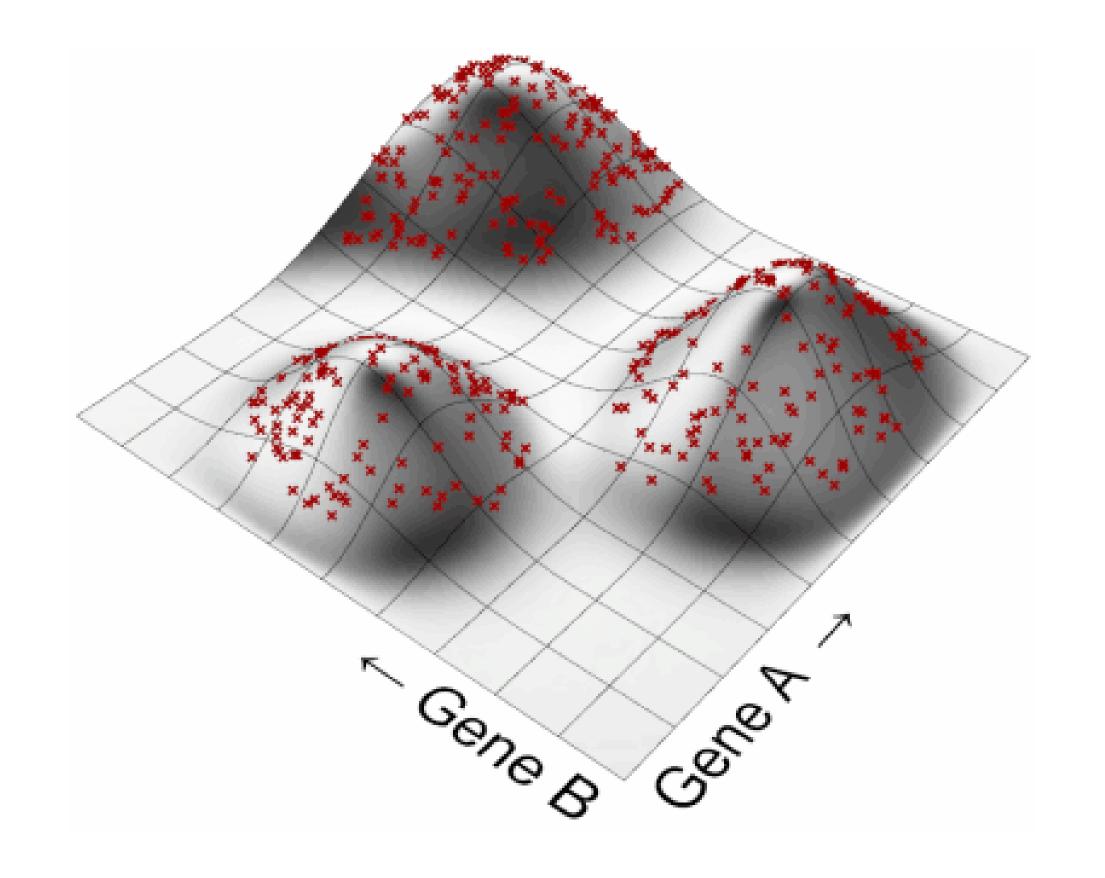


Basin of Attraction

Determine in which direction genomes should travel

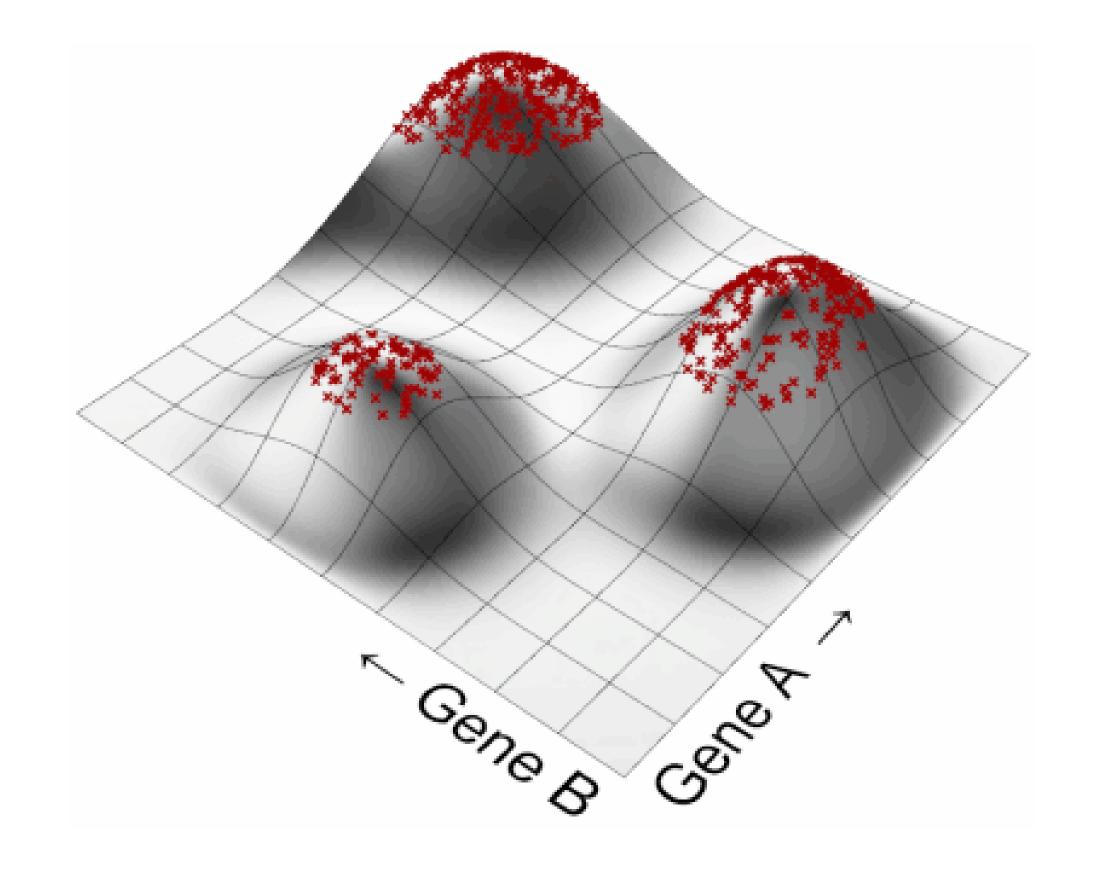


Selection
Only the fittest genomes survive



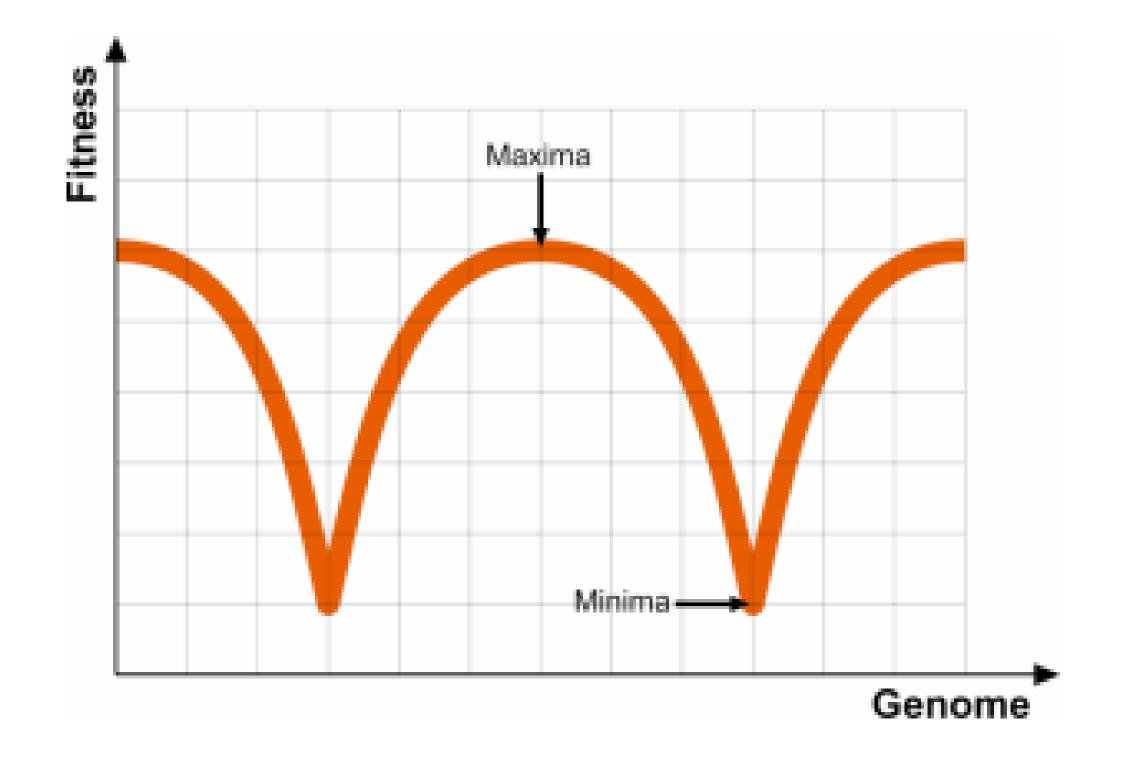
New Generation

Defined by fittest genomes and basin of attraction



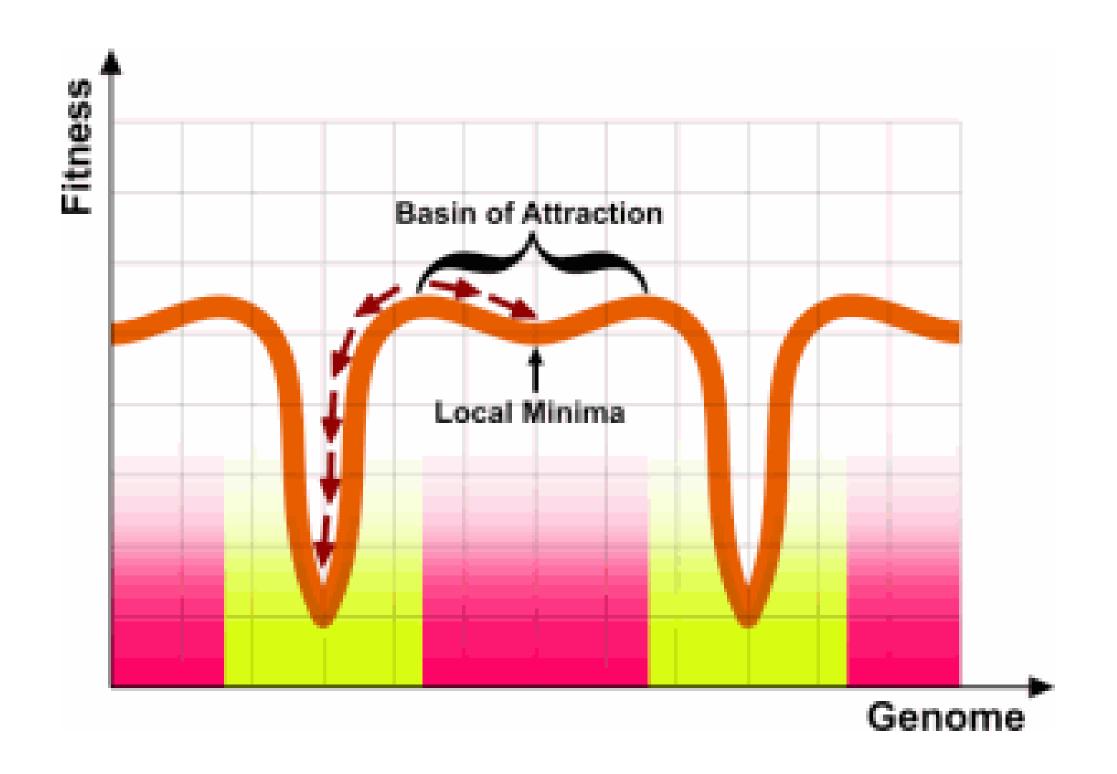
Subsequent Generations

The process repeats until satisfactory solutions are found (or not)



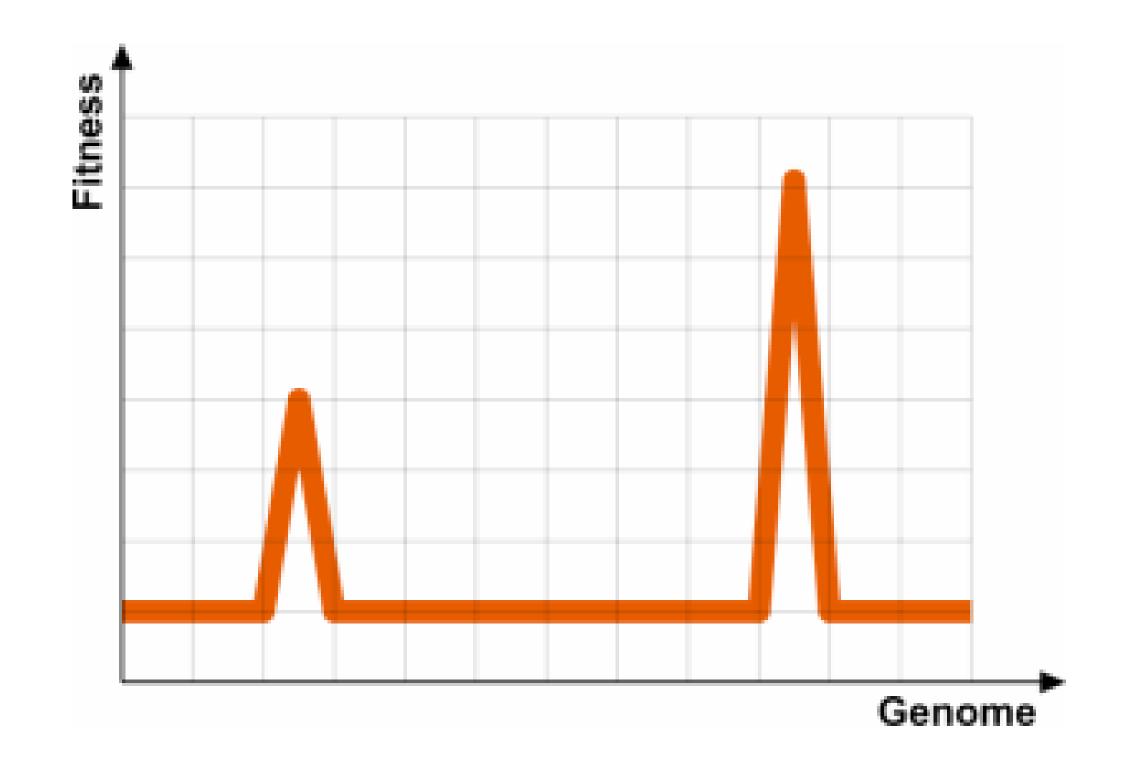
Simple

Basins of attraction will always take you to an optimal result

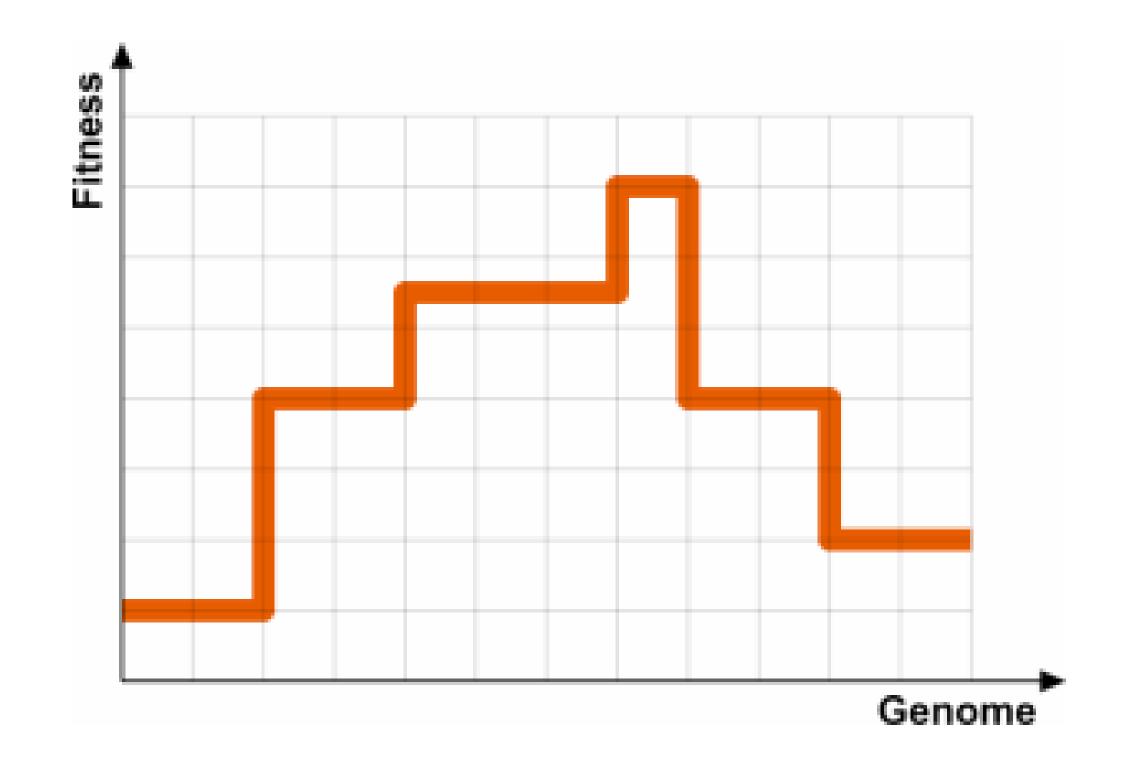


Complex

Half of the landscape dominated by a basin that attracts to a poor solution

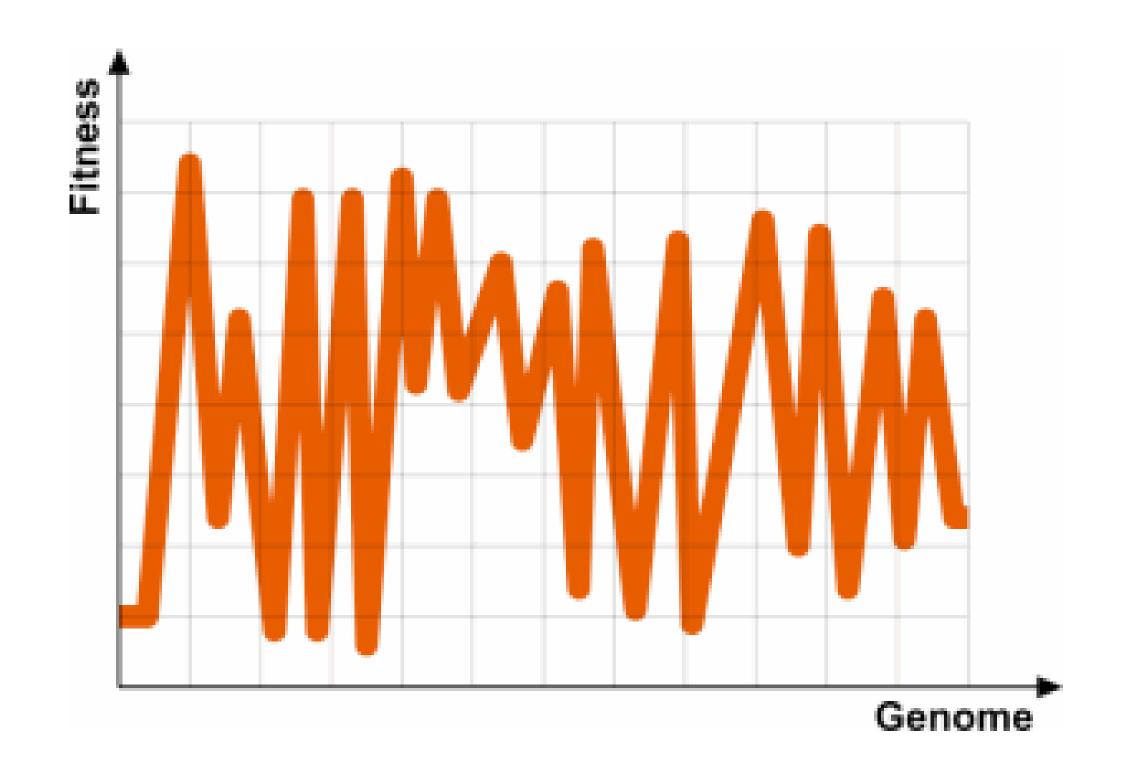


Small Basins
Low chances of finding a (good) peak



Discontinuous

Plateaus without 'improvement'. No basin to an optimal solution



Noisy or Chaotic

Impossible to make any intelligible pronunciations regarding the fitness of a local patch

TRADITIONAL DESIGN
RECORDING DECISIONS

PARAMETRIC DESIGN

ASSOCIATING GEOMETRY

DESCRIBING GOALS + CONSTRAINTS

GENERATIVE DESIGN

COMPUTER PARAMETRIC MODELING

VISUAL PROGRAMMING

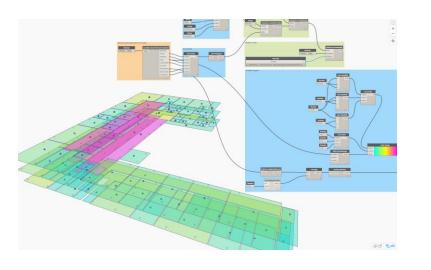
OPTION GENERATION

DESIGN OPTIMIZATION

AUTOCAD

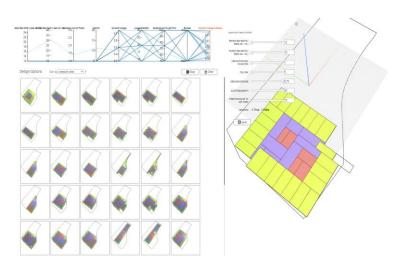
DRAFTING

REVIT

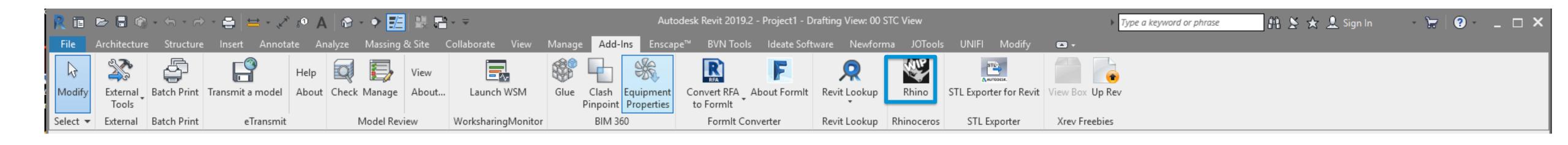


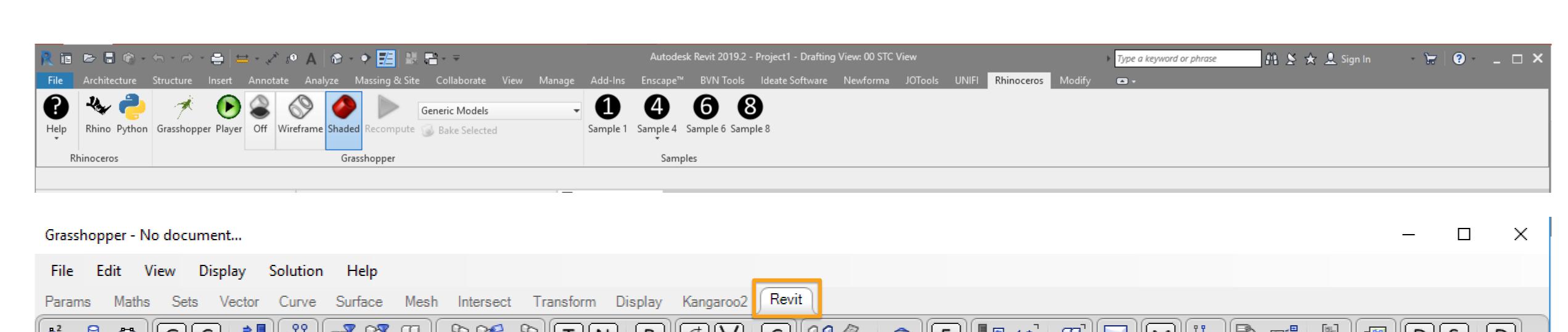
DYNAMO

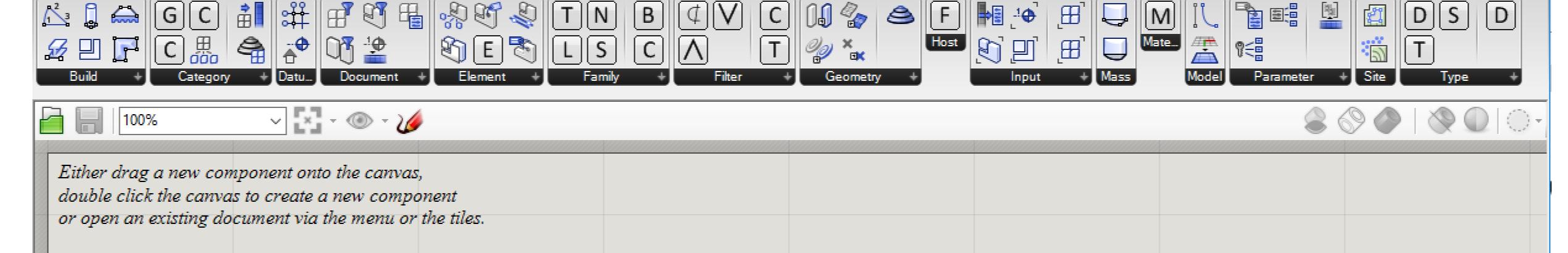
GRASSHOPPER
(RHINO INSIDE)

