

Dr. Eliel De la Cruz

Arg., M.Arch., M.S., Ph.D. Assoc. AIA, NOMA

I am currently the Practice Technology Leader in the America - East Region for HKS Architects. I was lucky enough to start my architectural career at an early age. I finished a 5-year architecture program when I was 21, then did 2 masters in Architectural Design and Computational Design, (SCAD, and GATech), and later a Ph.D. in Architecture at the University of Sydney in Australia. All my studies and professional experience have revolved around Design and Computational Design. I'm passionate about new technologies and finding ways to use them to improve our designs, buildings, cities, and our lives. My area of research focuses on understanding the variables that influence the adoption of new technology in the architectural design process.

I'm a geek who loves movies, anime, bowling, archery, guitar playing and learning new things in life. Cheers!

John Raiten

I am currently the Practice Technology Leader in the America - Central Region for HKS Architects. I have been in the AEC industry for the last 29 years, and recently 10 years were on the construction side. Some of the companies I have worked at are Gensler, Friedmutter Group, Hill & Wilkinson, and Rogers-O'Brien Construction. The years building and working in VDC departments on the construction side of things gave me a unique aspect of how models are used through out the design and construction process. My next endeavors at HKS will help the world to move closer to informative and accurate model deliverables.

My hobbies include motorcycles, swimming, beaches, travel, and music.

AGENDA

What we'll be covering today

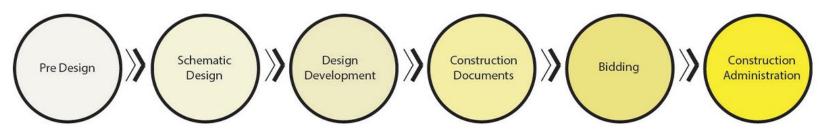
- 1. Understanding alternative workflows using Autodesk tools to deliver a project.
- 2. Implement an effective tool LOD limit and multiple workflow health checks.
- 3. Investigate the use of an eclectic and flexible learning process to improve upon each design round.
- 4. Identify opportunities using generative design, visual programming, and upcoming Autodesk tools for early design exploration.

PRELUDE

What this class is about

As technology continues to evolve and provide the AEC industry with new tools, the pressure from clients and owners to deliver faster and better outcomes also increases. Within Autodesk's 'Multiverse' of tools spanning multiple industries, designers usually need to figure out how to best utilize the tools currently available to efficiently produce appealing designs with reduced roadblocks. By understanding which tools to use, organizations can potentially save costs and avoid the dreaded re-work in the design process.

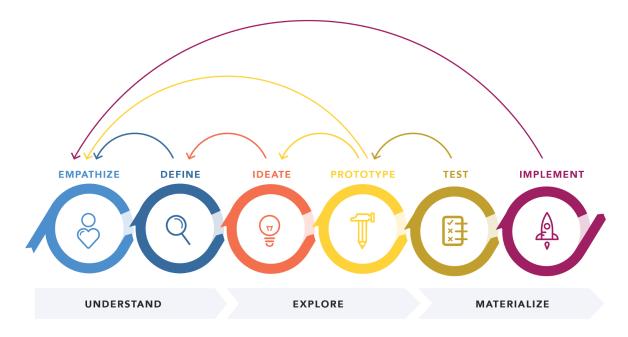
In this class, we'll discuss the impact and opportunities of several workflows and trends in relation to the architectural design process. Find out how you can leverage Autodesk tools and software to drive efficiencies and innovation in your processes that will benefit your company, enable a faster decision-making process, and improve your designs and your bottom line.



Architectural Design Process

Traditional Linear Approach

The Design Process is an approach that divides a large project into manageable phases.


- Pre-Design (Programmatic)
- Schematic Design (Conceptual Design)
- Design Development
- Construction Documents
- Bidding
- Construction Administration

Design Thinking

Non-Linear Approach

Because the architectural design is an ill-defined (wicked) problem this methodology can also be applied.

If we transpose this concept to software

Traditional Linear Software use

Disclaimer: We know everyone has their own way of doing things, this is just one of many possible scenarios.

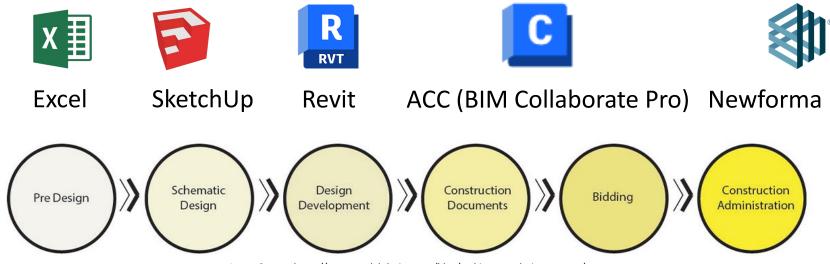
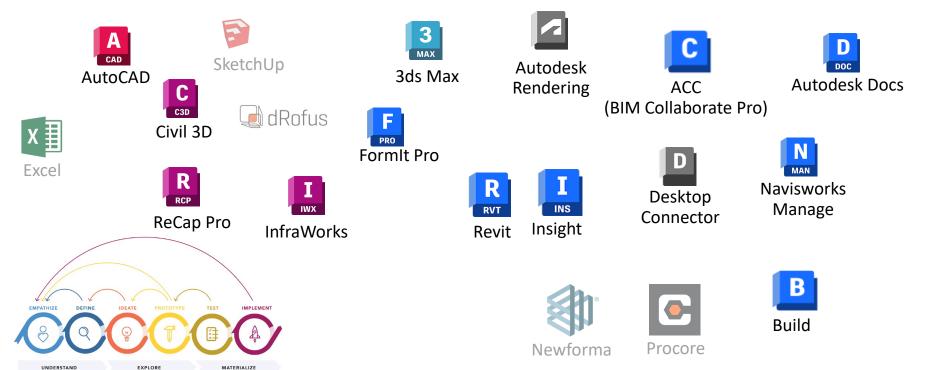