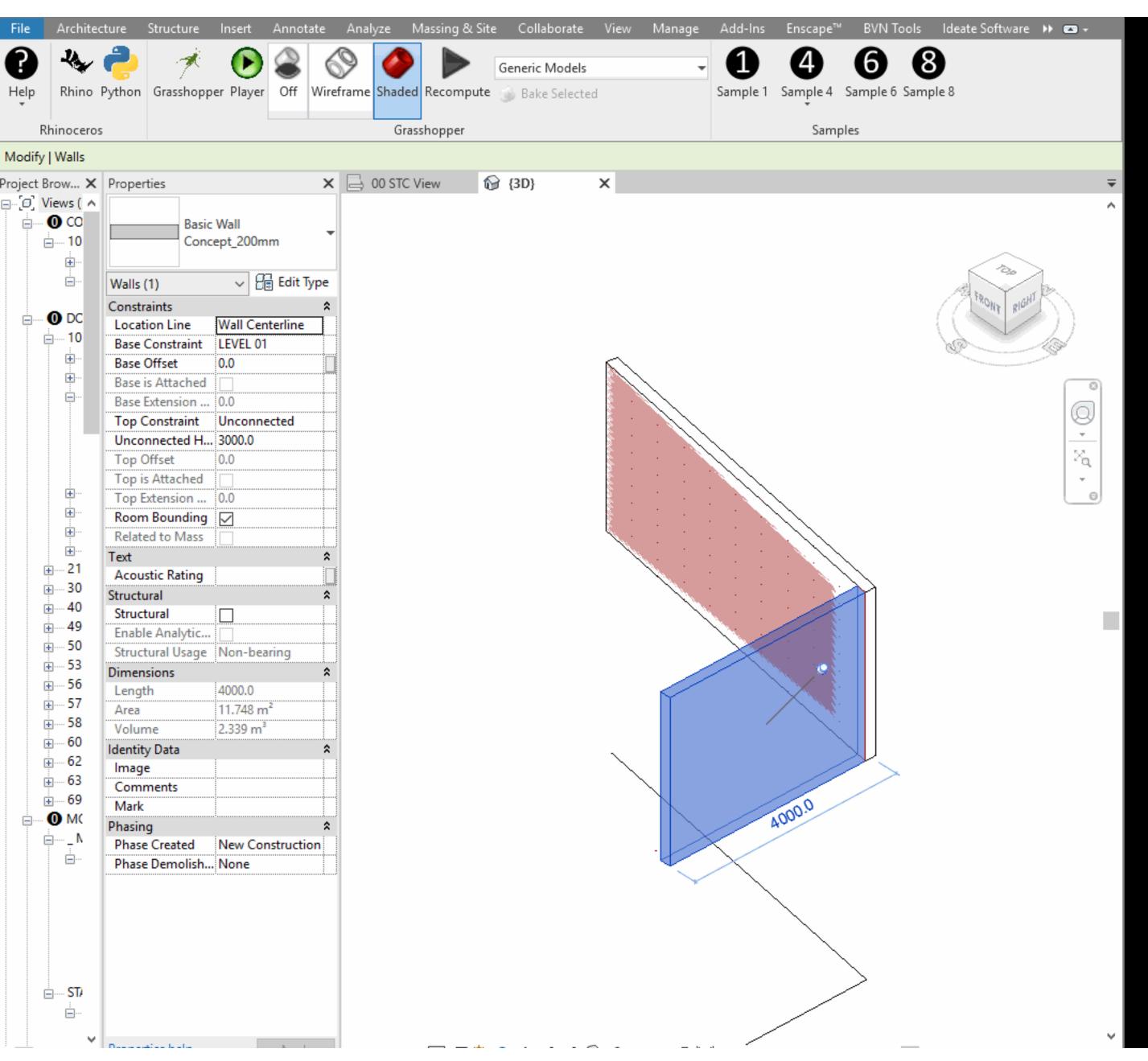


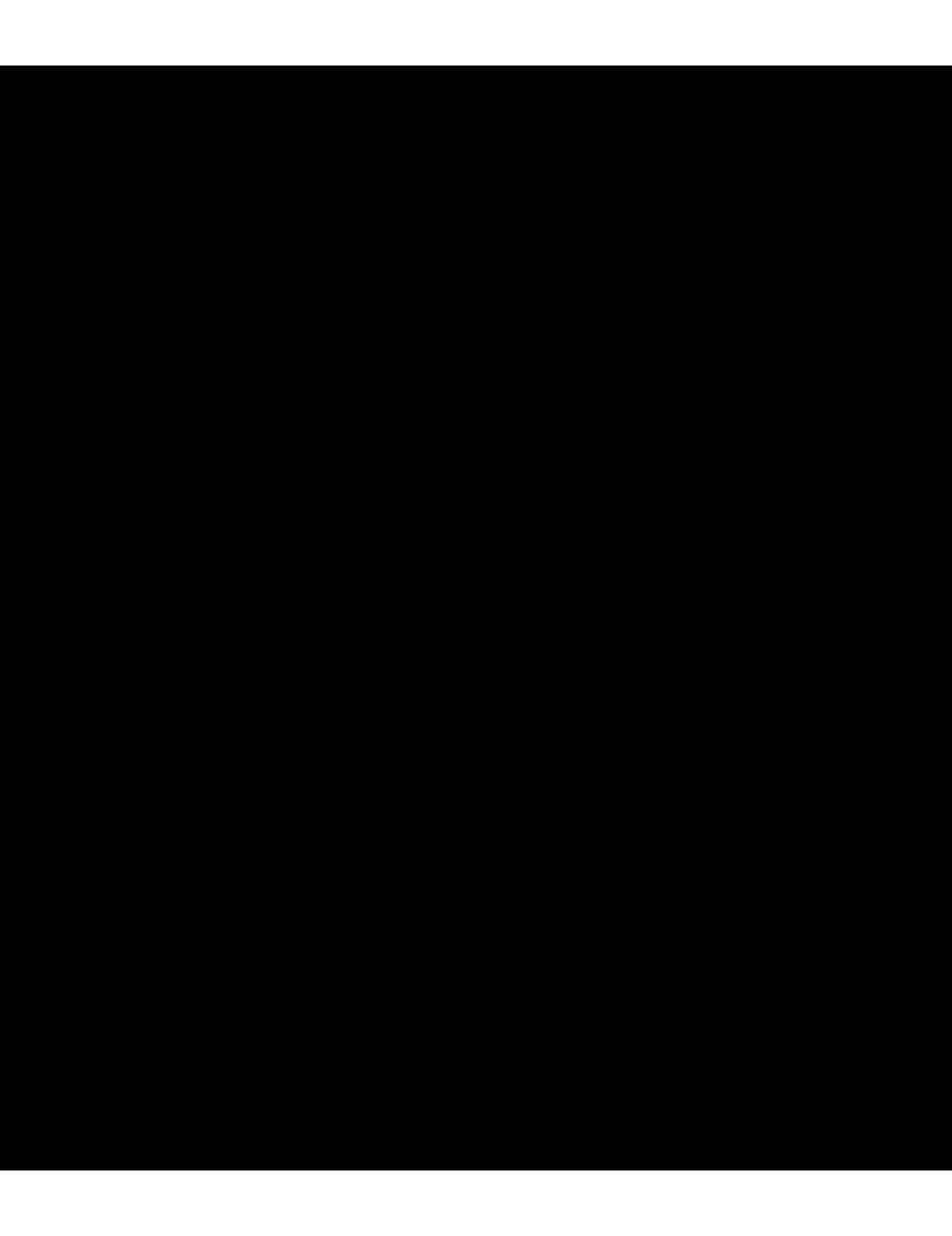
REFINERY
GALAPAGOS
OCTOPUS
WALLACEI



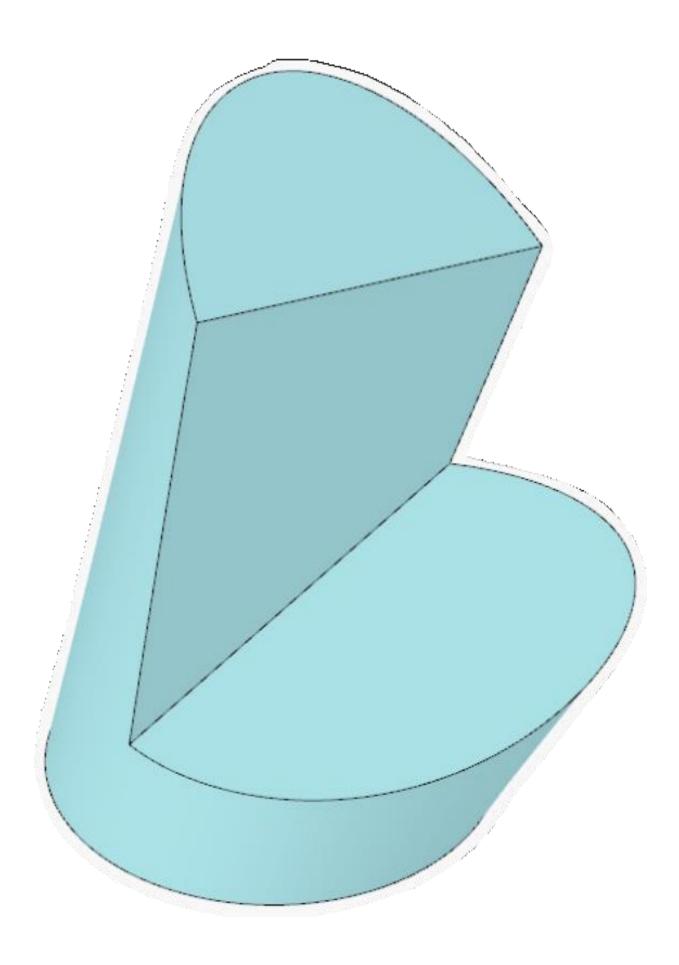








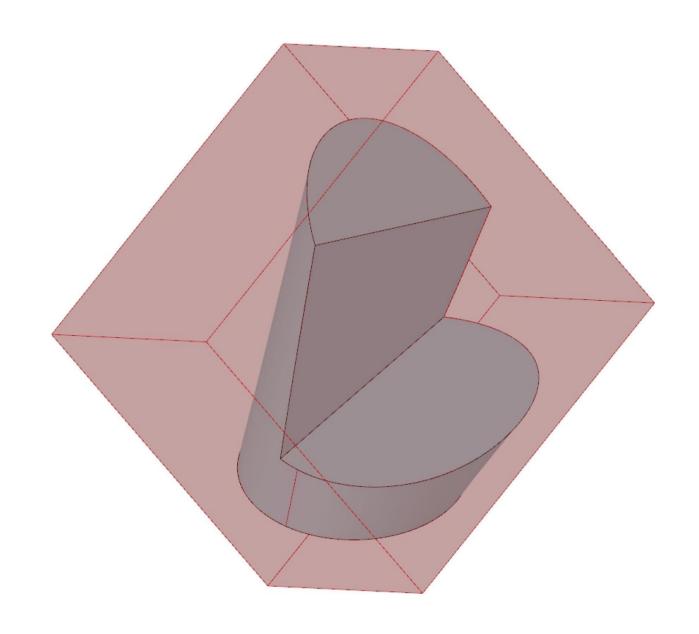
SINGLE OBJECTIVE OPTIMIZATION GALAPAGOS FOR GRASSHOPPER

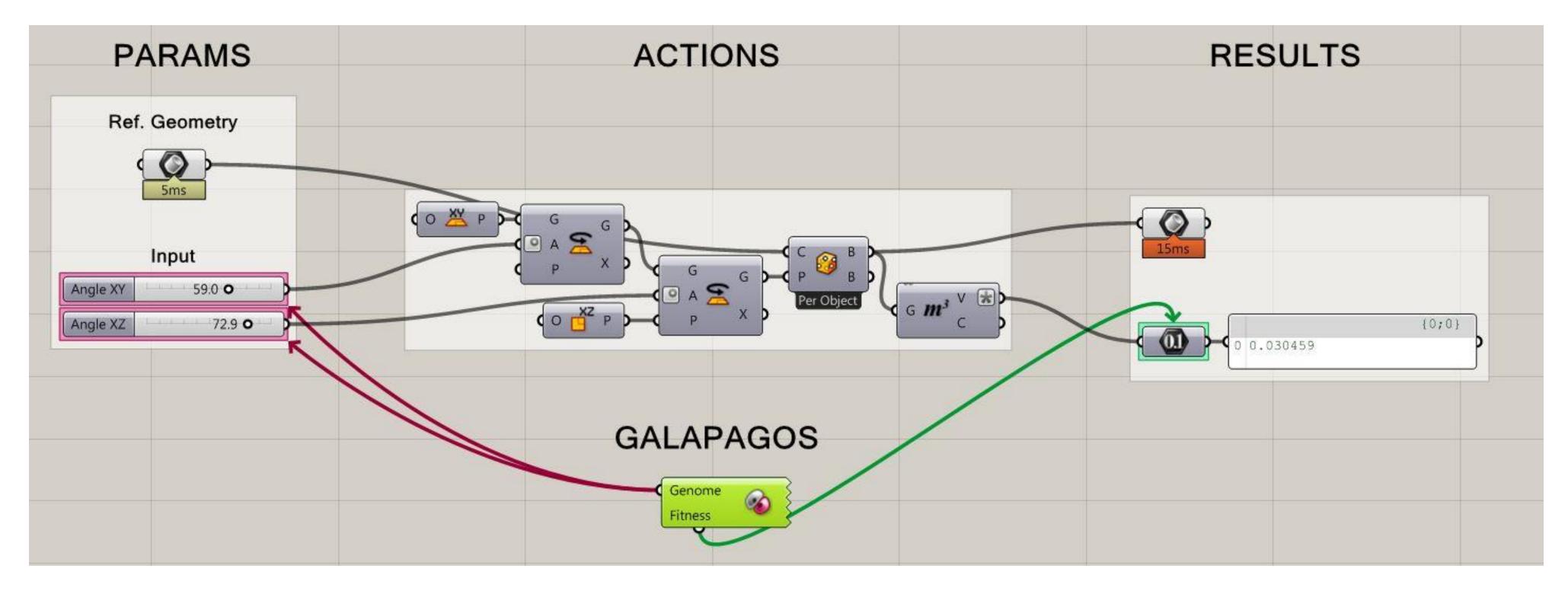


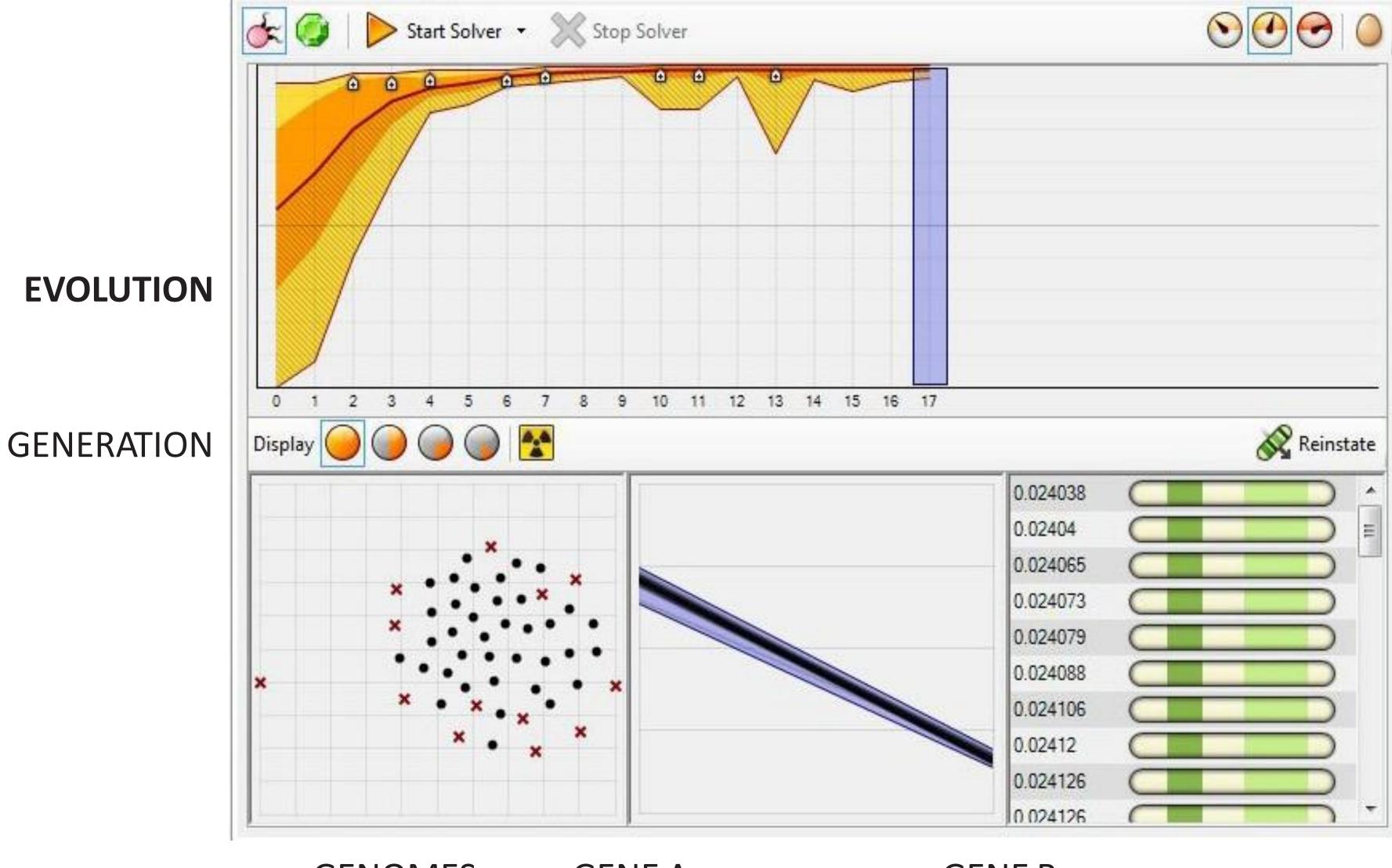
CASE 1

Minimum Volume Bounding

Box



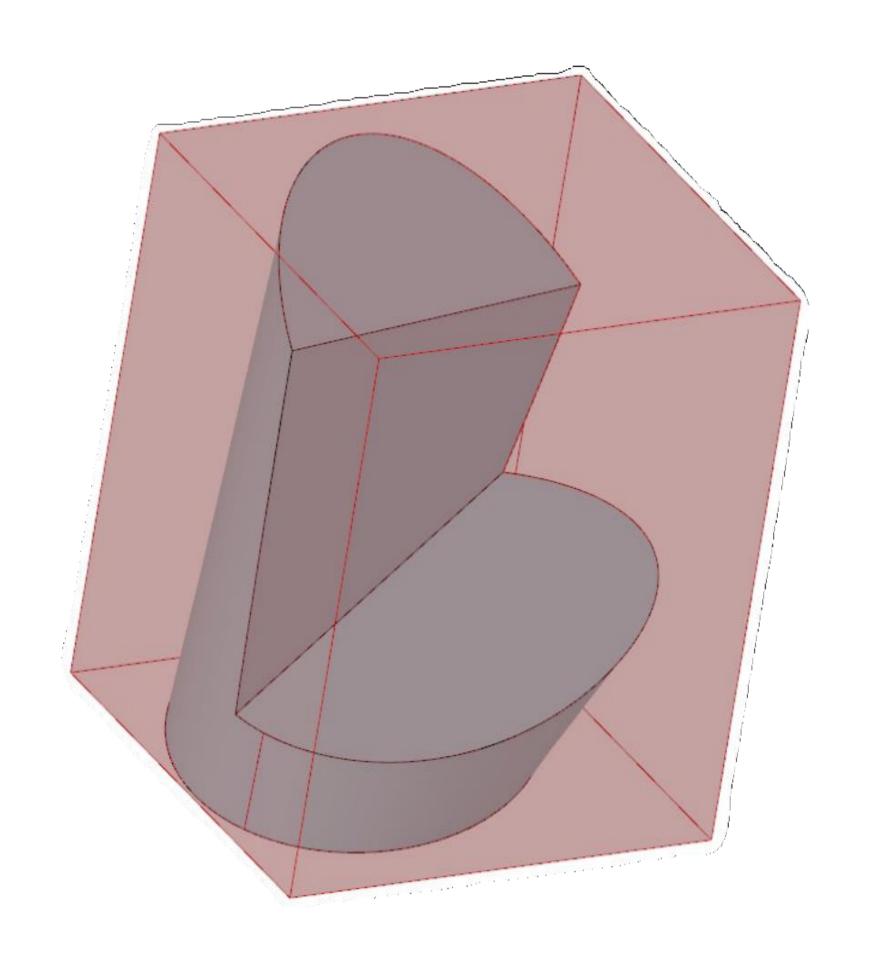




GENOMES GENE A
INTERACTION (Angle XY)

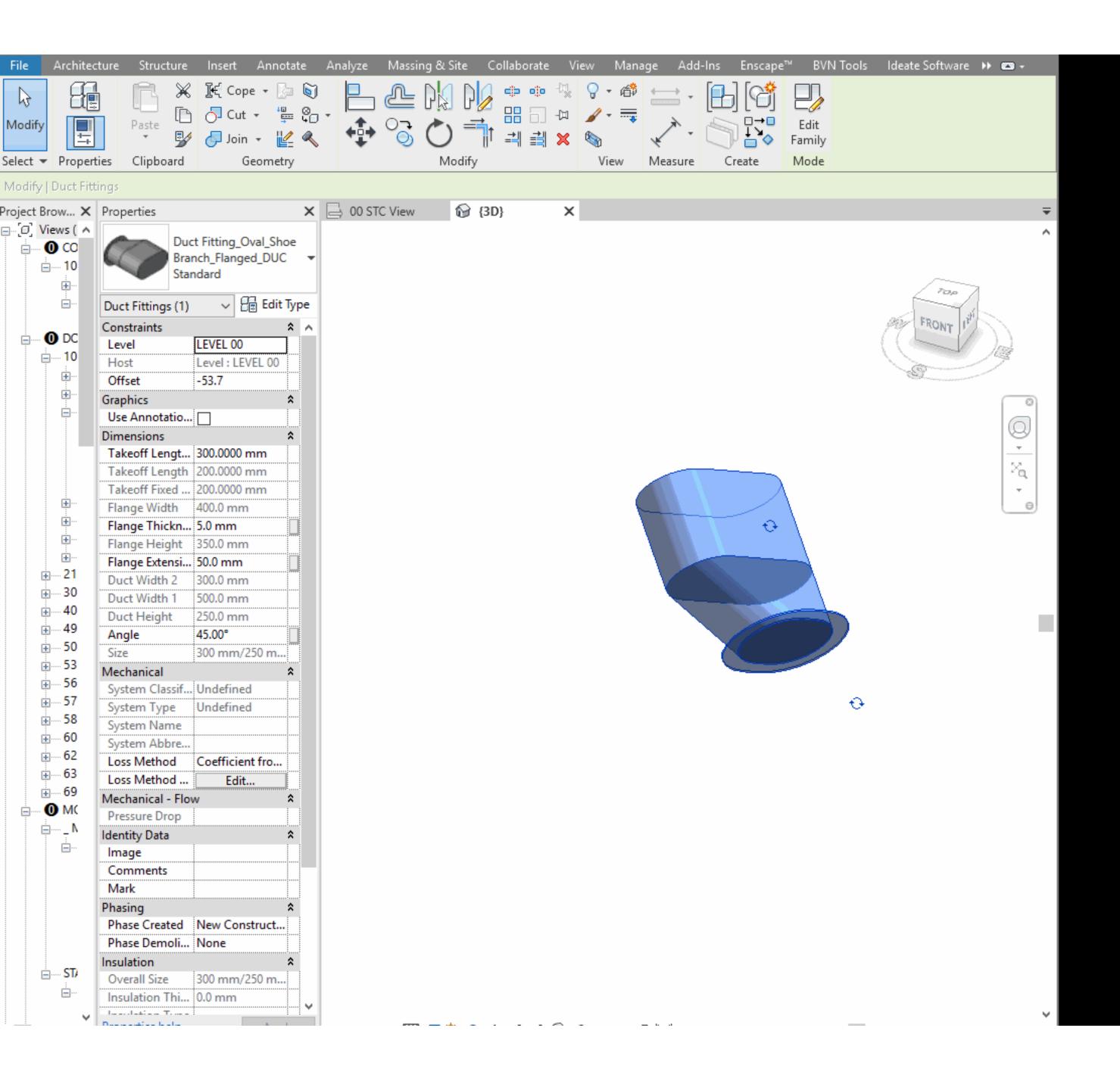
GENE B (Angle XZ)

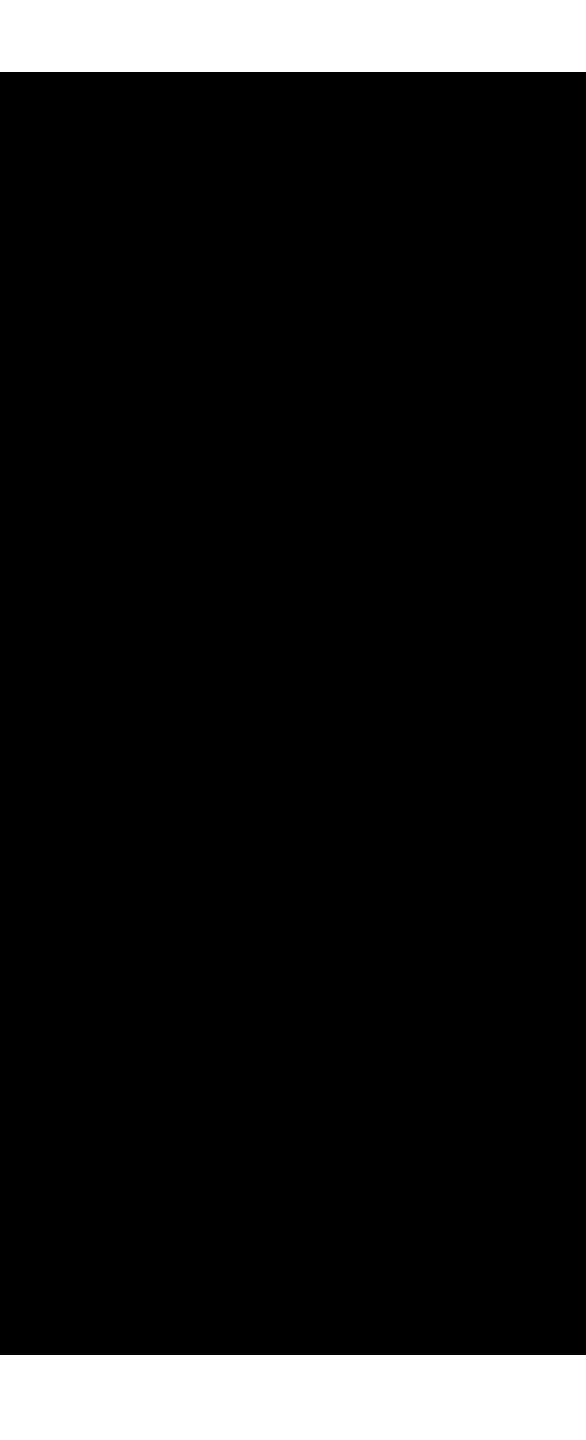
BEST GENOMES

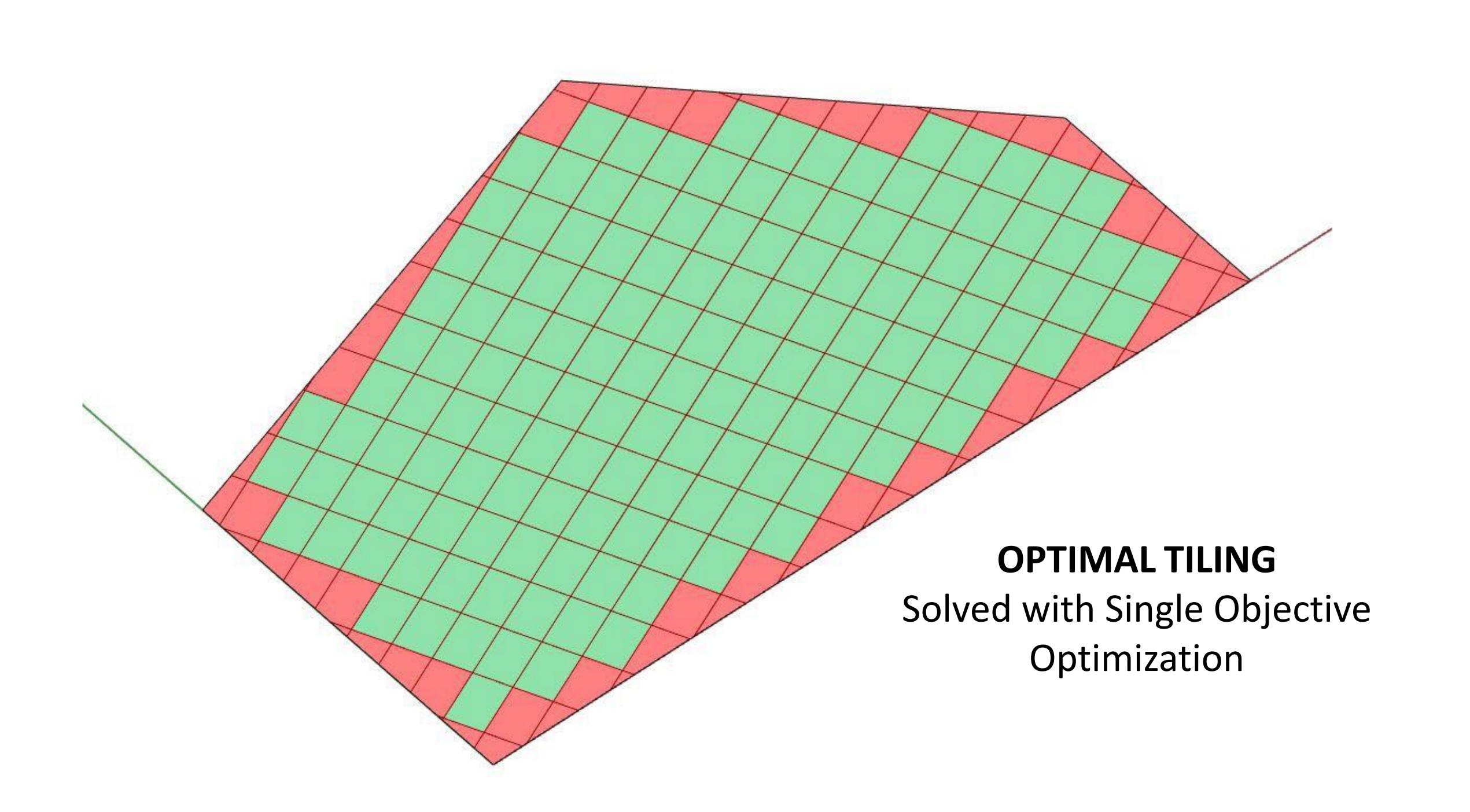


OPTIMAL SOLUTION

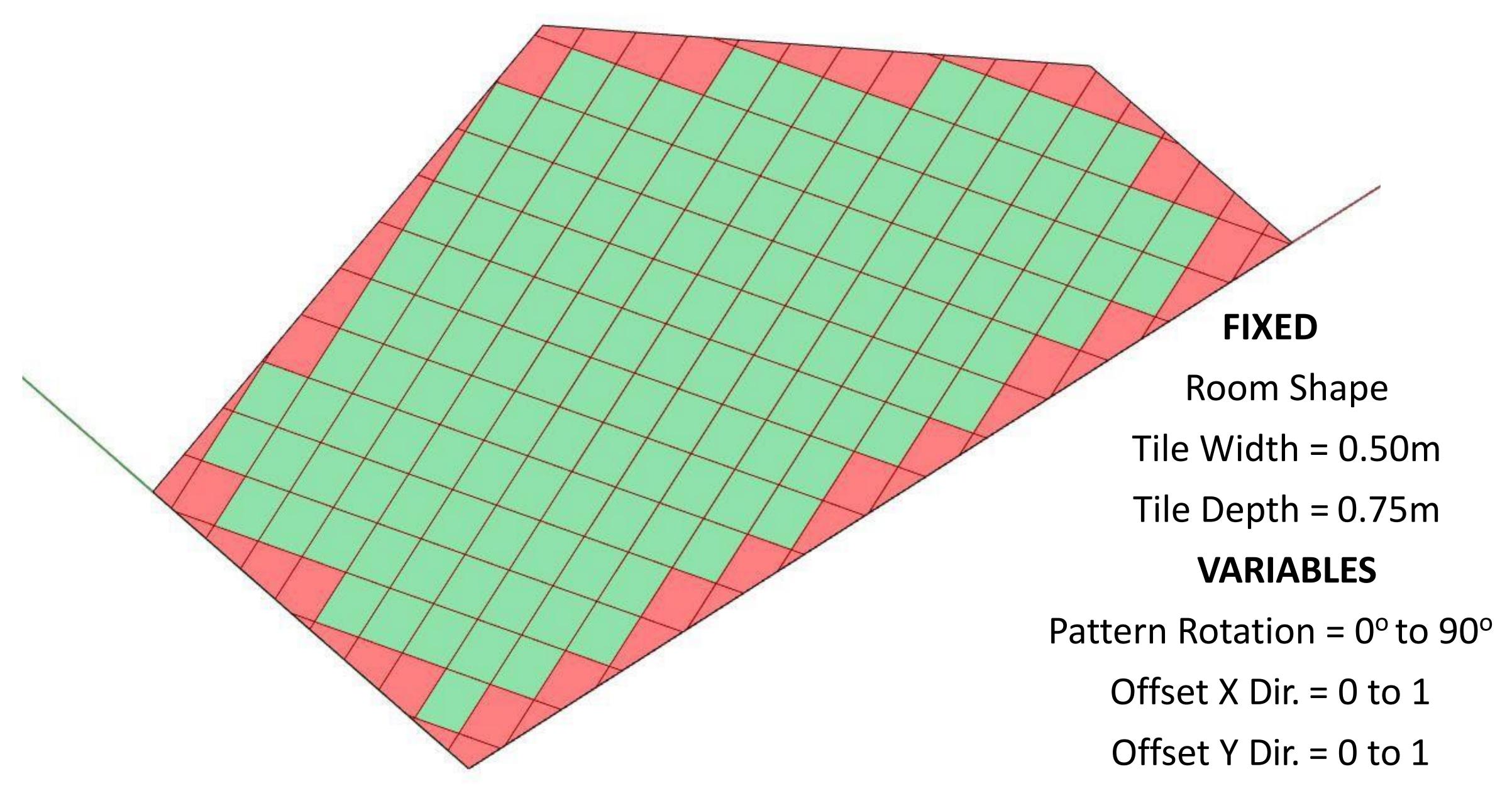
ANGLE XY = 63.3 | ANGLE XZ = 14.2 | VOLUME = 0.24 m³

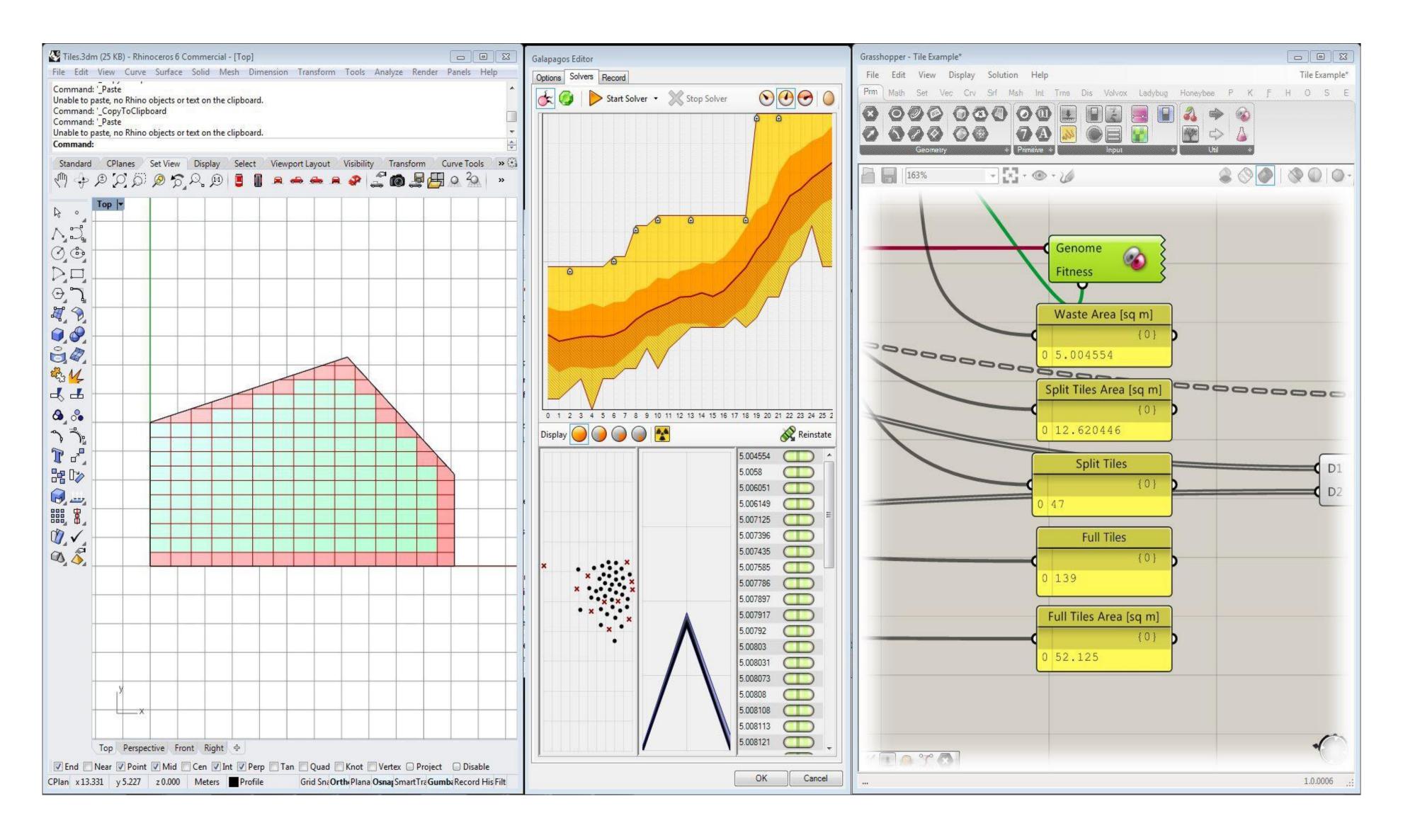






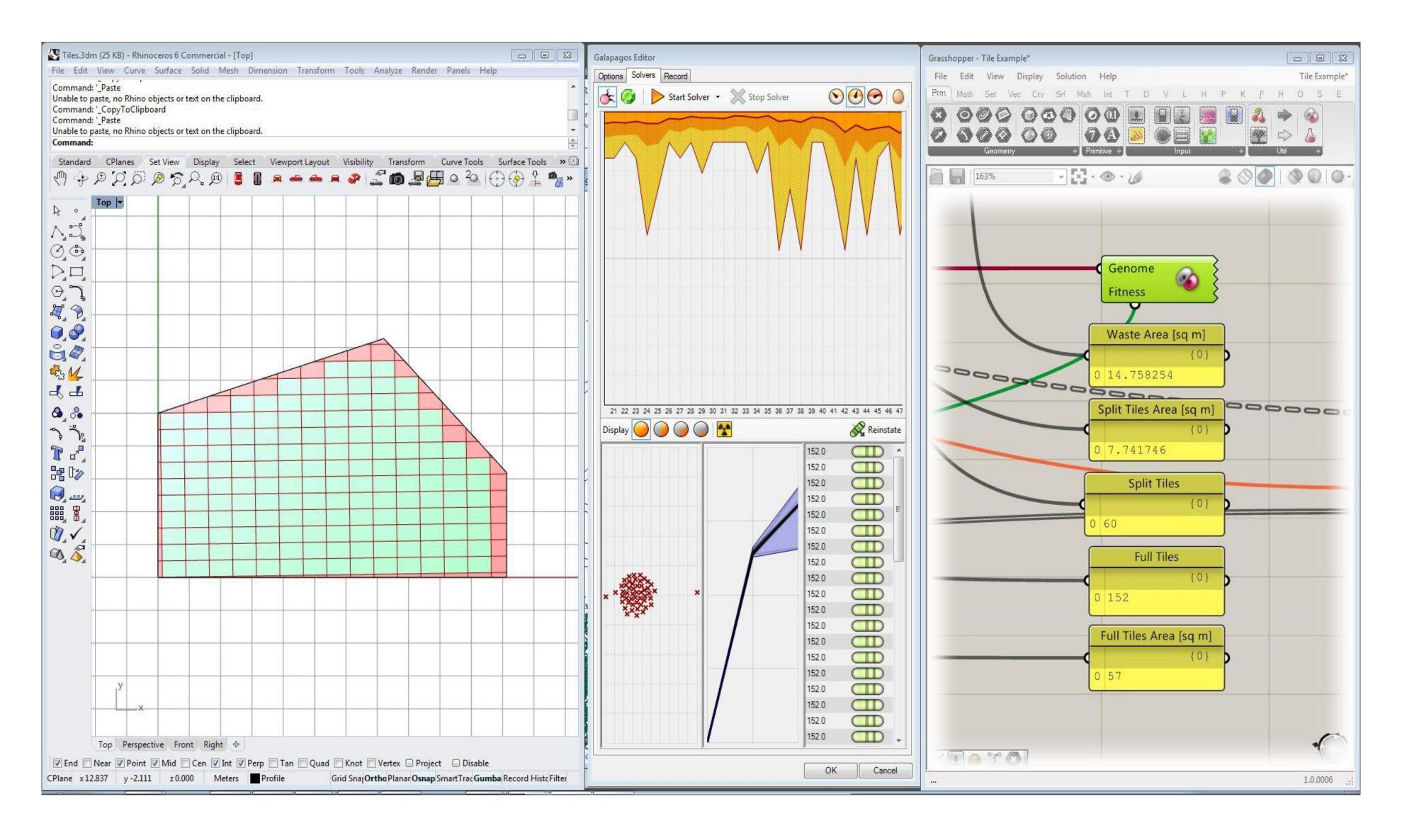
PARAMETERS





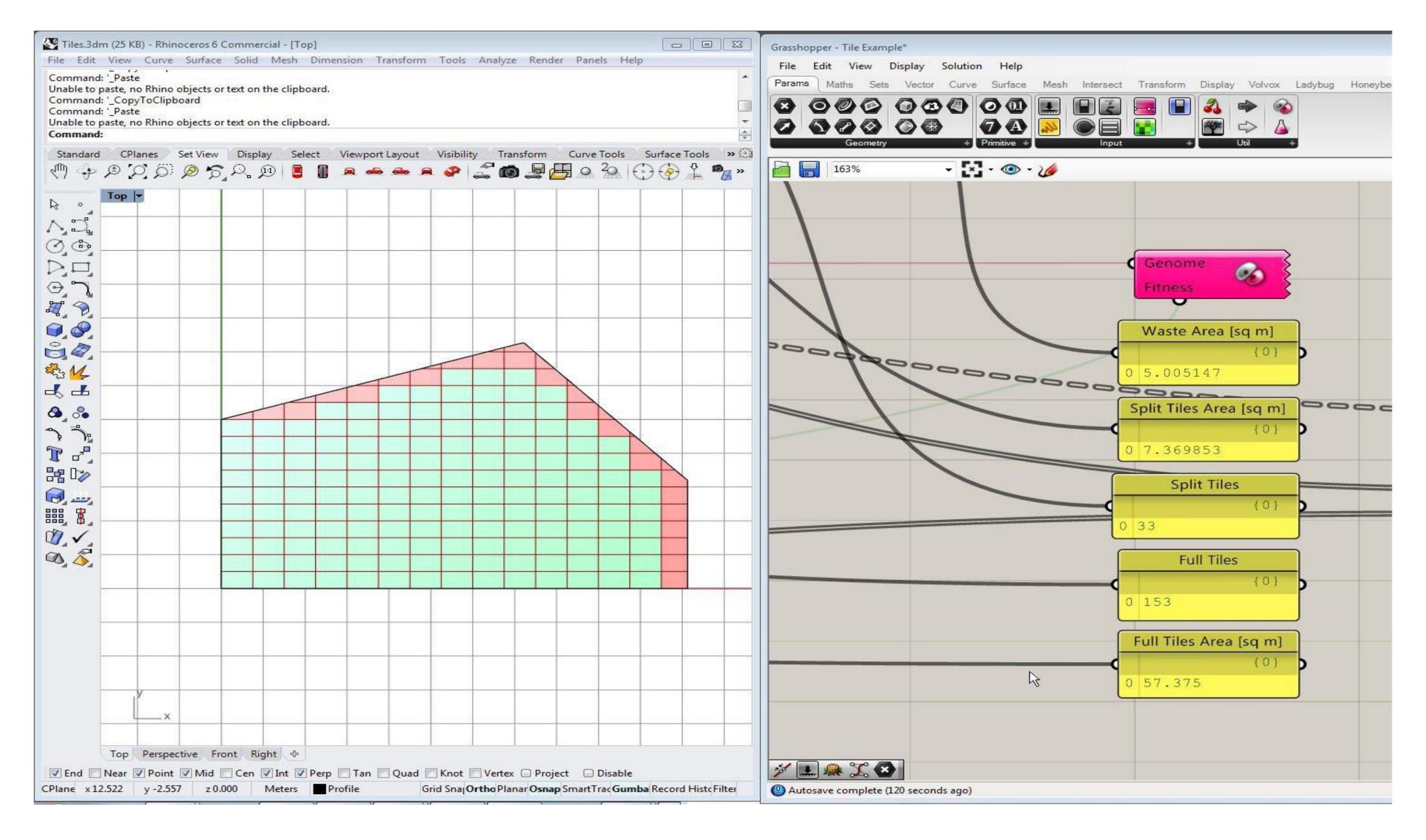
OPTIMIZATION A

Minimum Waste Area [m²]



OPTIMIZATION B

Maximum Full Tiles [n]



OPTIMAL SOLUTION

After studying both cases, we can manually set the optimal parameters

IS THERE A BETTER WAY TO RESOLVE THIS?

YES

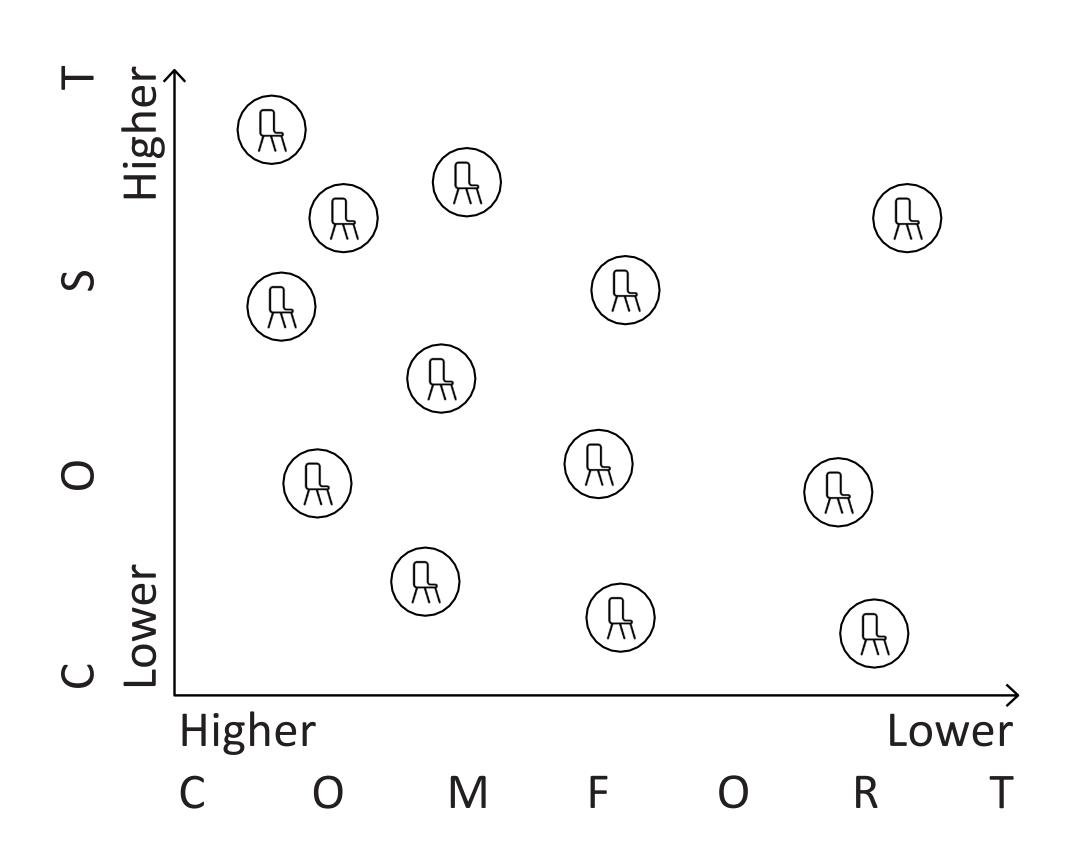
WE CAN COMBINE BOTH RESULTS INTO A SINGLE ONE, LET'S SAY... COST

BY QUANTIFYING THE PRICE/M2 OF TILE (MIN. WASTE) + THE COST OF THE LABOUR REQUIRED TO CUT A TILE (MAX. FULL TILES)

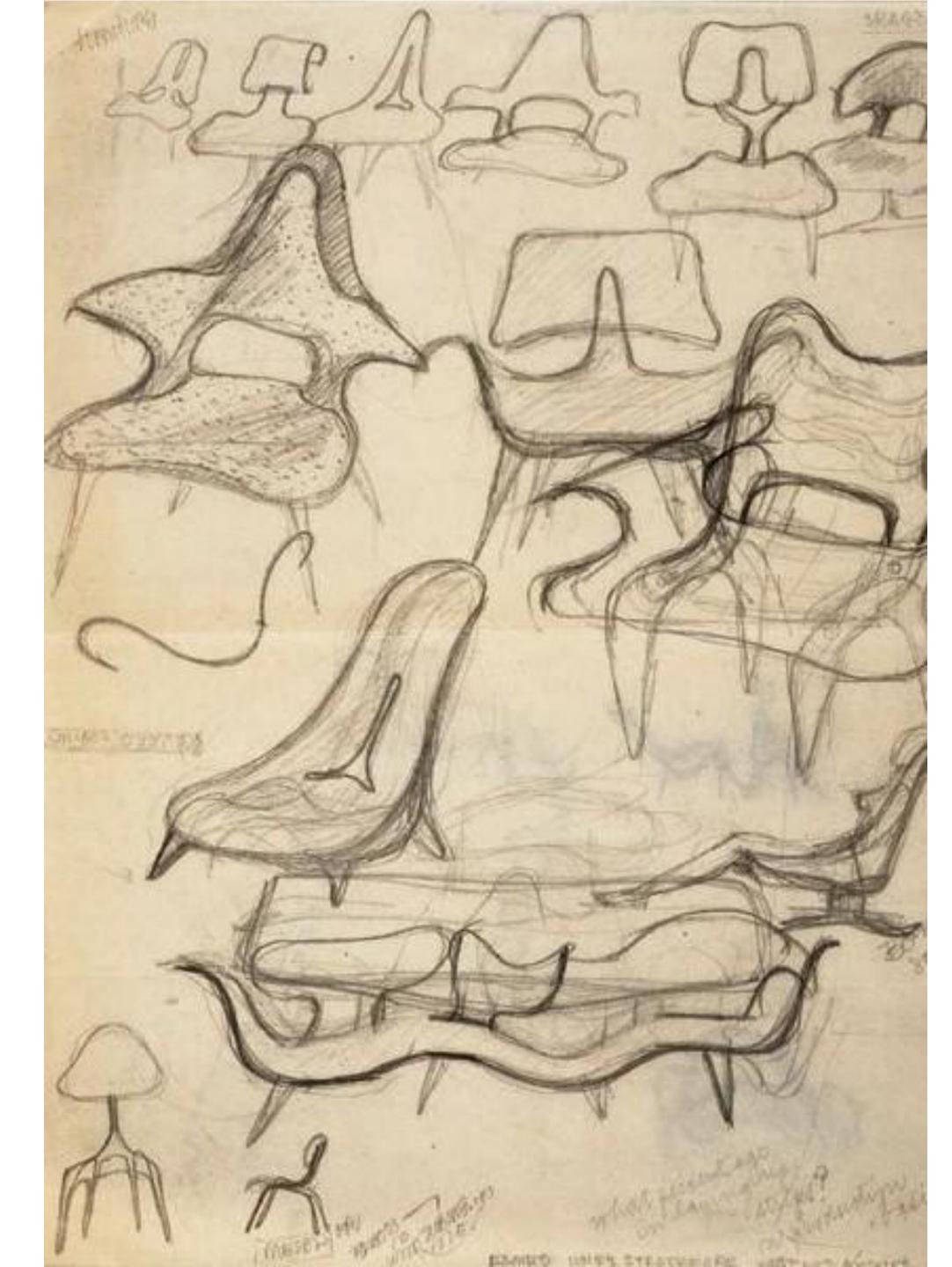
OR...