Image Source: https://www.modal-design.com/blog/architecture-design-process/

Design Thinking

Non-Linear Software use

Having a broader scope of software options provide a much more flexible design environment.

AUTODESK UNIVERSITY

The right tool for the right task

When to take the leap

Understanding when to use one of those tools requires knowing about Productivity, Return of Investment (ROI) and looking at the bigger picture in order to improve upon each design round

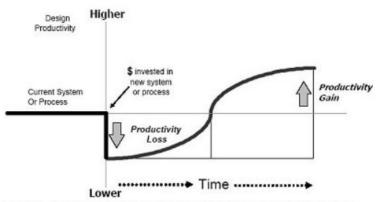


Figure 1. Visualize what happens when you put a new system into place.

A standard formula for calculating the first-year ROI is in figure 2. It uses just a few key variables related to system cost, training, and the overall productivity cost savings of a system. The next figure shows the formula variables (figure 3).

$$\frac{\left(B - \left(\frac{B}{1 + E}\right)\right) \times (12 - C)}{A + (B \times C \times D)} = First Year ROI$$

Figure 2. A standard formula for calculating first-year ROI.

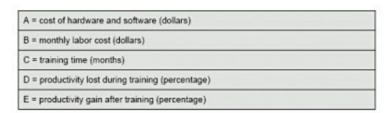


Figure 3. The ROI formula variables.

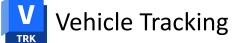
Autodesk's Software and Cloud Services

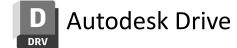
- There is a smorgasbord of different software and cloud services available from Autodesk
- Which software to use for your Industry or Trade?
- Do any of these overlap between Industry or Trade?
- How do you know if you need to learn a new software?

AEC Collection

(Architecture, Engineering & Construction)

Building Design, Infrastructure Design, Construction (Industry)





Robot Structural Analysis Pro

Autodesk Construction Cloud Products

Online services that enhance the workflow

Build

BIM Collaborate

BIM Collaborate Pro

Takeoff

Docs

Additional Products

PlanGrid Build

Assemble

Building Connected

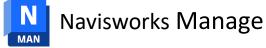
Pype

ProEst

AutoDesk Construction Cloud Connect

Architecture

Some of the software and services used in Architecture



The Wild (VR)

Desktop Connector

Autodesk Docs

Autodesk Drive

3ds Max

Dynamo & Generative Design

Engineering

Some of the software and services used in Engineering

Revit

Insight

BIM Collaborate Pro

Civil 3D

Navis Manage

Autodesk Docs

AutoCAD

Advanced Steel

Autodesk Drive

InfraWorks

Structural Bridge Design

Desktop Connector

Vehicle Tracking

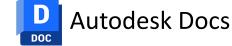
Fabrication CADmep

Dynamo & Generative Design

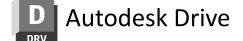
Robot Structural Analysis Pro

Construction

Some of the software and services used in Construction



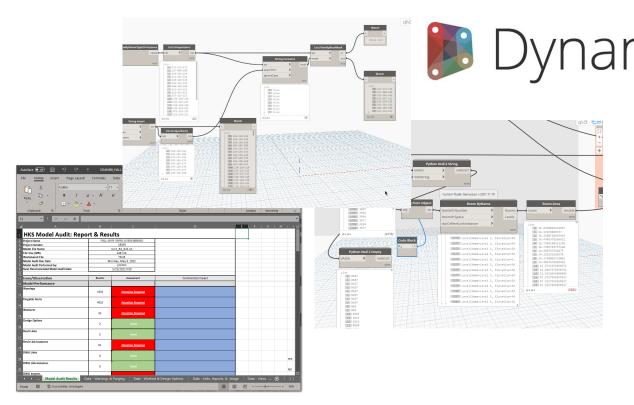




Navisworks Manage

Assemble

Dynamo & Generative Design


Pype
Building Connected

Dynamo & Generative Design - Visual Programing

A number of programs can utilize Dynamo & Generative Desing for automation

Civil 3D
Revit
FormIt
Alias
Advance Steel
Robot Structural Analysis

Thank you