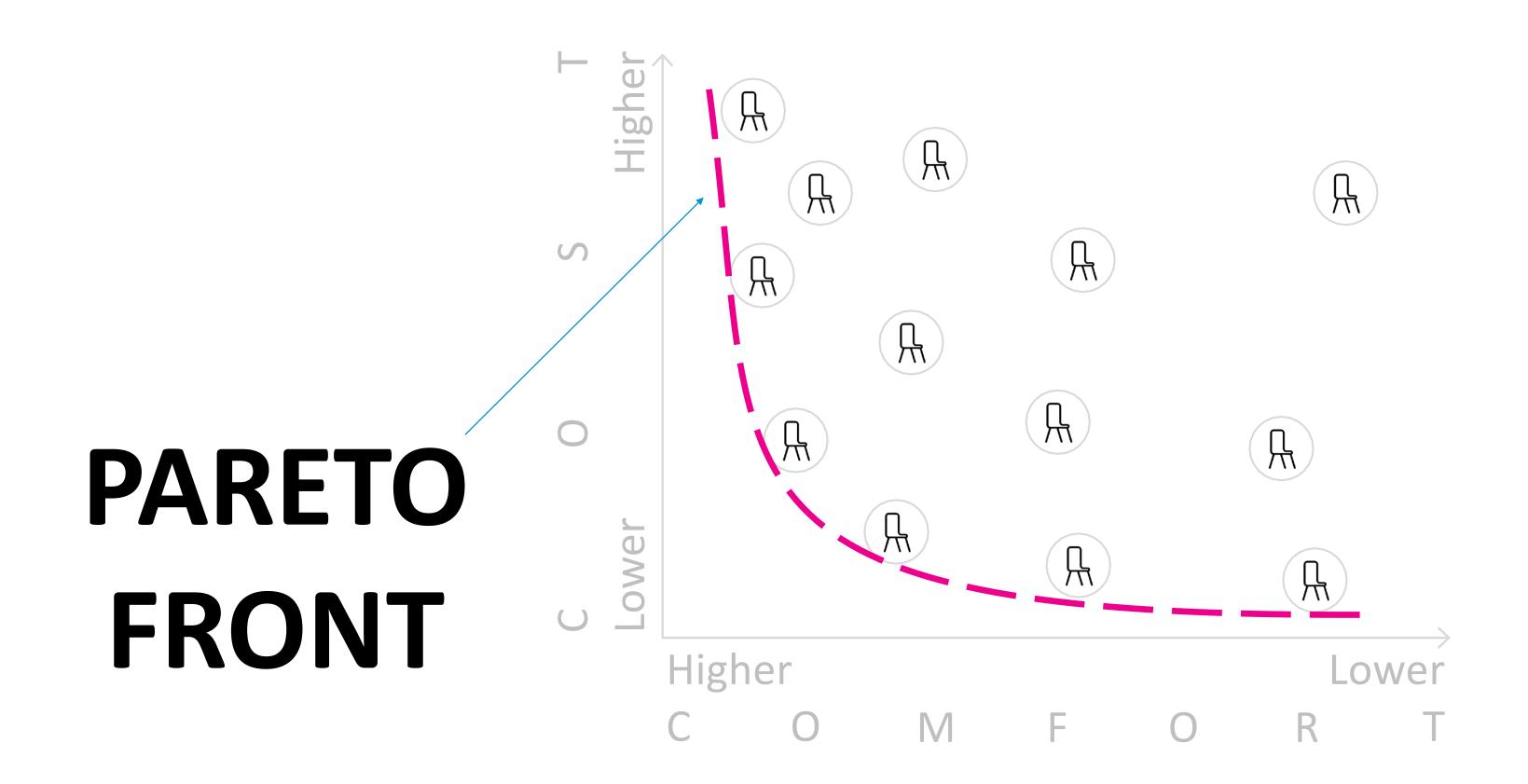
MULTI OBJECTIVE OPTIMIZATION OCTOPUS FOR GRASSHOPPER

MAXIMIZE COMFORT MINIMIZE COST



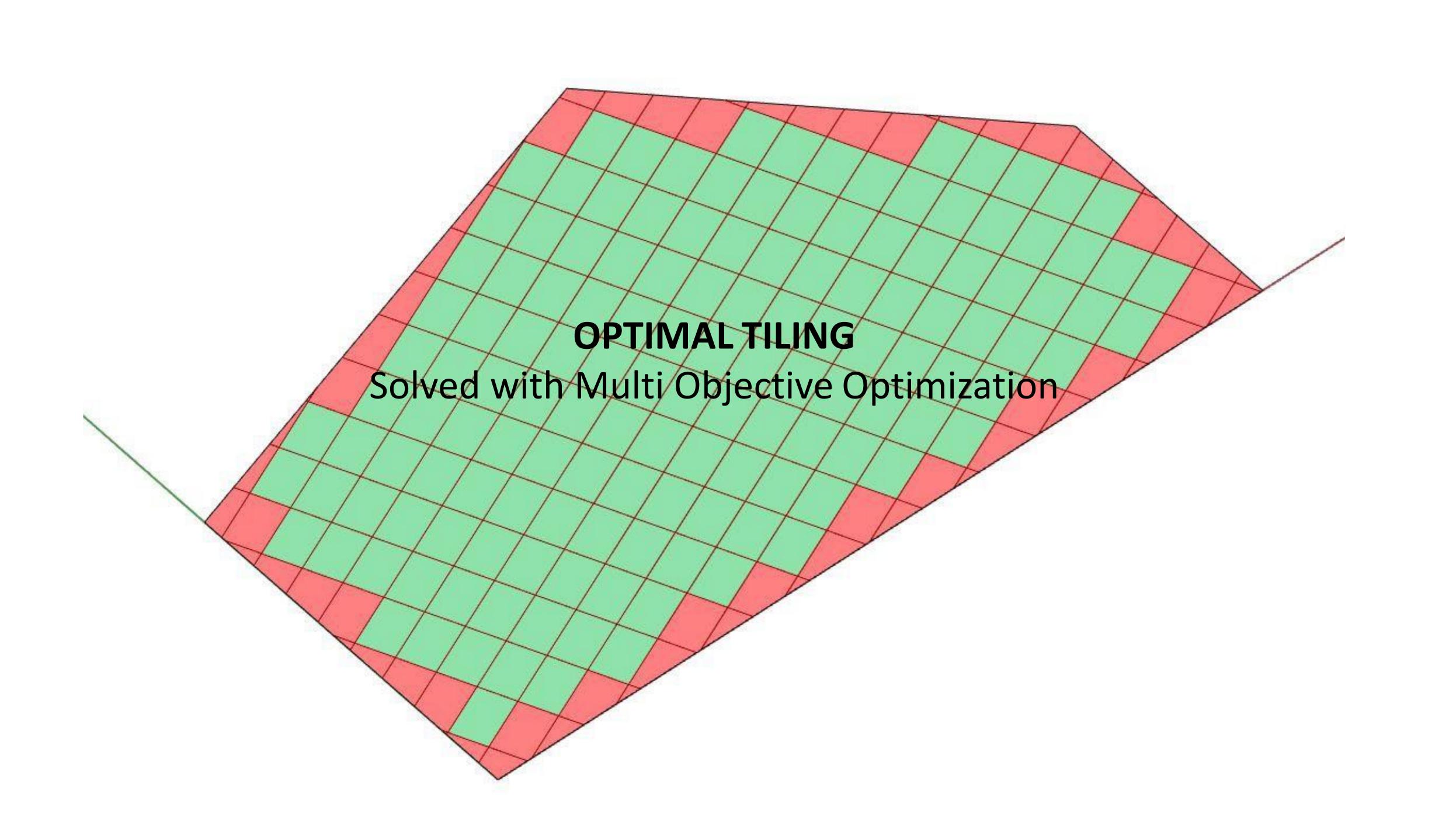
Each genome (variation) has a representation in the Multi Objective Optimization Graph

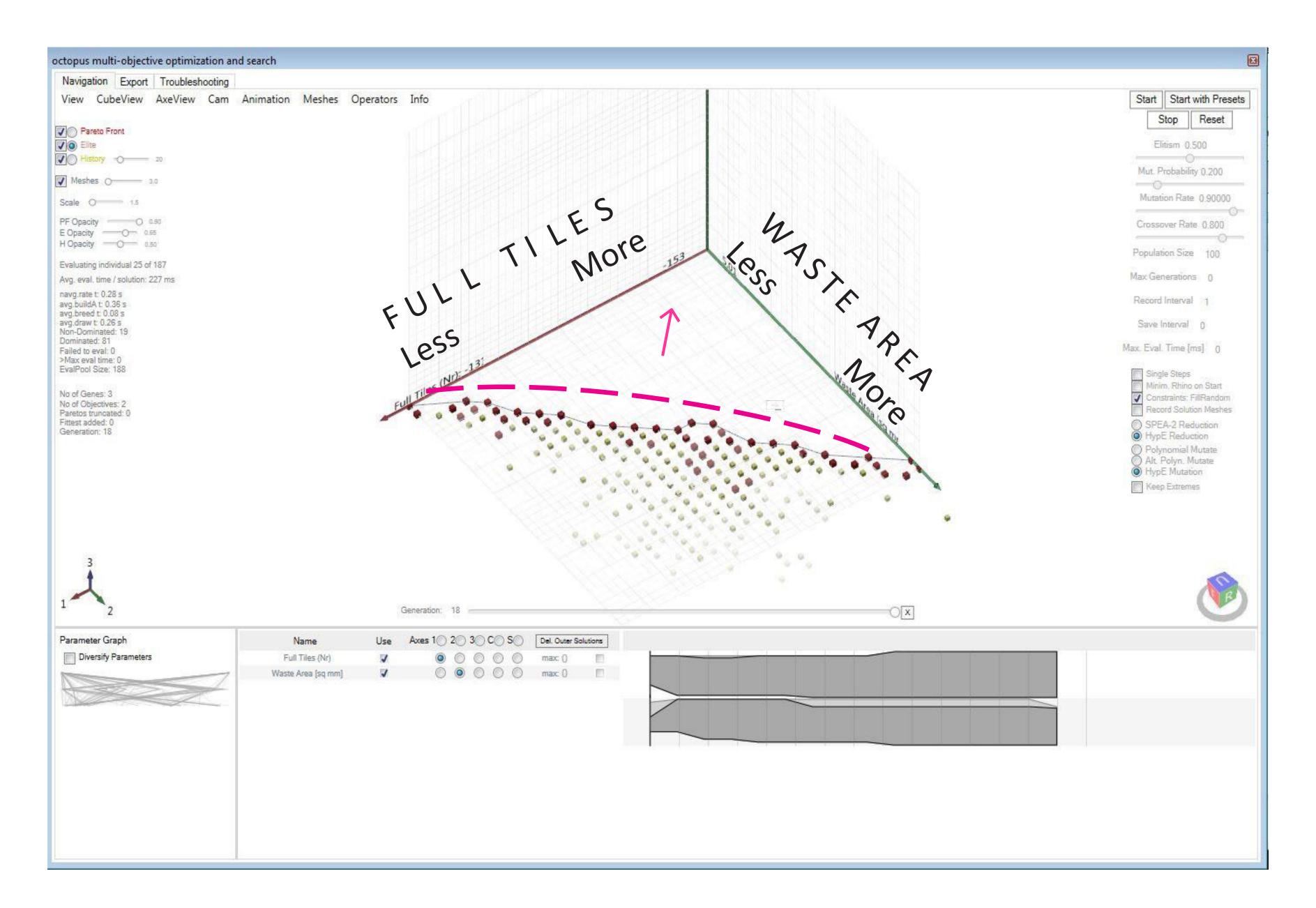




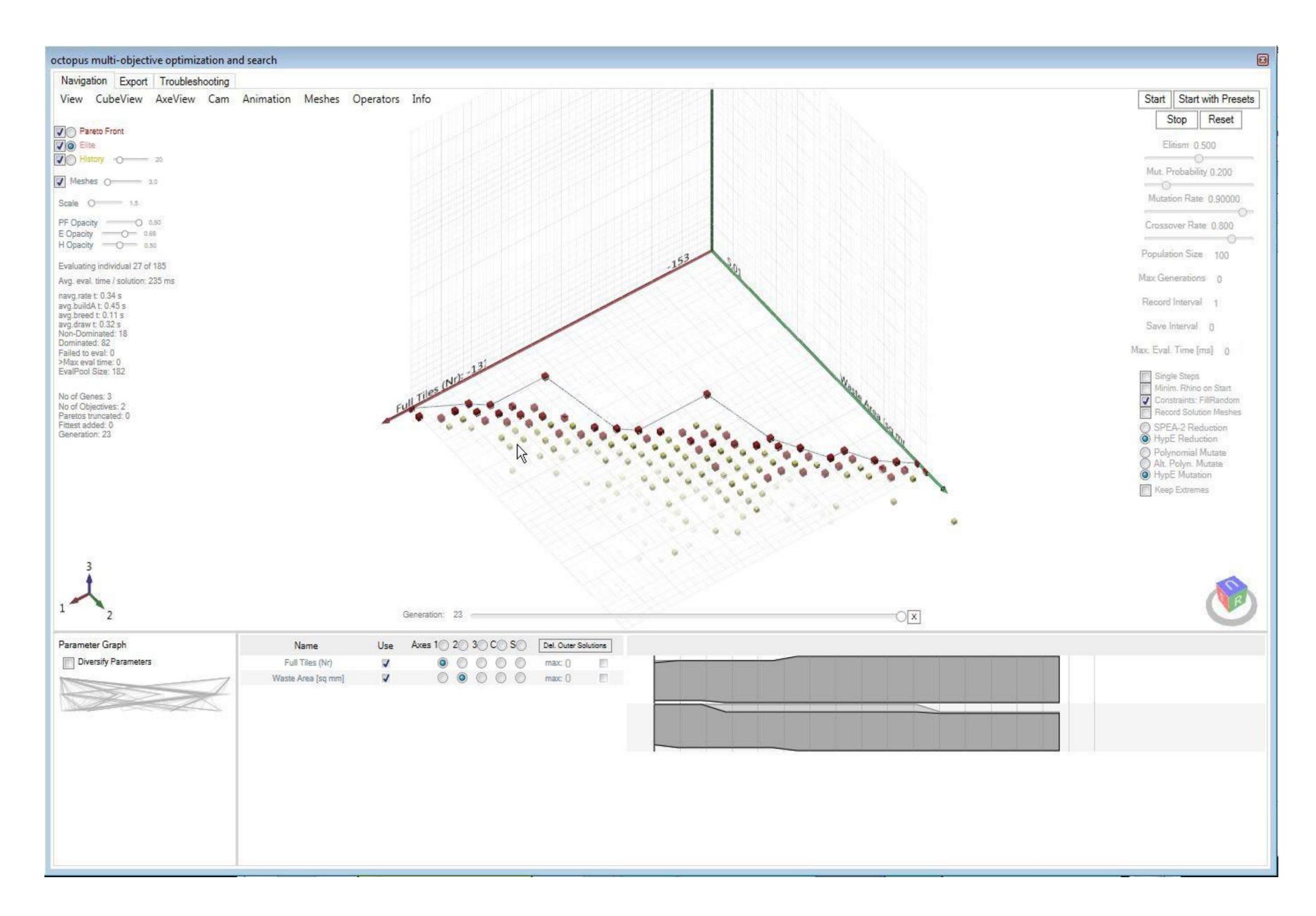
PARETO FRONT

Collection of options that represent optimal solutions

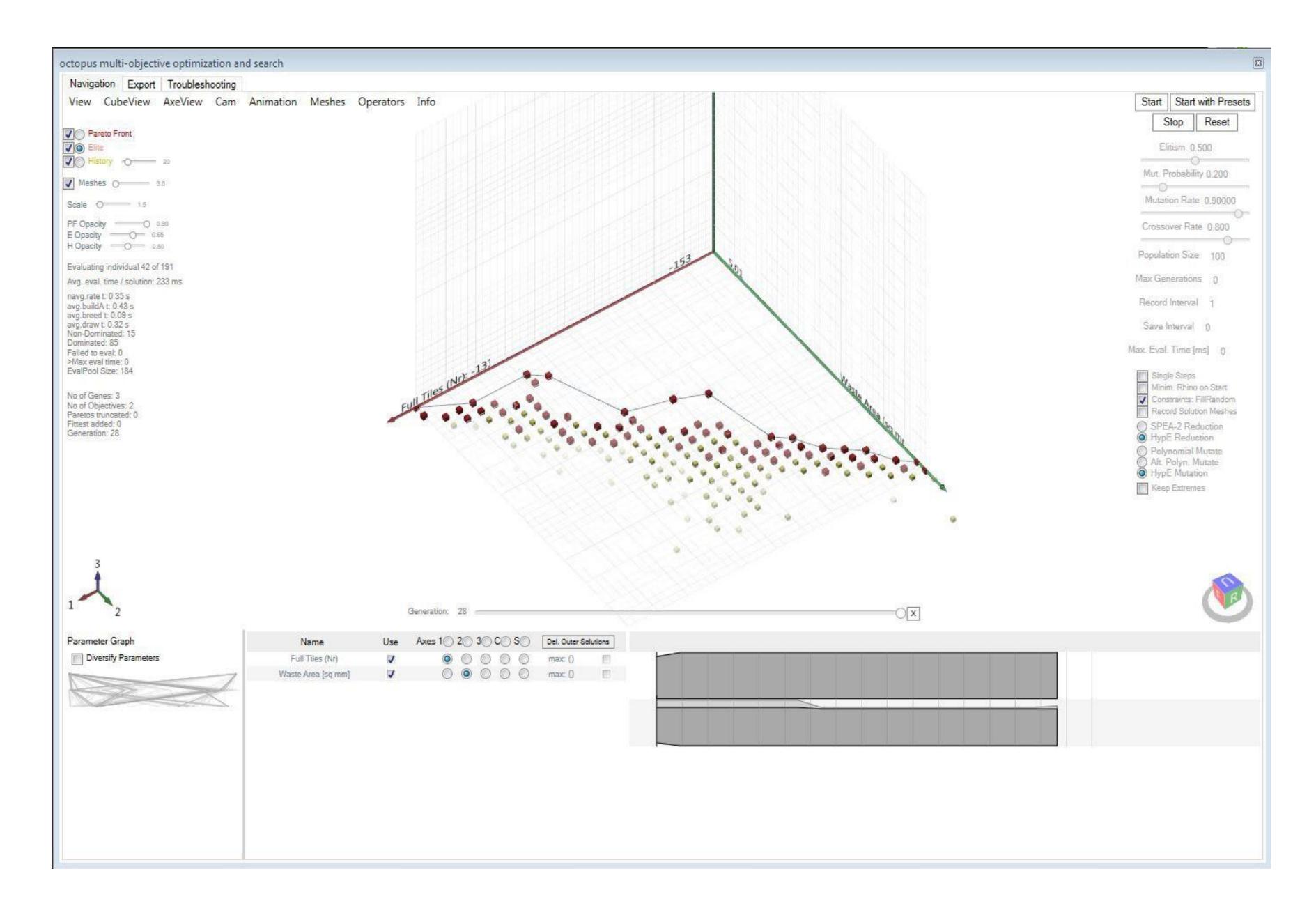




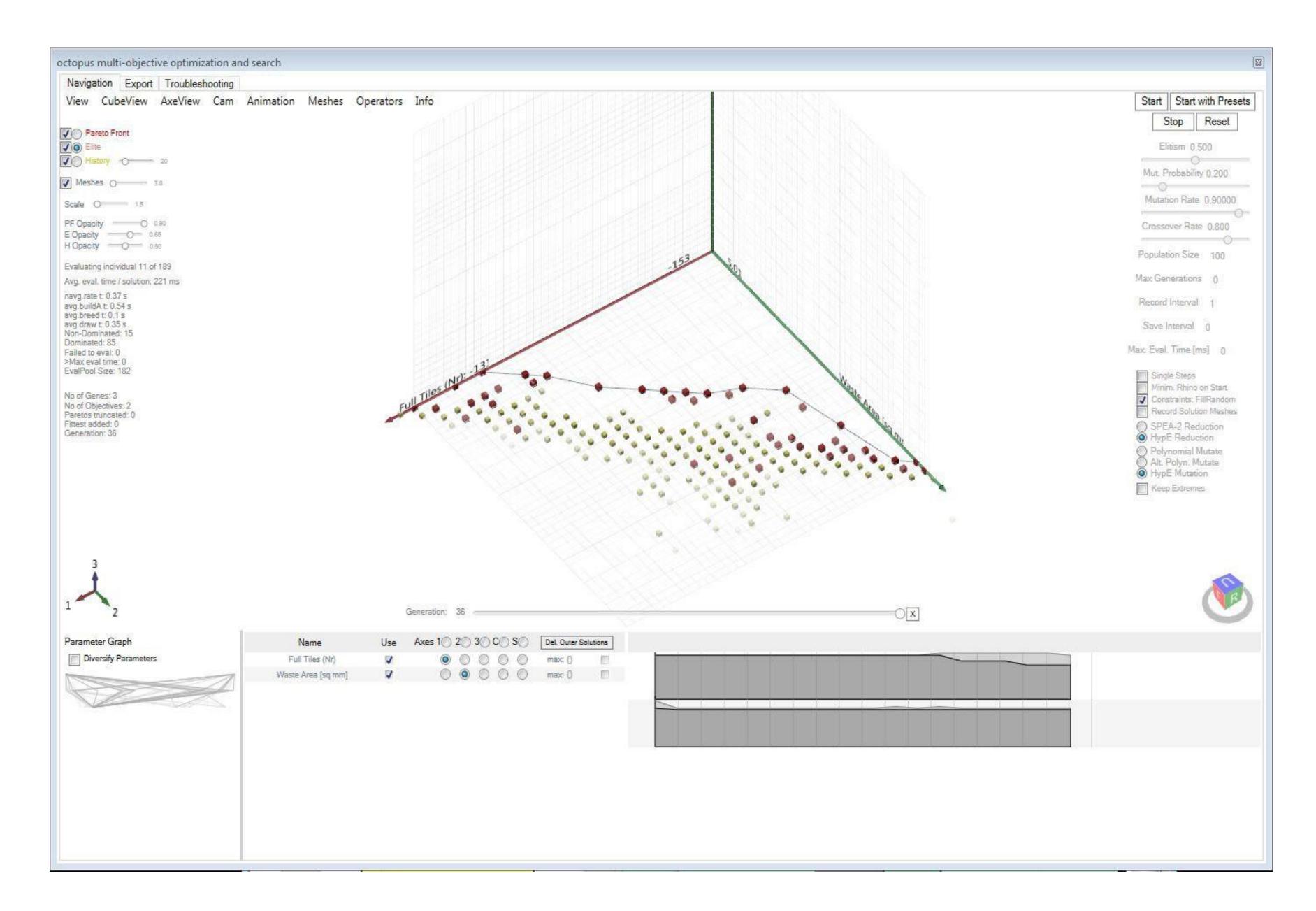
GENERATION 18



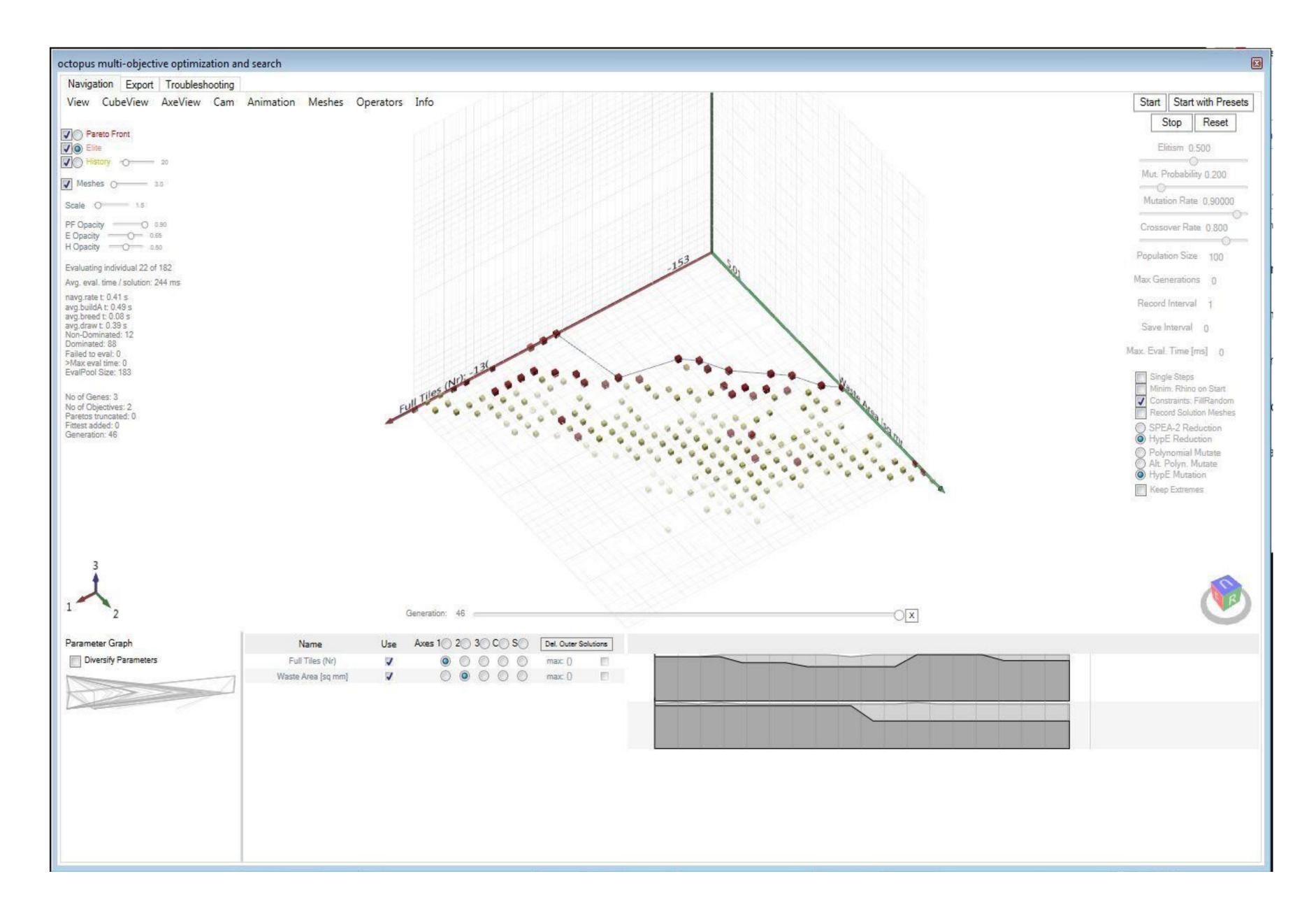
GENERATION 23



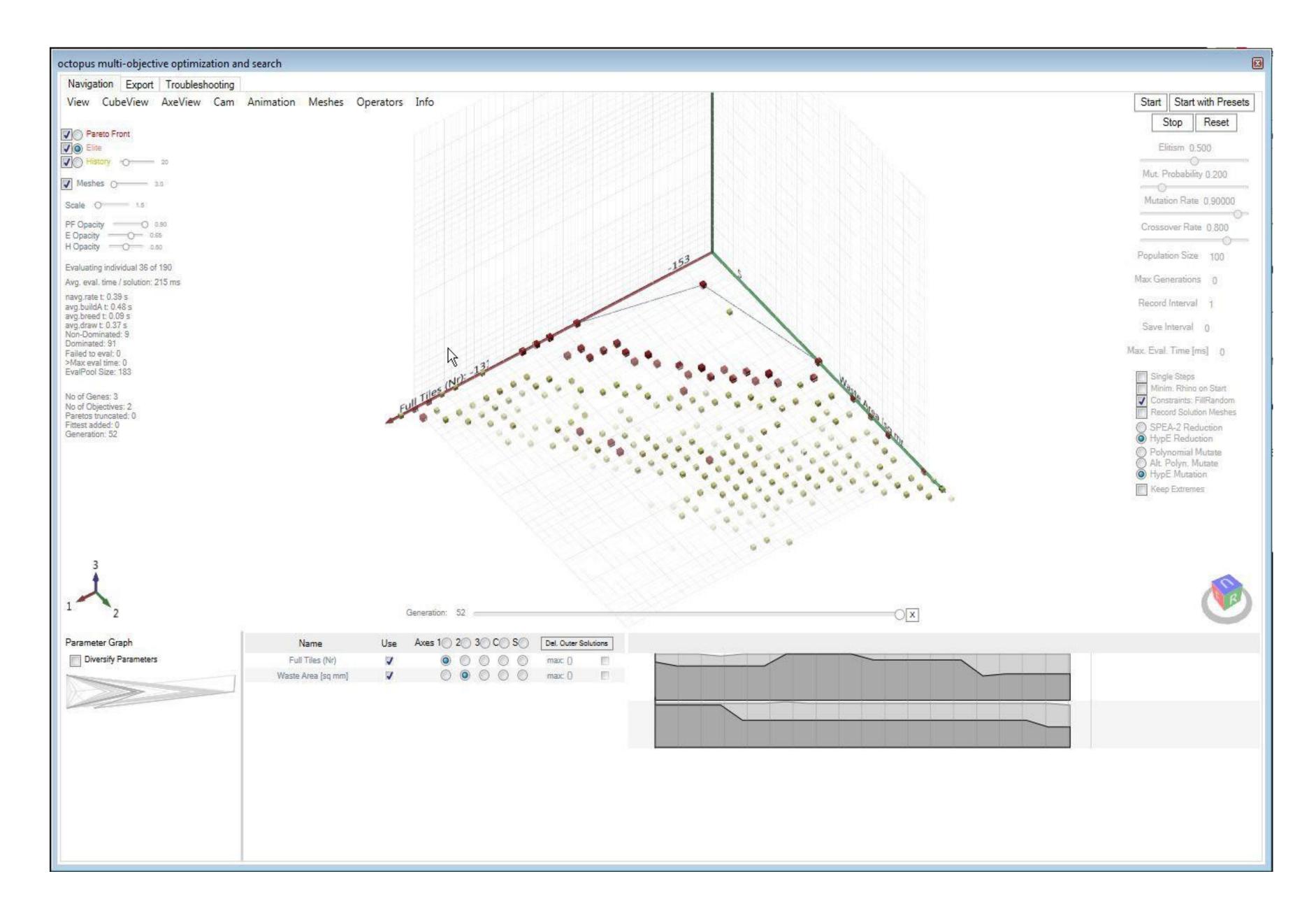
GENERATION 28



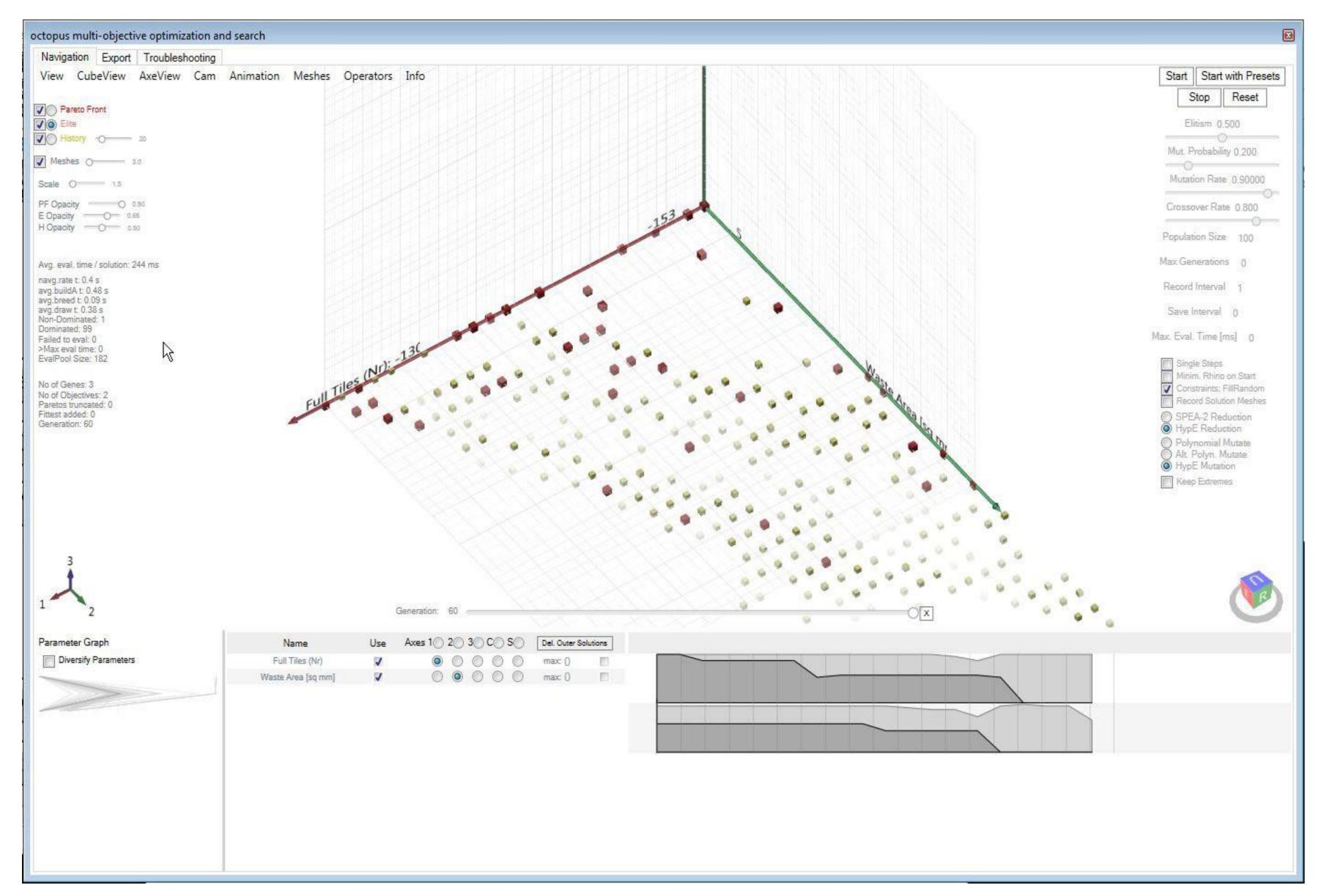
GENERATION 36



GENERATION 46



GENERATION 52



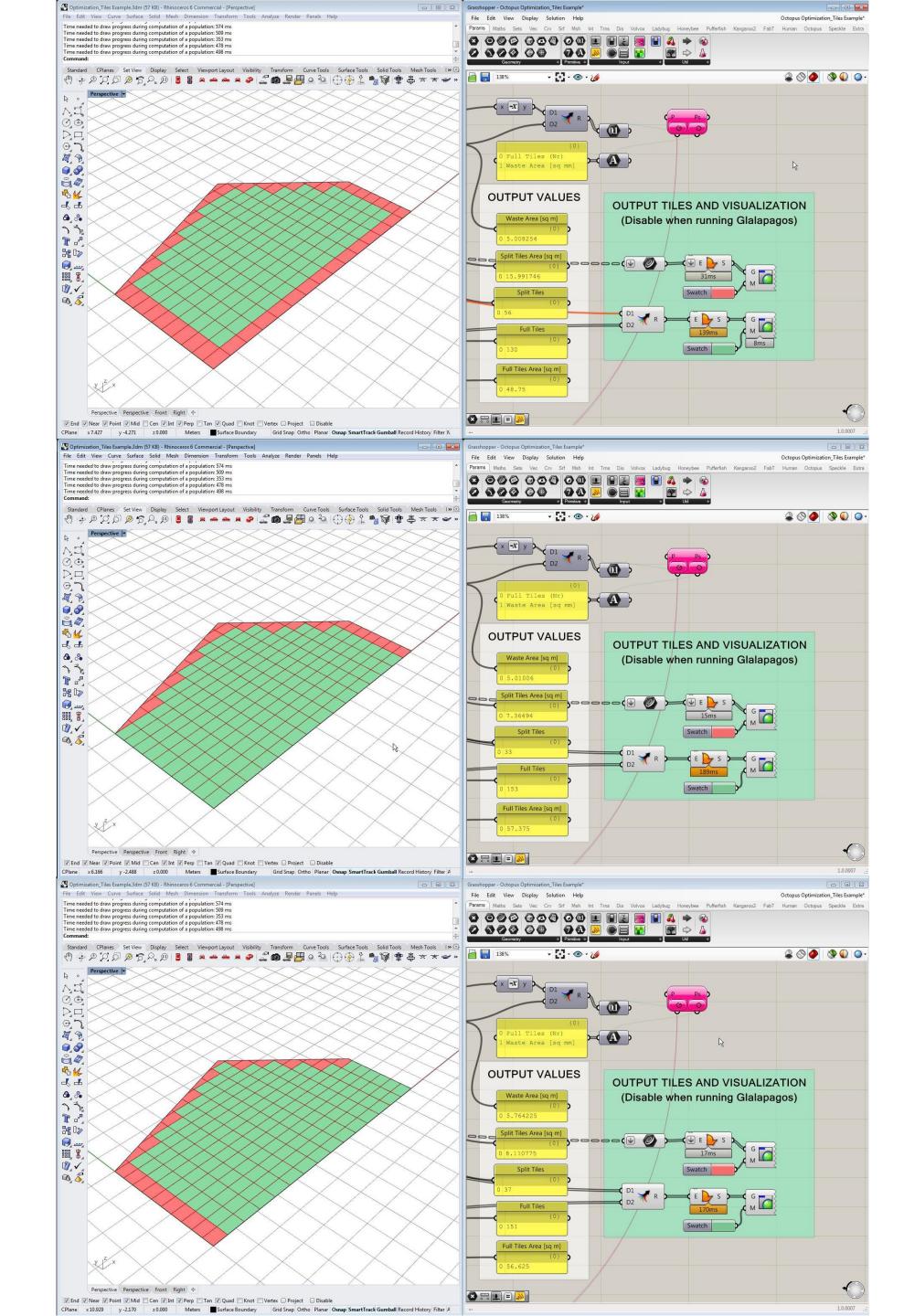
GENERATION 60

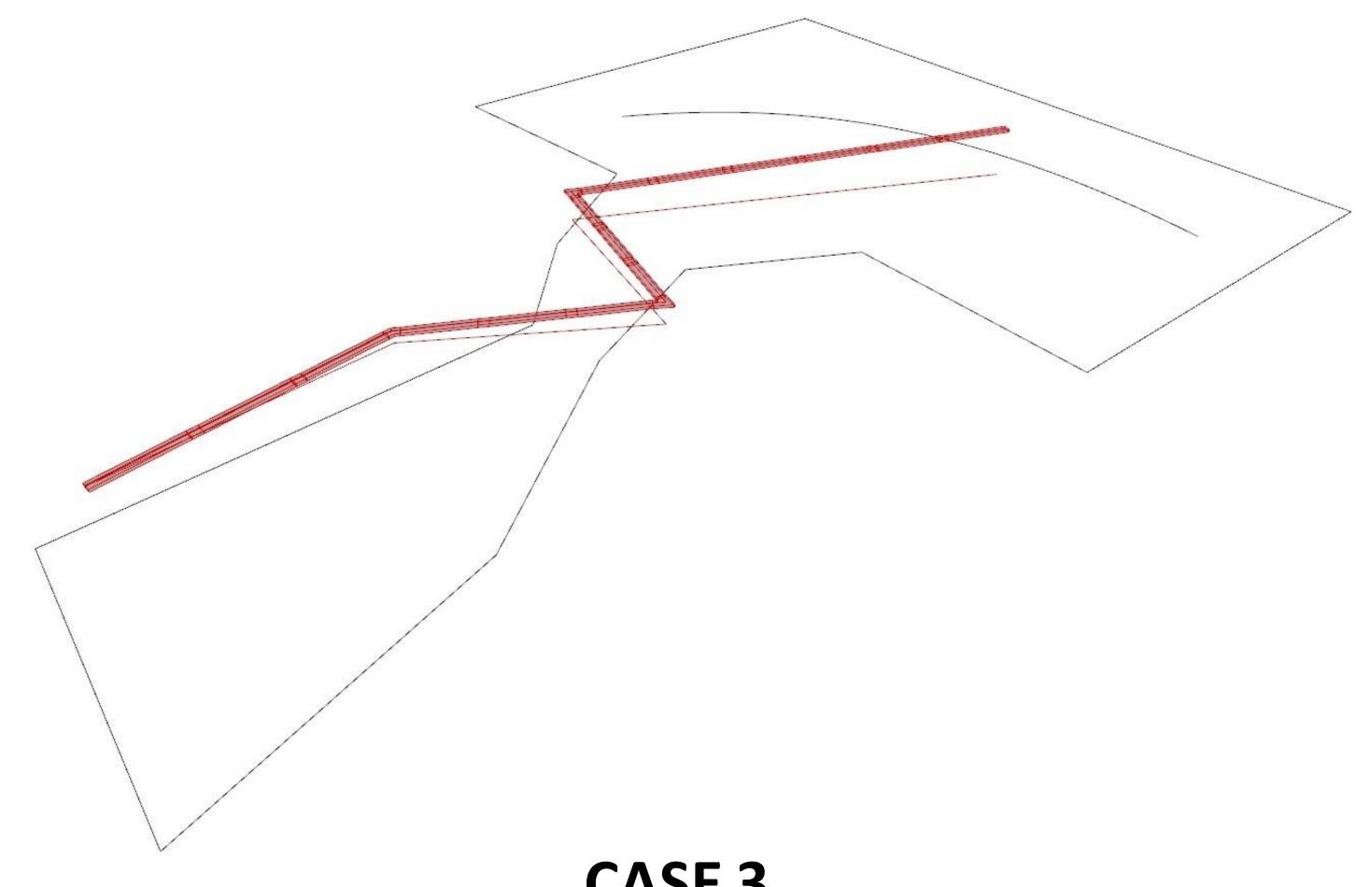
10,800 combinations tested X 244 ms per solution = 43.92 min

ABSOLUTE MIN. WASTE AREA

MIN. WASTE AREA MAX. FULL TILES

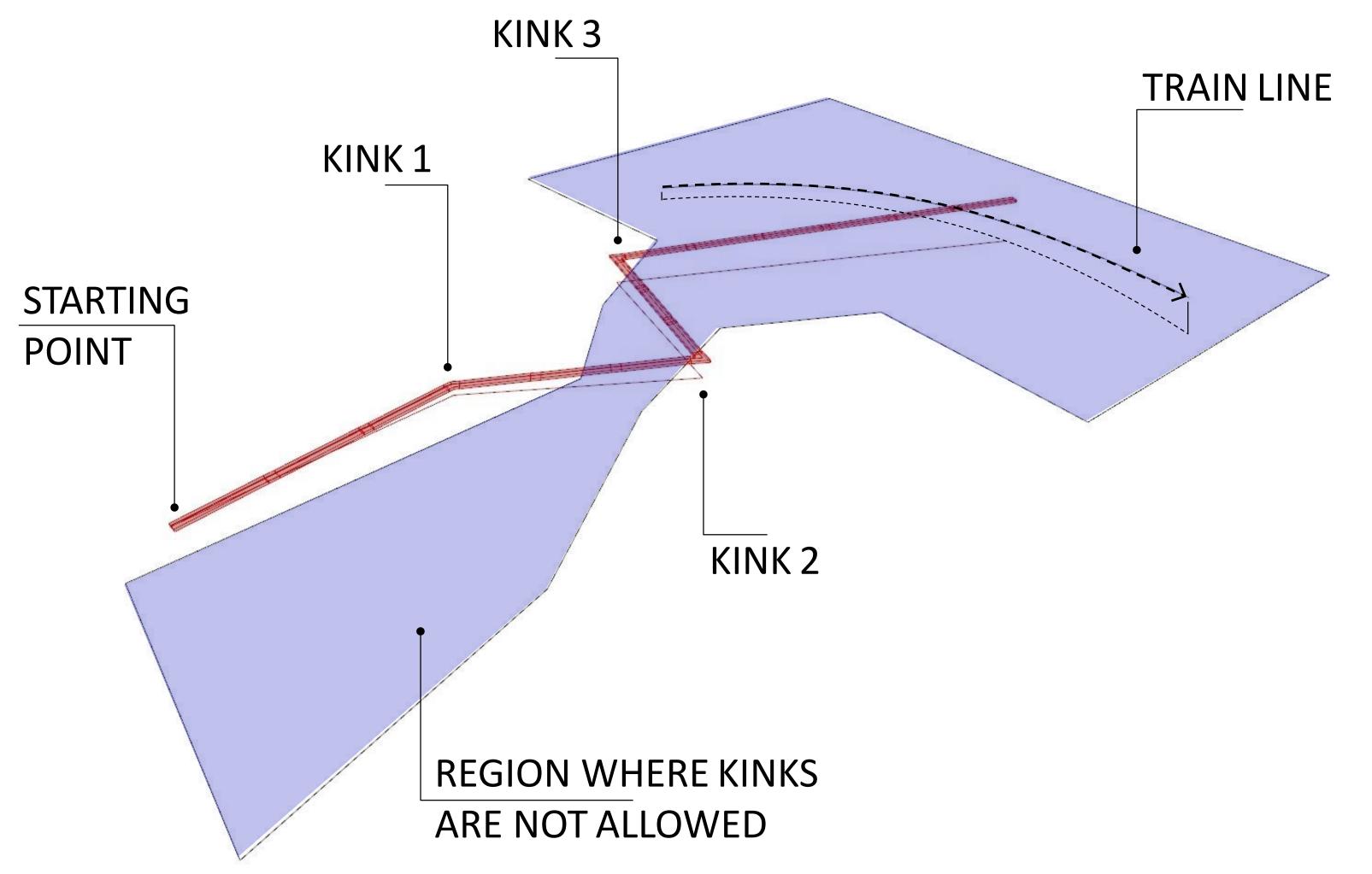
POSSIBLE SOLUTION





CASE 3

Optimal Ramp to save a clearance over rail line



FIXED PARAMETERS

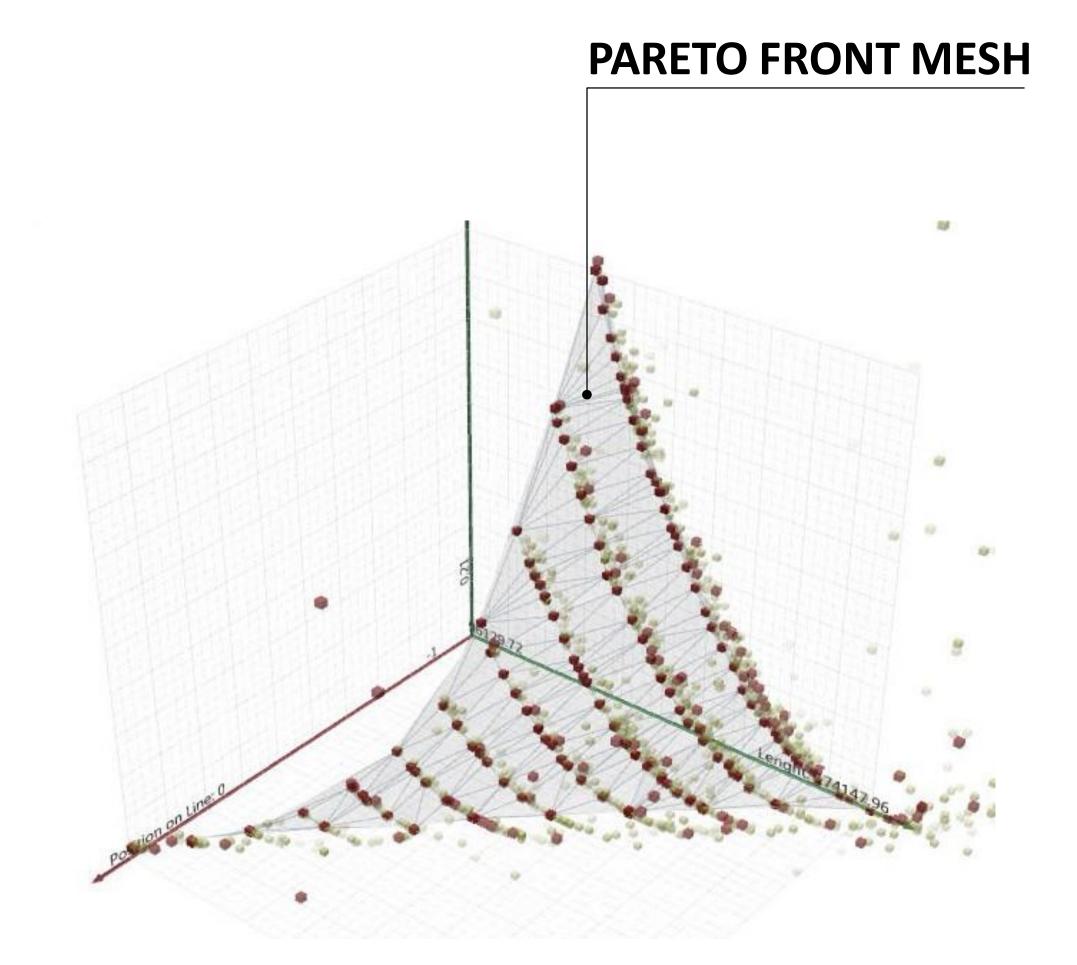
- Segments Length
- Landings Length
- Ramp Gradient
- Landing Gradient
- Ramp Width
- Train Clearance

VARIABLES

- KinksPosition
- ArrivalPoint

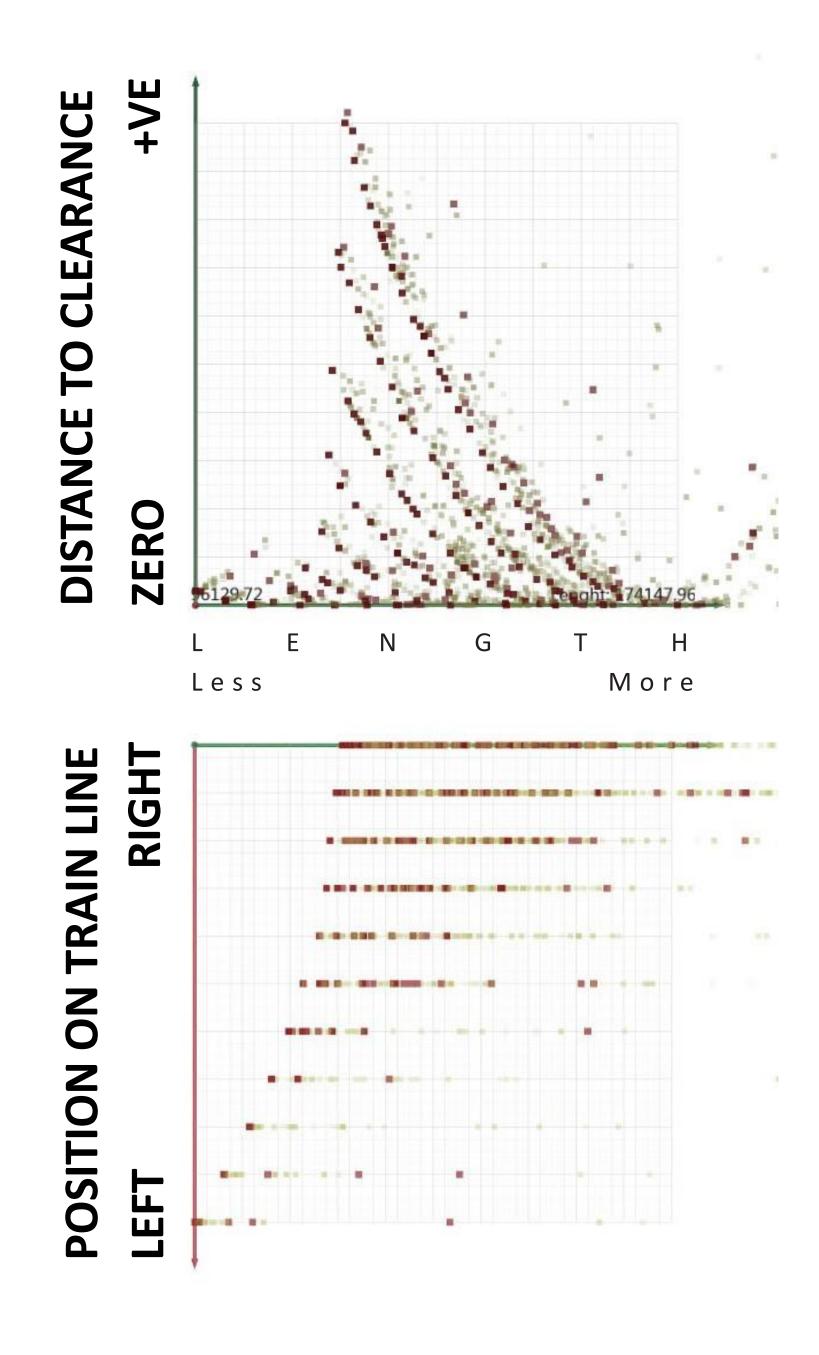
OPTIMIZE

- MIN. Length
- MIN. Deviation From Train Clearance
- MAX. Position of End Point Toward Right of Train Line



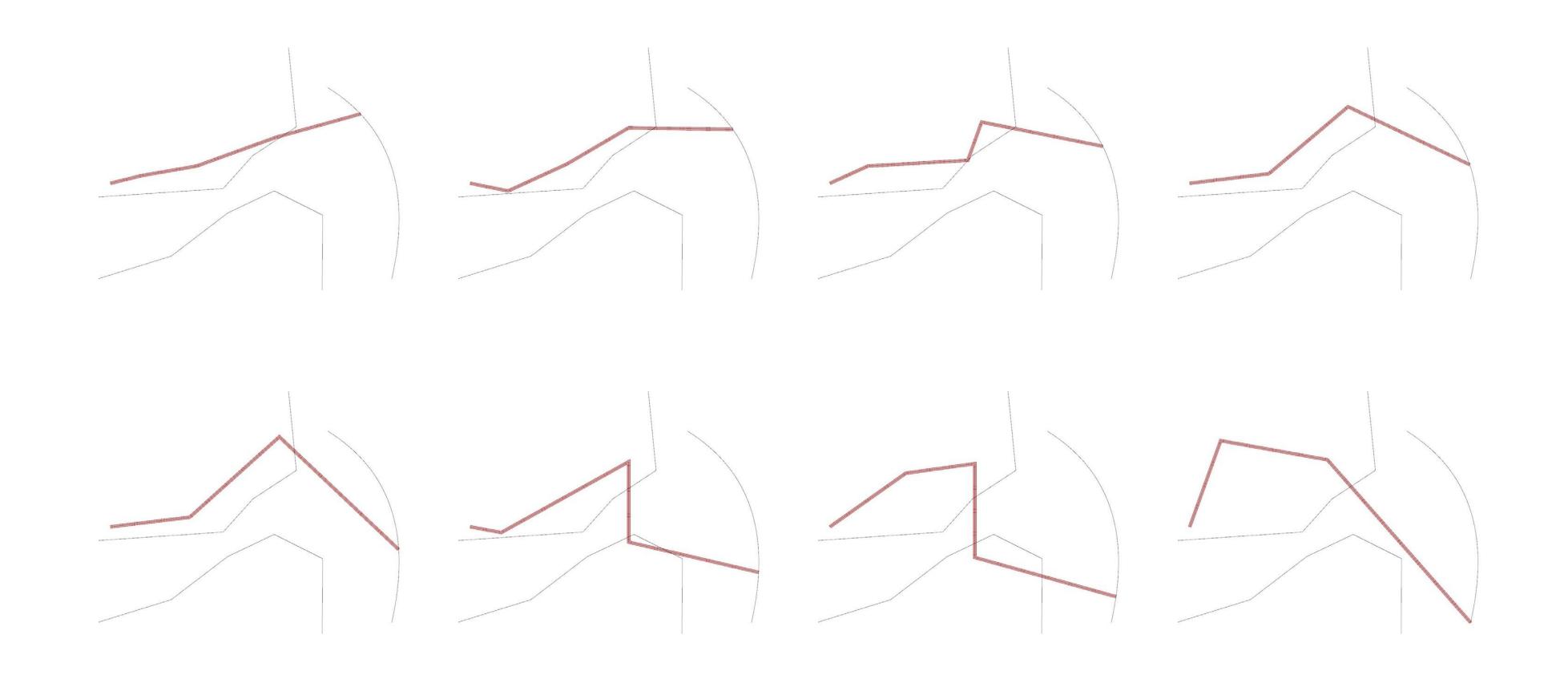
GENERATION 273

54,273 combinations tested X 198 ms per solution = 179.10 min



SHORTEST LENGTH SOLUTIONS

Distance to min. clearance

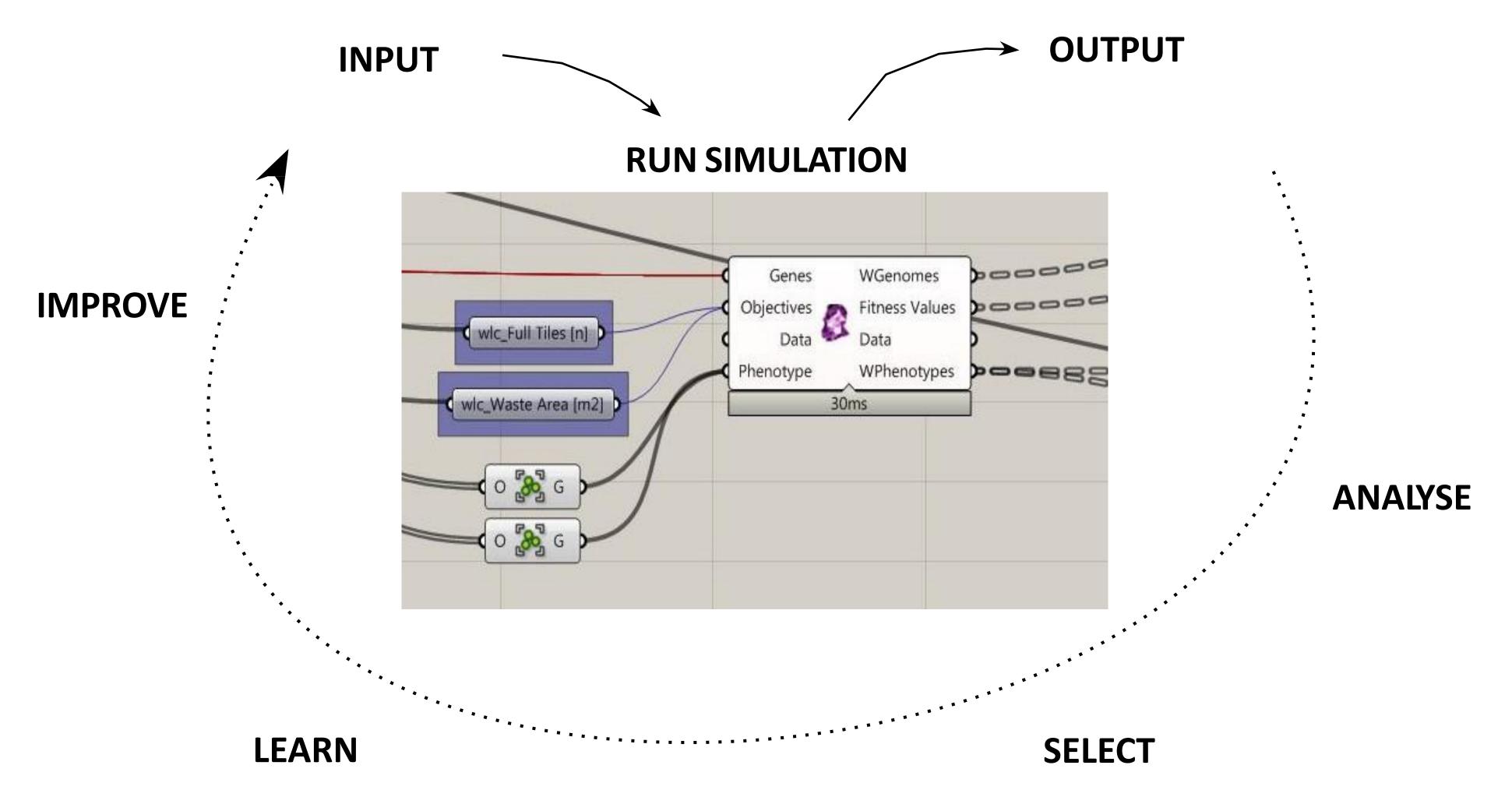


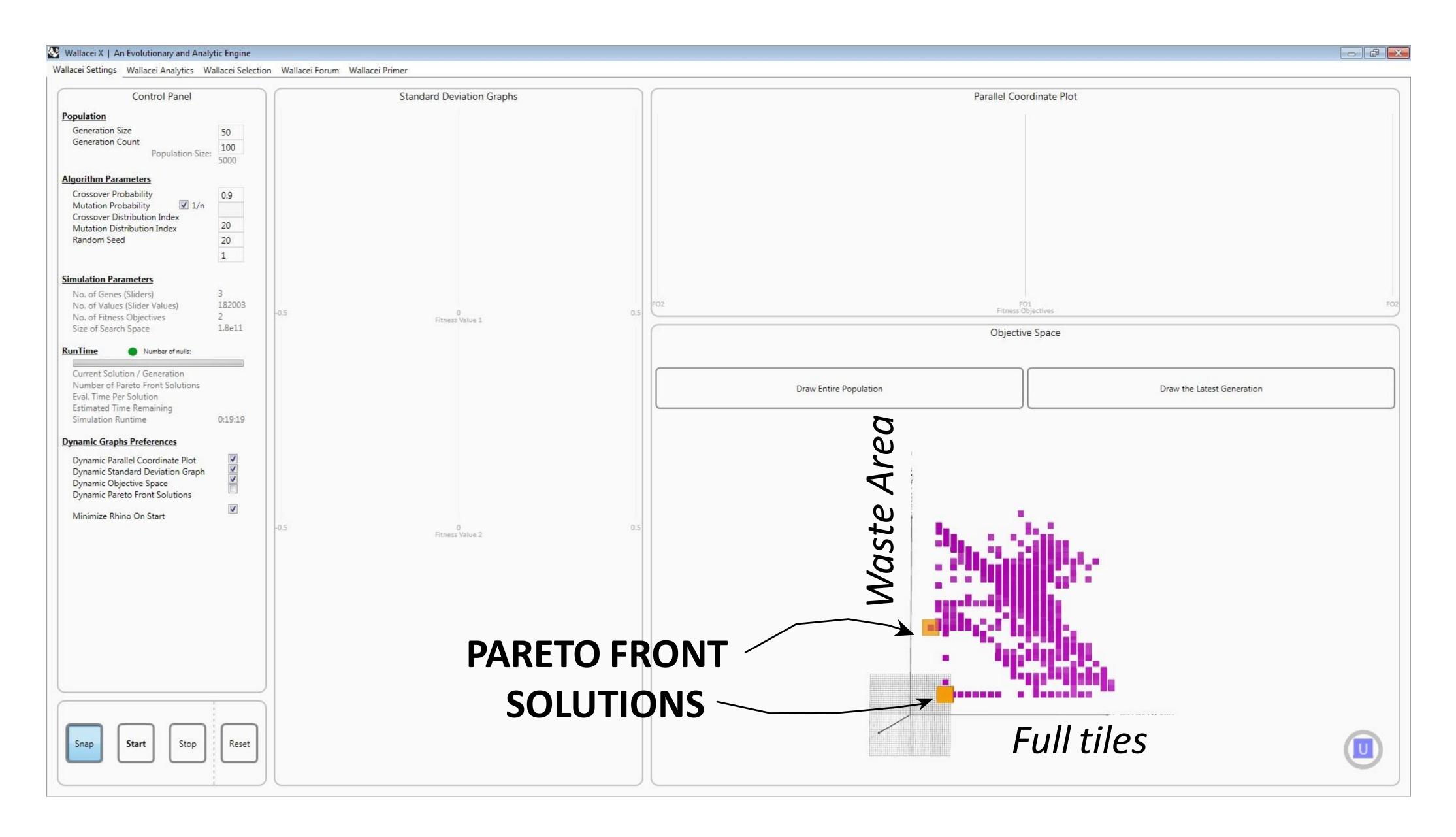
SHORTEST ALTERNATIVES

Within the min. clearance

MULTI OBJECTIVE OPTIMIZATION WALLACEI X FOR GRASSHOPPER

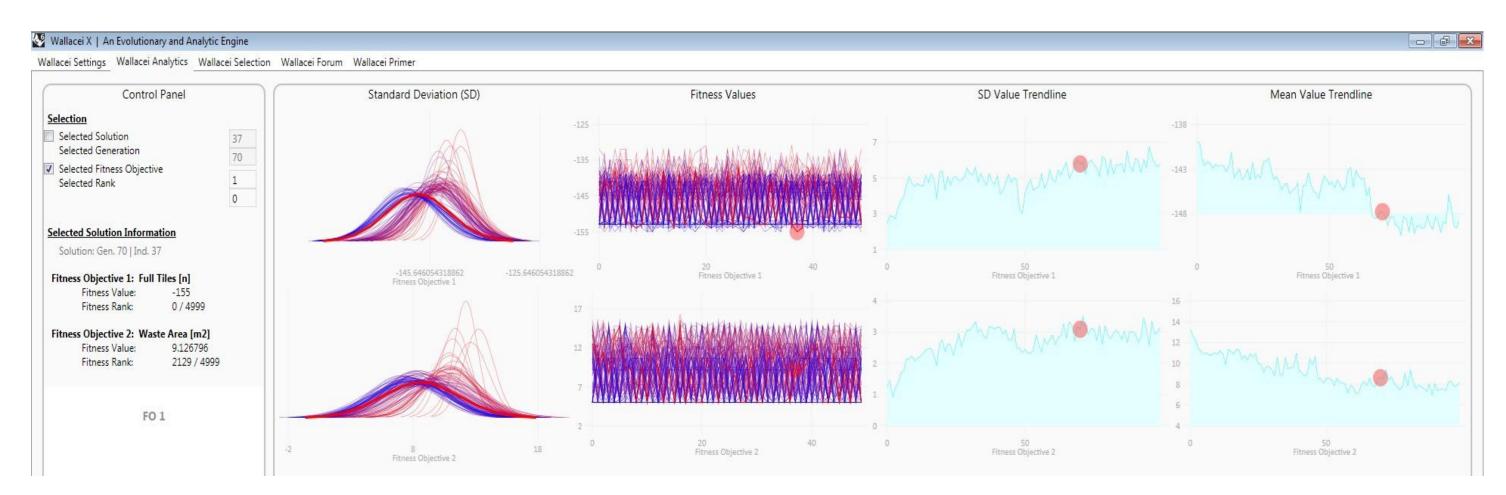
PROBLEM
SOLUTIONS

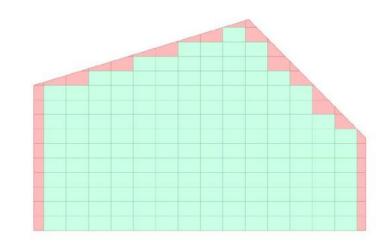




WALLACEI SETTINGS

MAX. FULL TILES



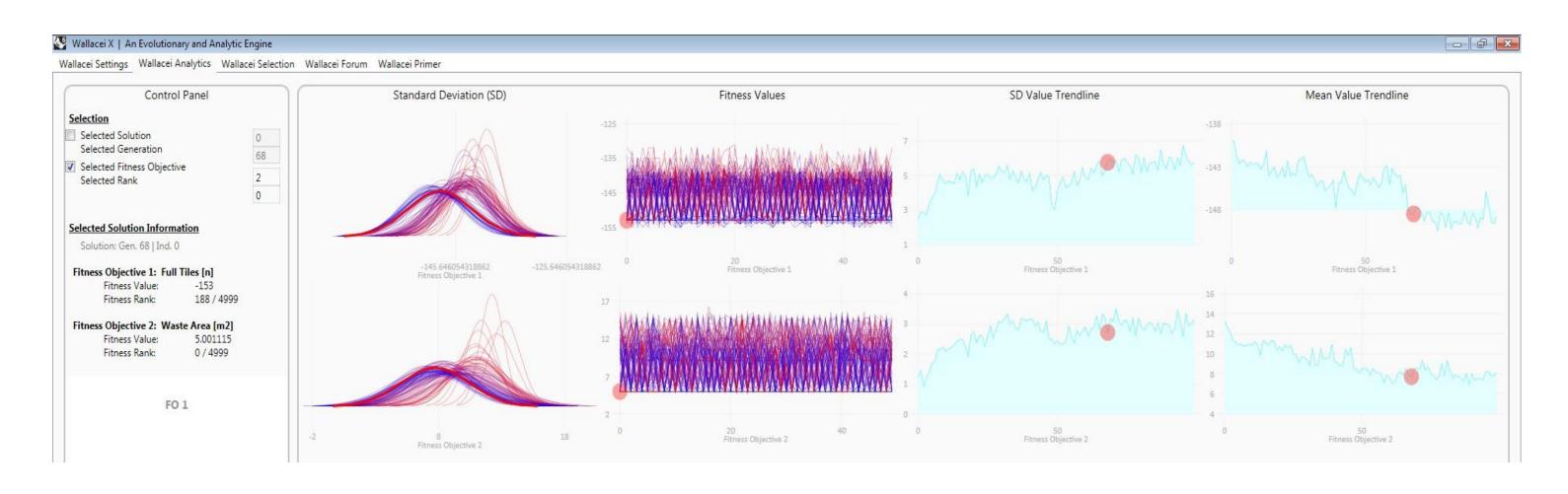


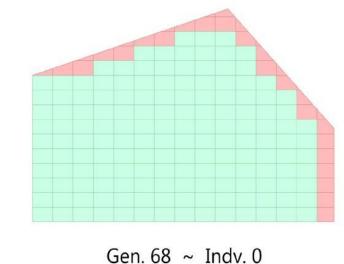
Gen. 70 ~ Indv. 37

Genes: -89.997 | 0.456 | 0.55 ~ Fitness Obj.: -155 | 9.126796

155 full tiles 9.11 sqm waste area

MIN. WASTE AREA





Genes: -89.997 | 0.456 | 1 ~ Fitness Obj.: -153 | 5.001115

153 full tiles 5.00 sqm waste area

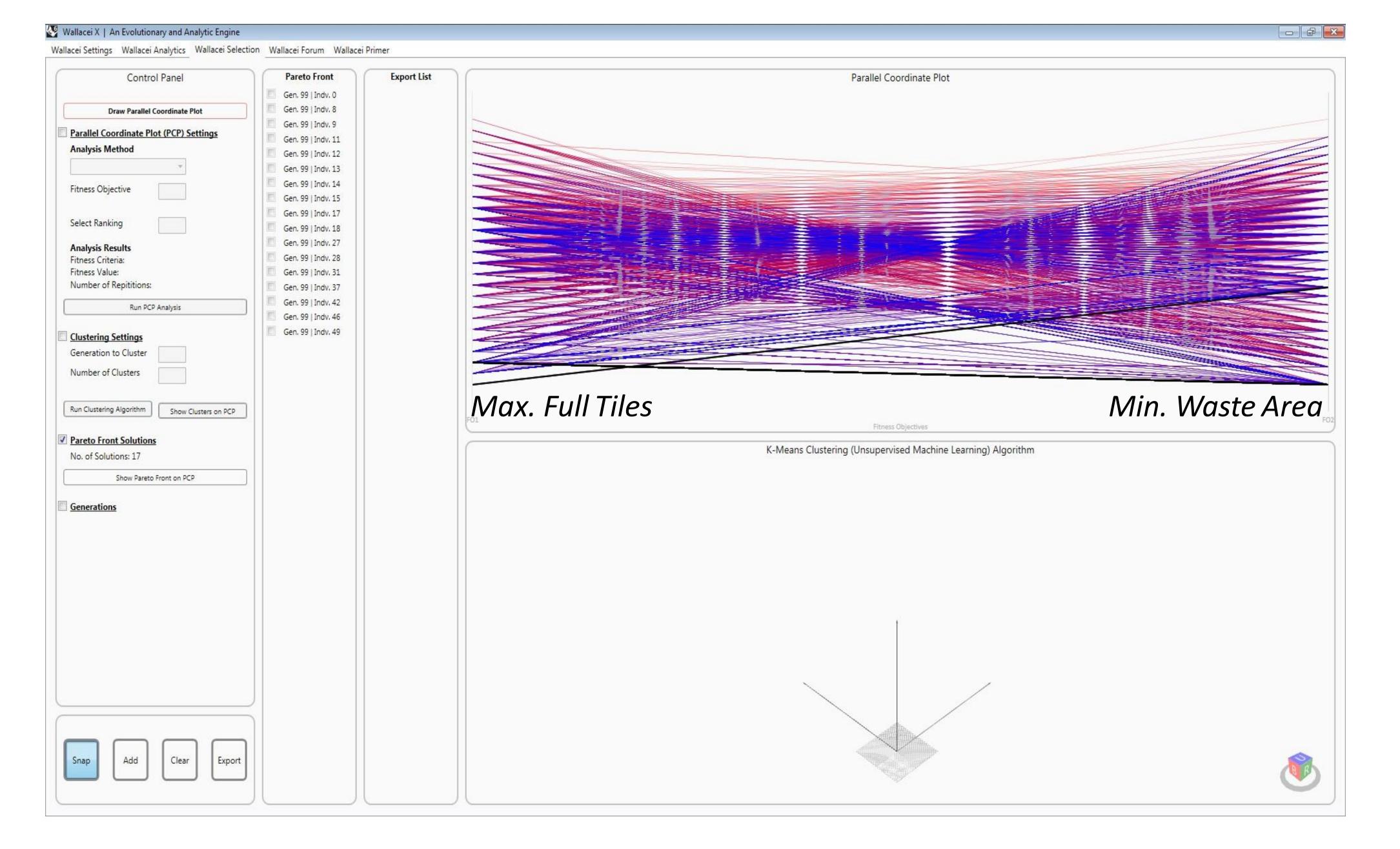
WALLACEI ANALYTICS

5,000 combinations tested = 19.19 min (13 min to find optimal solutions)

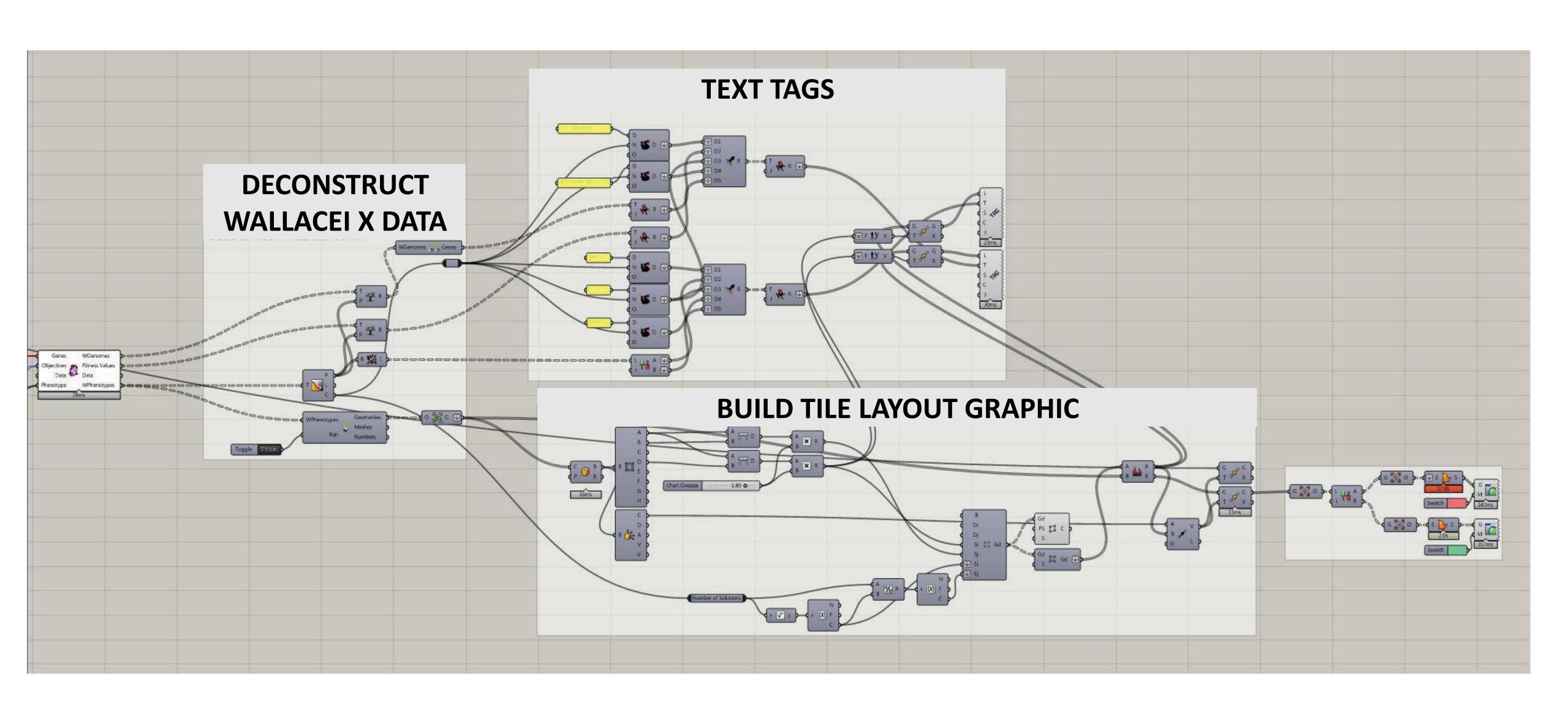
Max. Full Tiles

Min. Waste Area

MEAN VALUE TRENDLINE



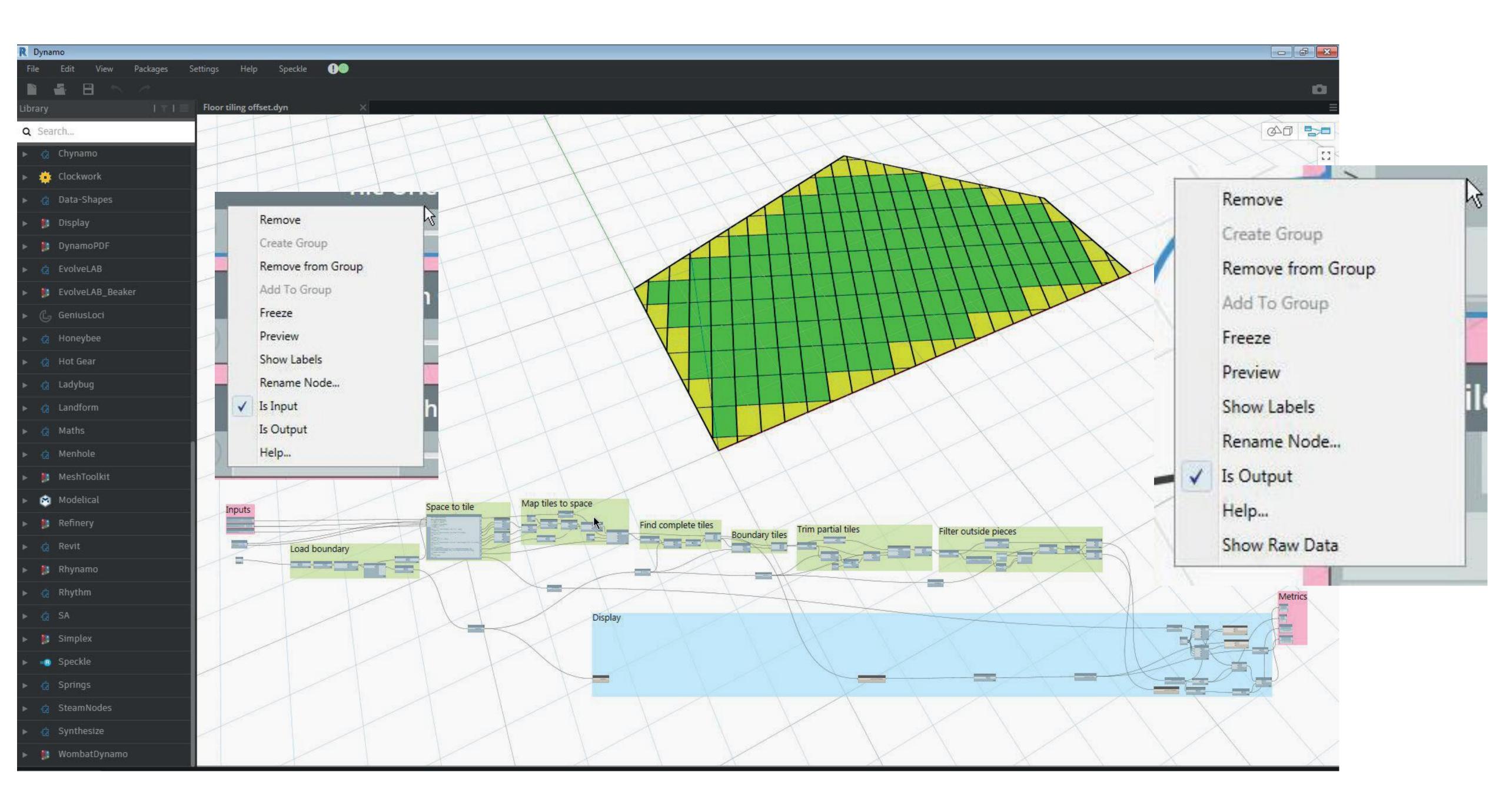
WALLACEI SELECTION



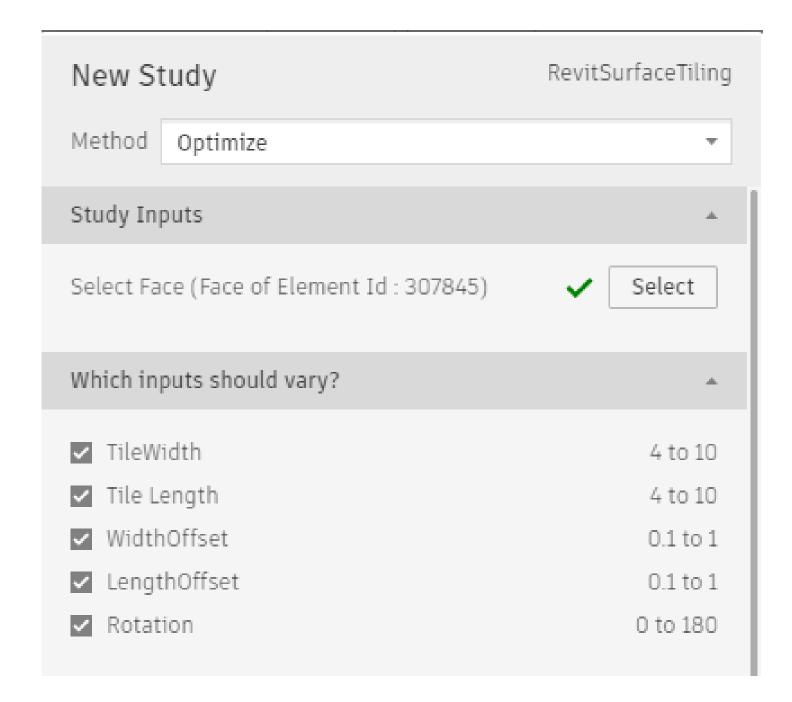
ANALYSING WALLACEI DATA

PARETO FRONT SOLUTIONS

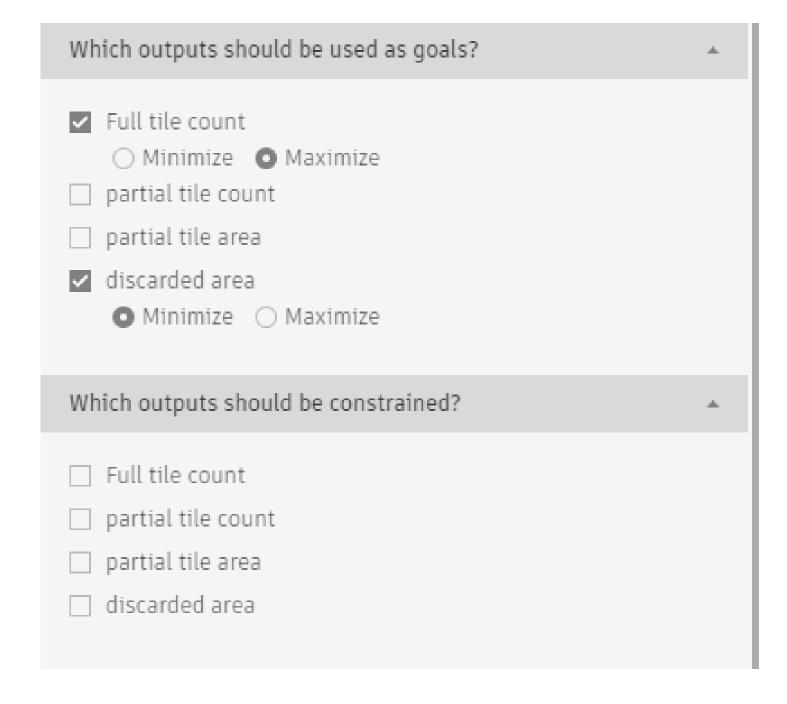
LAST GENERATION SOLUTIONS



GENES

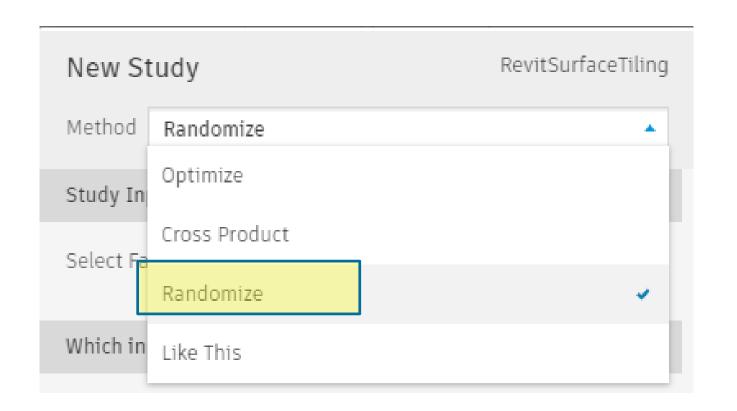


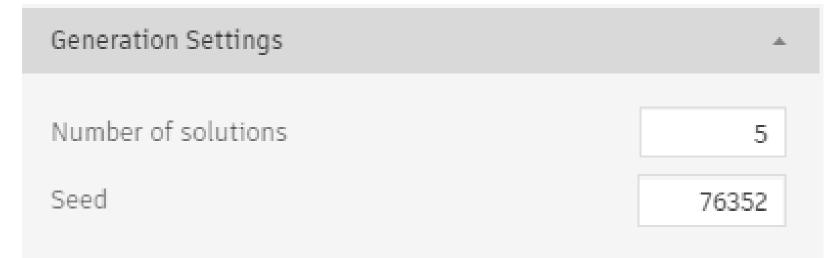
FITNESS



SETTINGS

Generation Settings		*
Population Size		48
Generations		10
Seed		1
Issues		
No issues. Ready to generate results!		
	Cancel	Generate

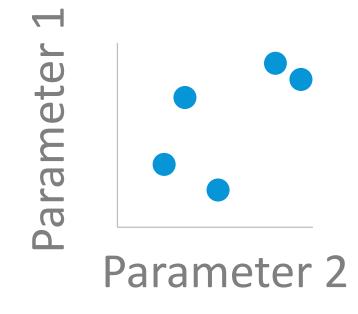




INPUTS

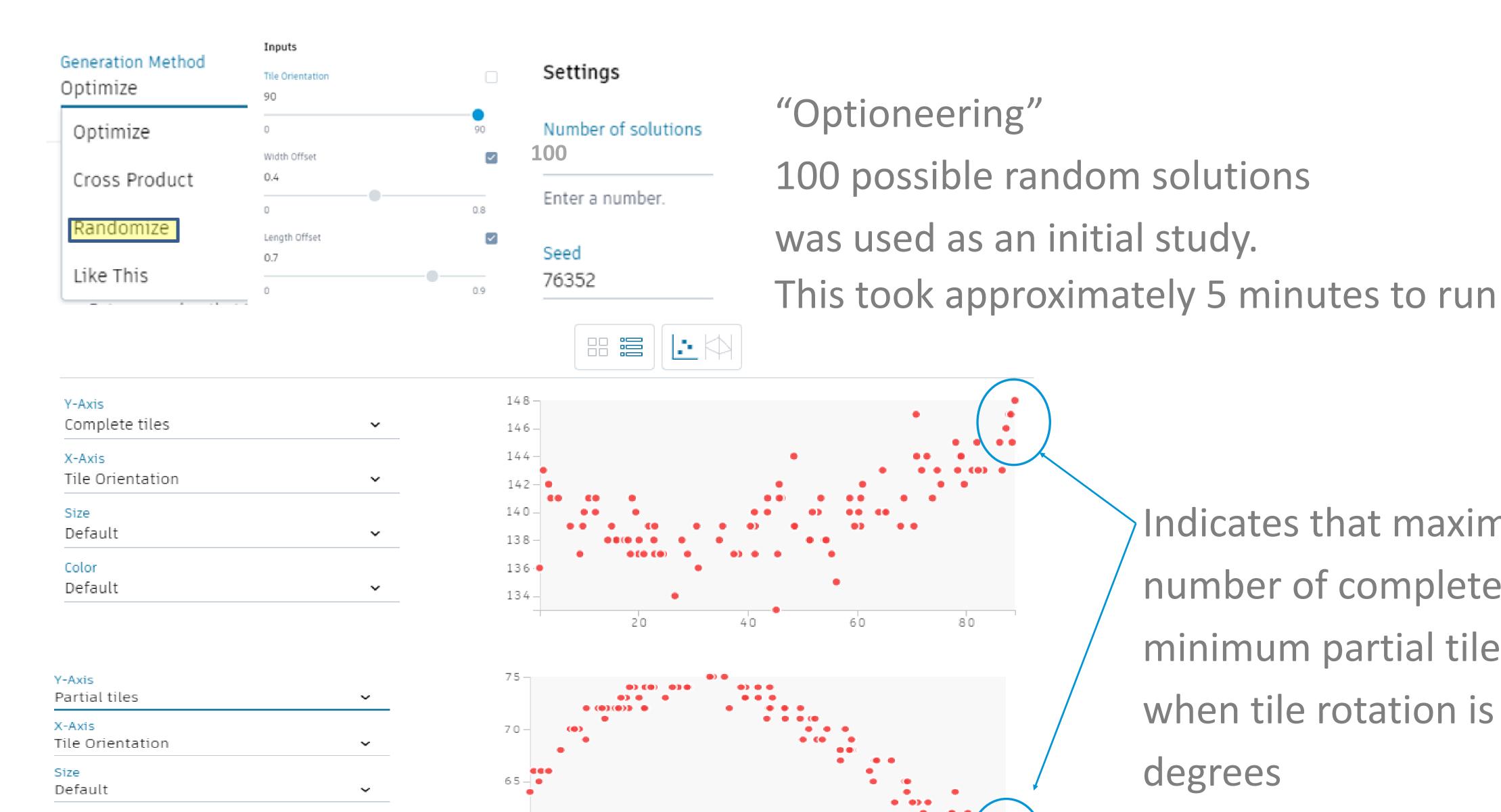
Parameter 1 Parameter 2

DESIGN SPACE



OUTCOME

5 DESIGNS# defined by user



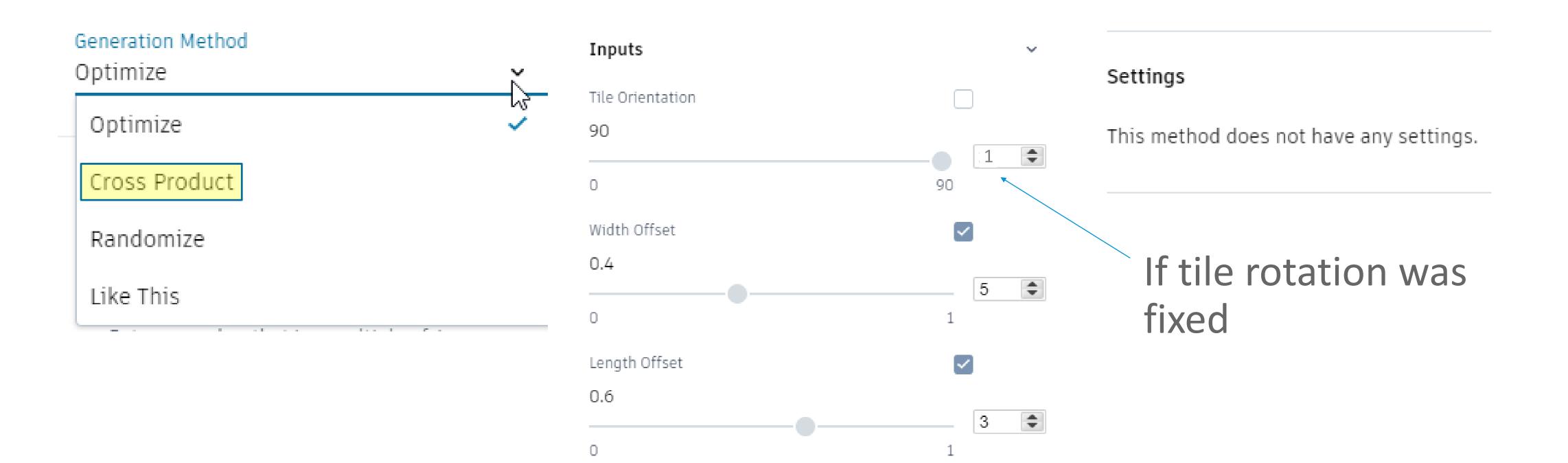
20

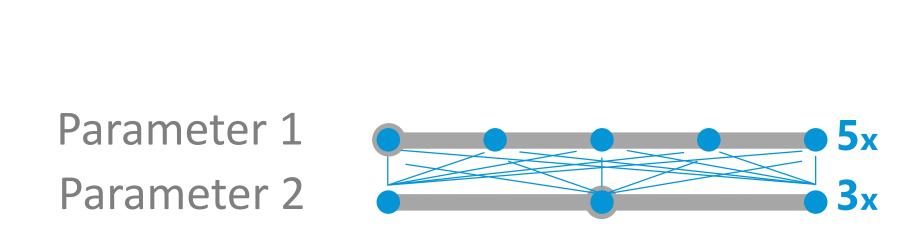
4.0

Color

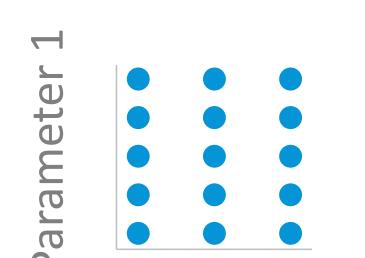
Default

Indicates that maximum number of complete tiles and minimum partial tiles occur when tile rotation is 90 degrees





INPUTS



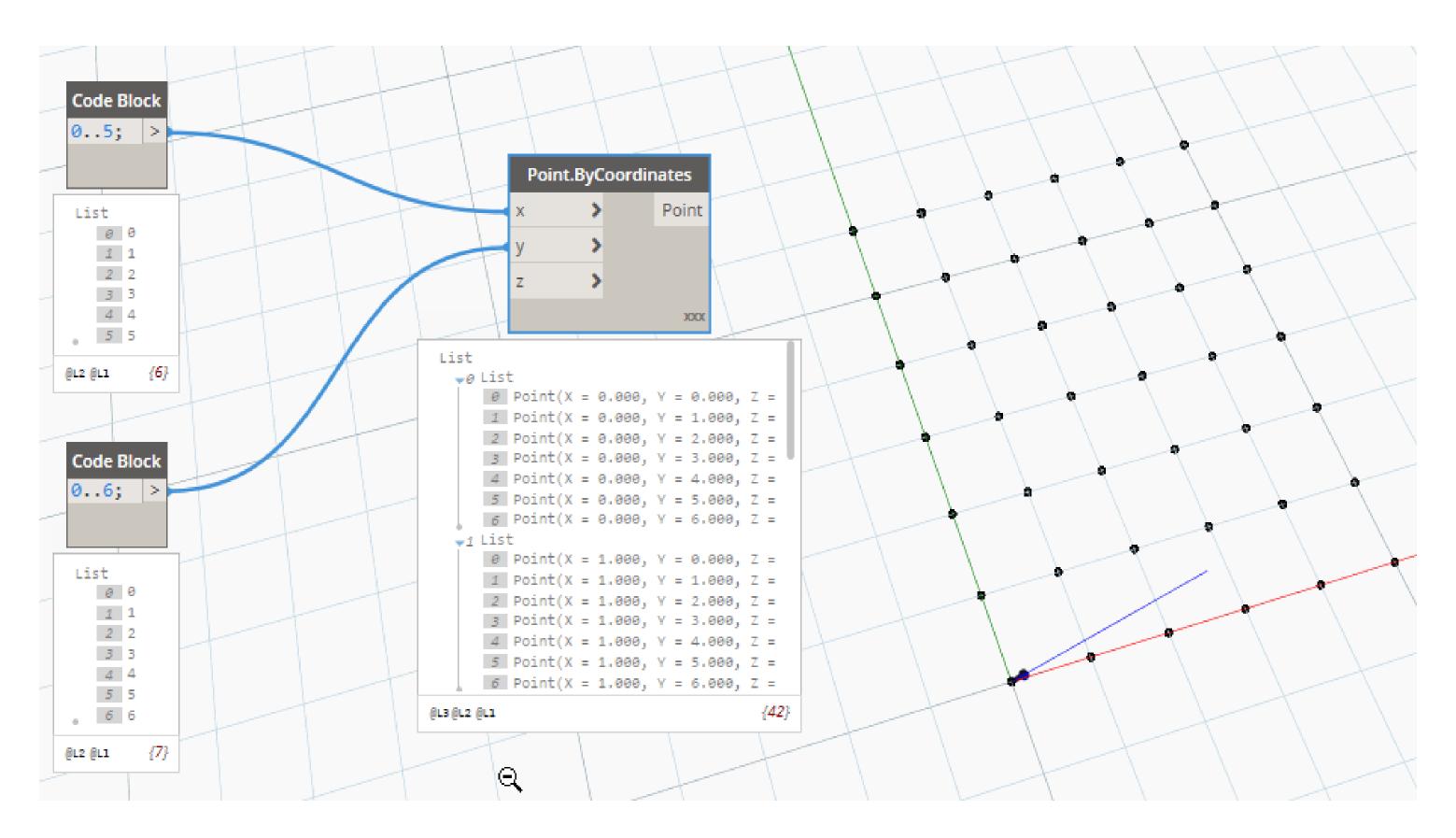
Parameter 2

DESIGN SPACE

OUTCOME

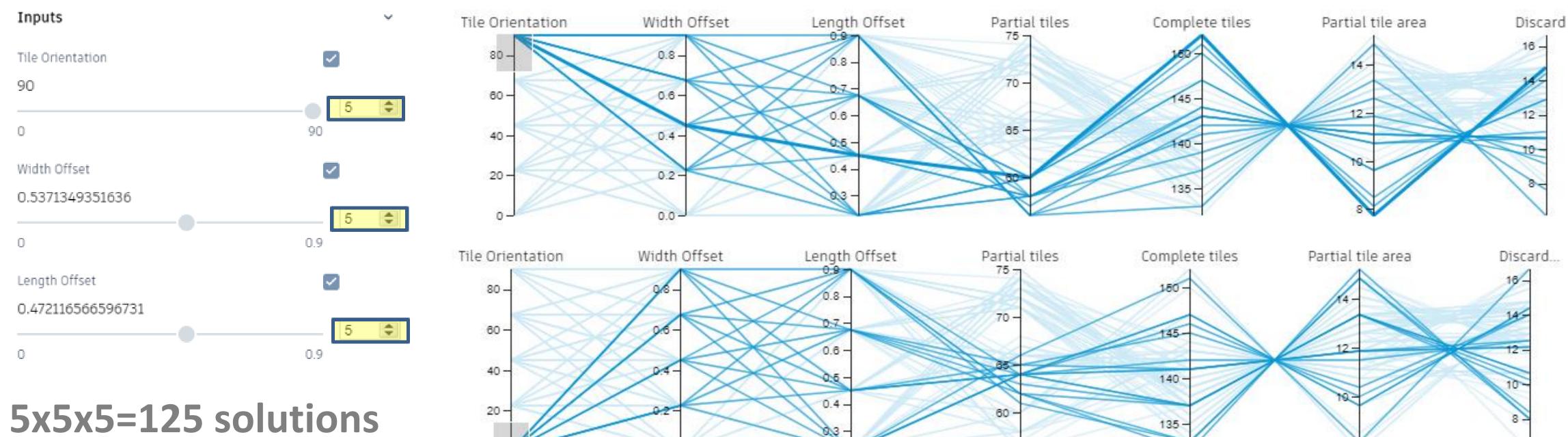
 $5 \times 3 = 15$ **DESIGNS** user defines sampling density

Cross Product Lacing within Dynamo



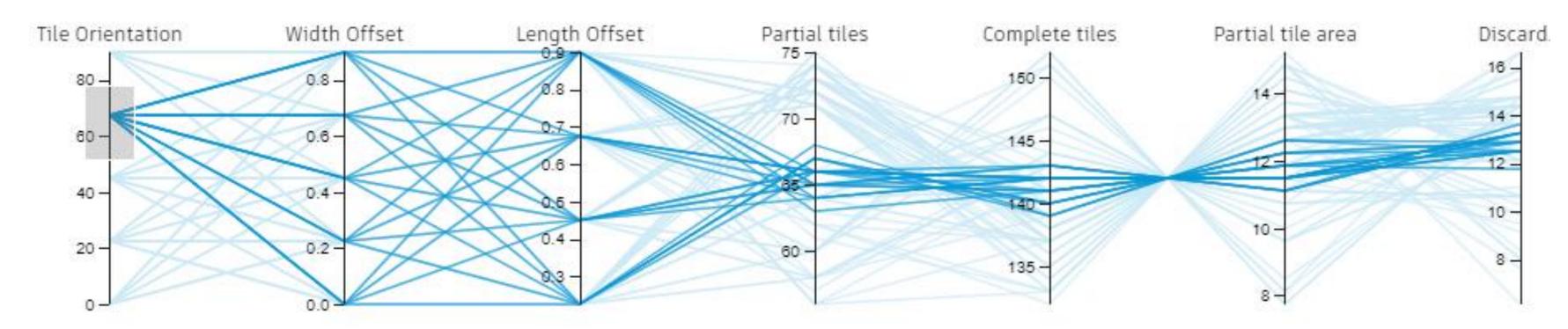
An input variable with 6 items combined with an input of 7 items = 42 solutions

Cross Product Lacing within Refinery



5x5x5=125 solutions
Runtime 5 mins

Filtering for tile orientation for 0 & 90 degrees



Filtering for tile orientation of 67.5 degrees

Generation Method Optimize

Optimize

Cross Product

Randomize

Like This

Inputs

Outputs

Partial tiles
60 IGNORE

Complete tiles
150 MAXIMIZE

Partial tile area 8.4917458401... IGNORE

Discarded area 14.008254159... MINIMIZE

Settings

Population Size

3

Enter a number that is a multiple of 4.

Generations

6

Enter a number.

Seed

45521

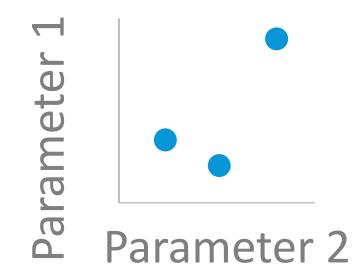
Enter a number to control where randomization starts.

INPUTS

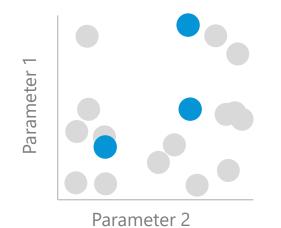
Parameter 1 Parameter 2

generation 1 population of 3

DESIGN SPACE



OUTCOME



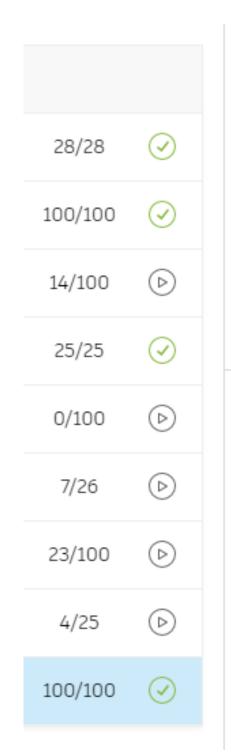
Parameter 1
Parameter 2

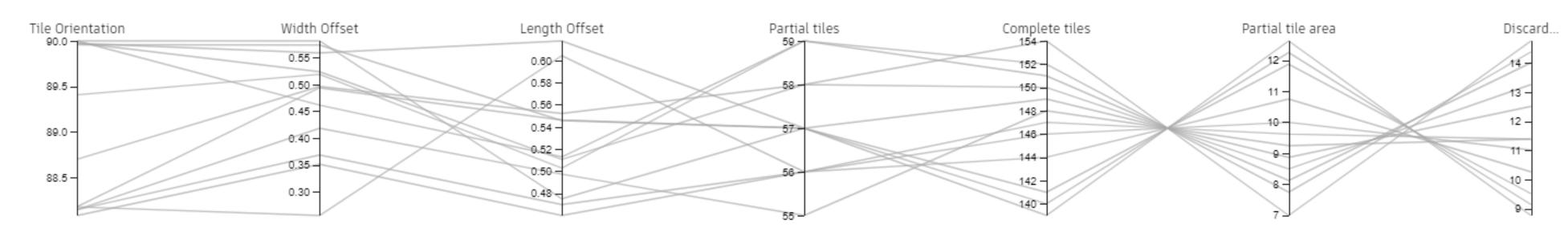
generation 6 population of 3

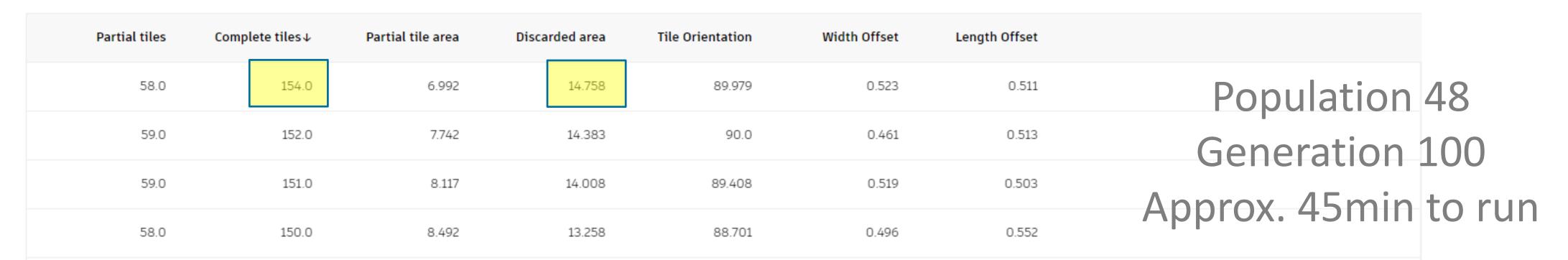
$3 \times 6 = 18$ **DESIGNS**

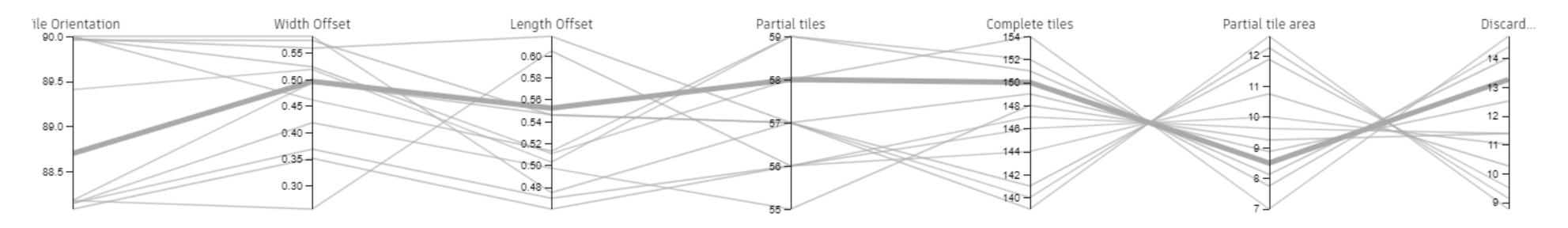
user defines population size and number of generations

4,800 options analysed, only one single solution plotted from each generation.





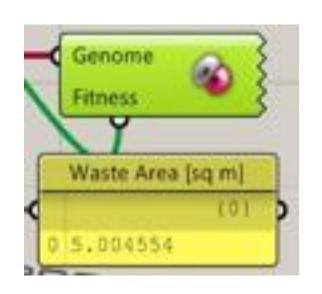


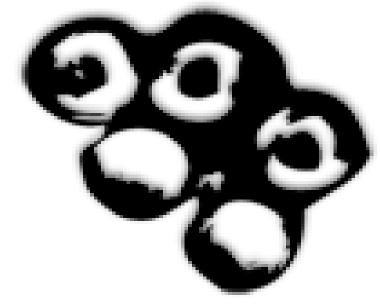


er 🗌

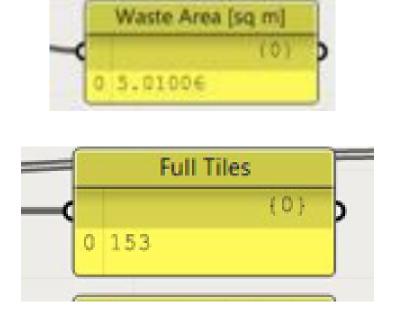
Filter 🗌

Partial tiles	Complete tiles	Partial tile area	Discarded area↑	Tile Orientation	Width Offset	Length Offset
57.0	139.0	12.617	8.758	89.972	0.559	0.618
57.0	140.0	12.242	9.133	89.958	0.573	0.546





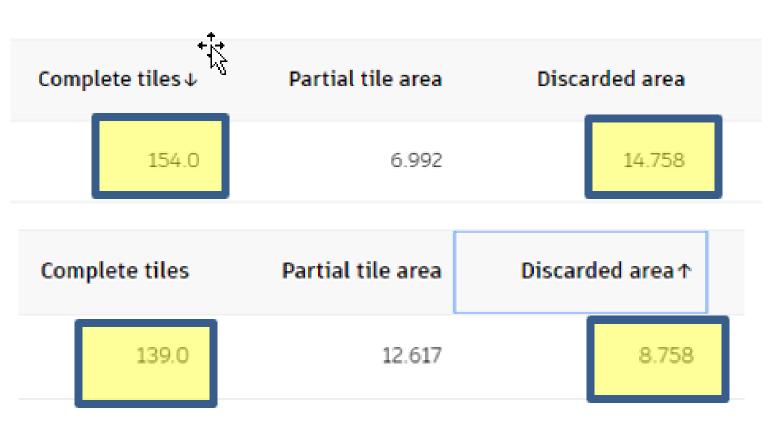
10,800 combinations tested X 244 ms per solution = $43.92 \, \text{min}$

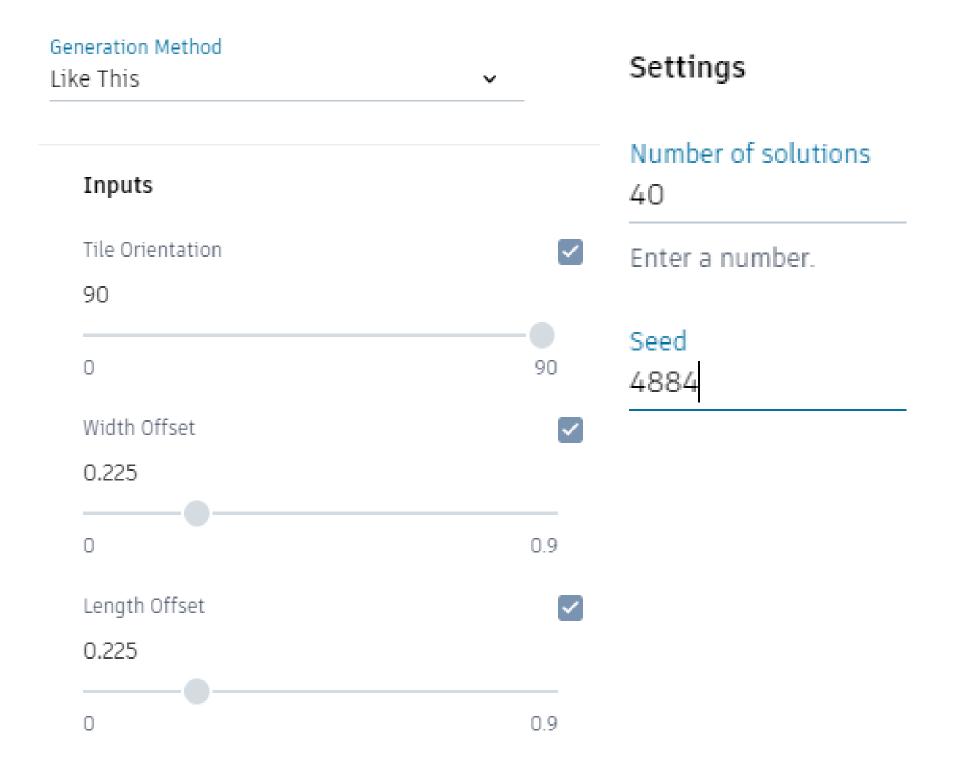


5,000 combinations tested = 19.19 min (13 min to find optimal solutions) 155 full tiles 9.11 sqm waste area

153 full tiles 5.00 sqm waste area

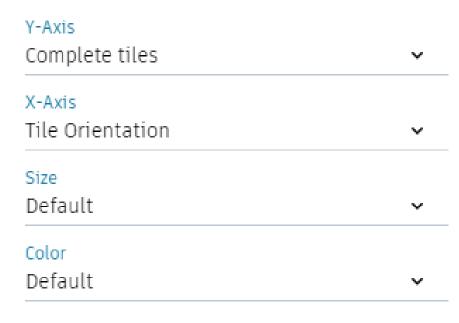
4,800 combinations Population 48 Generation 100 Approx. 45min to run

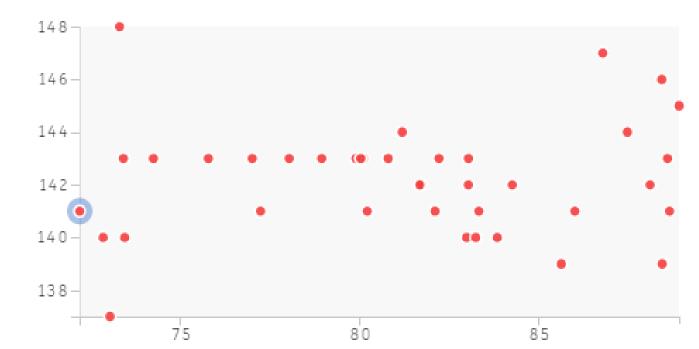




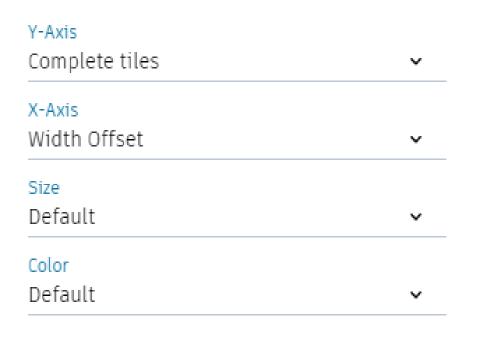
The "Like This" method carries out a minor variation to the noted inputs.

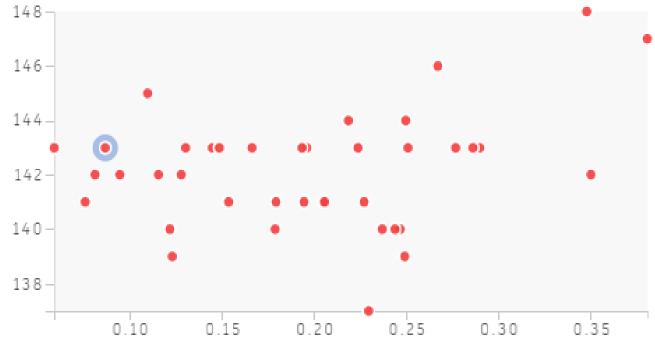
It is not clear how far the "like this" option deviates from the selected inputs



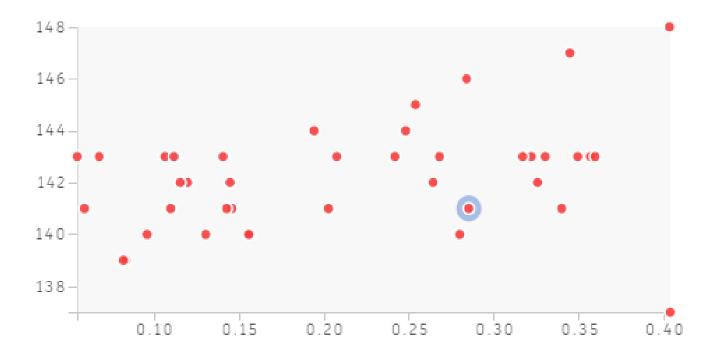


Tile Orientation is limited to 73-90 degrees



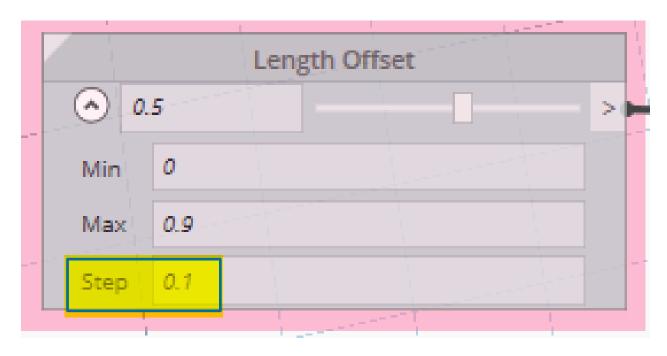


Width offset is limited to 0.05 – 0.40 degrees

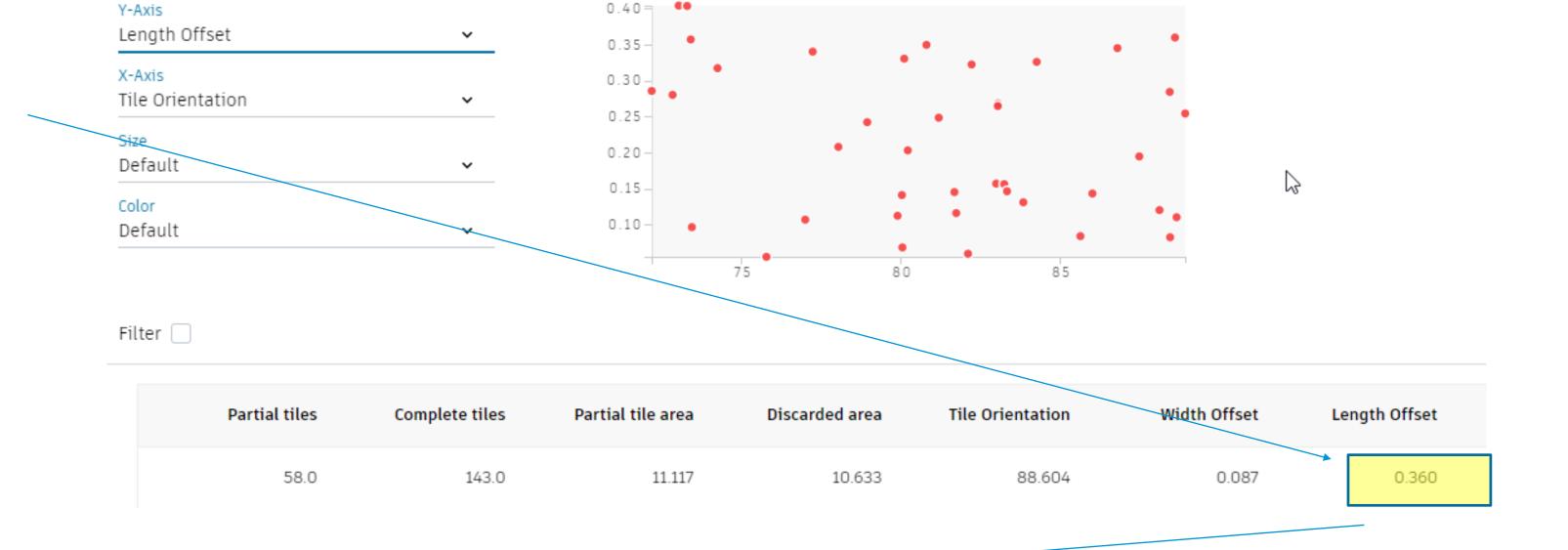


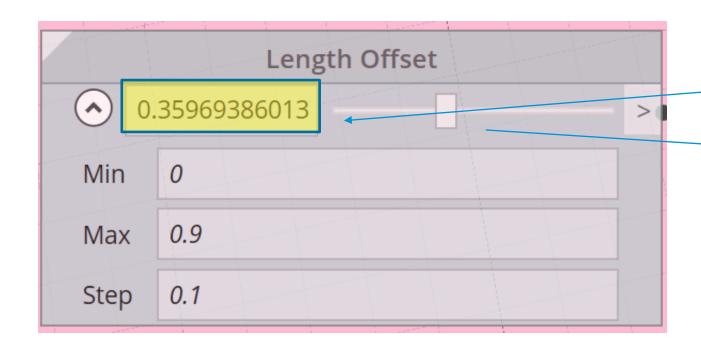
Length offset is limited to 0.05 – 0.40 degrees

Step value appears not to be respected in Refinery



Step Value in Dynamo prior to run in Refinery





Value in Dynamo post run in Refinery

0.359693860137189

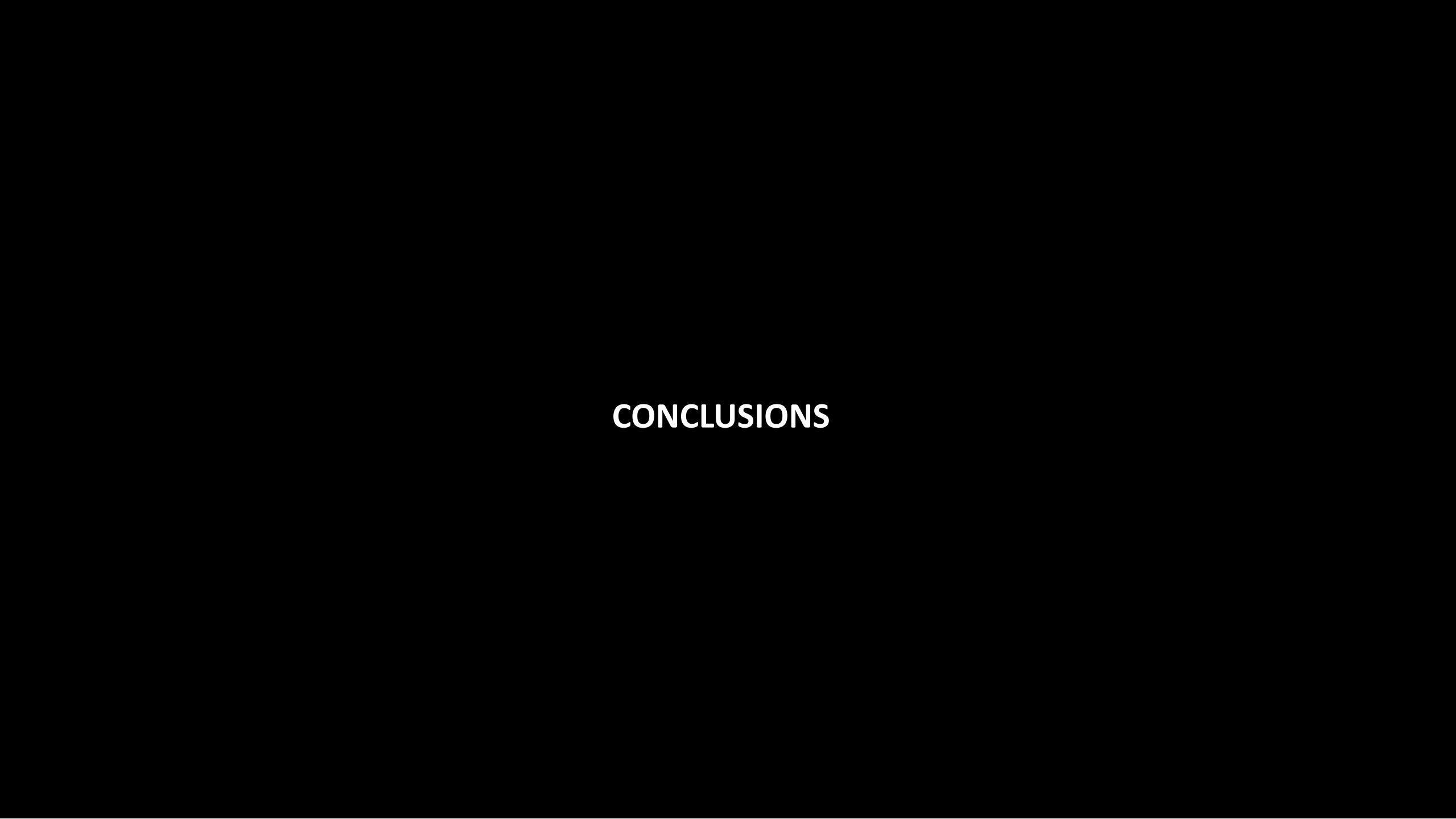
Accurate to 15 Decimal places!

GENERATION 20

960 combinations tested X 394 ms per solution = 6.30 min

7,500 ms per solution on Dynamo alone (x20 SLOWER)

244 ms per solution on Octopus (x1.6 FASTER)



CONCLUSIONS

- Evolutionary Solvers are powerful tools to be used on specific or partial problems.
- To formulate the right **fitness function** and the set the **key variables** is crucial.
- The process helps to **understand** the nature of the **problem**.
- They are **slow** because of the amount of options to be tested and depending on the complexity of the problem, the efficiency of the script, the platform we are using and the hardware capabilities.
- Galapagos is a robust built-in GH tool which is ideal to solve single objective optimization problems.
- Octopus is a multi objective optimization plugin for GH which tackles more complex problems and enables user interaction and solutions exploration.
- **Refinery** is a **multi objective optimization** beta product by Autodesk that computes **Dynamo** scripts **faster** than within the Revit / Dynamo environment (but still slower than Rhino / GH).
- Unlike its GH competitors, access to the evolutionary data is harder to access, behind which is a valuable information to identify good solutions and improve fitness functions.

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.