AUTODESK UNIVERSITY

BES500178

Workflows to develop, manage & integrate Infrastructure BIM Projects

Viraj Voditel

Founder & Director | @virajvoditel

Dayesh Jaiswal

Director | @dayeshjaiswal

About the speakers

Viraj Voditel

- Viraj is the Founder & Director of Techture, a global BIM consulting firm having offices in USA, UK, UAE, India and Singapore.
- He started out as a Student Expert for Autodesk while pursuing his Civil Engineering degree and currently is an Autodesk Expert Elite and a Certified Professional for various software.

- He is a BIM evangelist and frequently talks about BIM at various platforms. He
 has delivered technical lectures at the national and international level and is
 actively involved in championing the newest technologies in the AEC space.
- Viraj has been able to amass a rich experience on BIM Implementation for various large scale projects including hospitals, hotels, airports, hydropower projects and smart cities.
- He also actively works towards software development and technological innovation and is an advocate for the use of Cloud Computing in the AEC domain.

Dayesh Jaiswal

Dayesh is a Director at Techture and has been spearheading lifecycle BIM execution on various projects and working with several government agencies to develop BIM implementation strategies. He emphasizes on digital project management techniques to enable better visibility and enhanced decision making for project owners.

- Acting as a technology consultant, he has worked with leading developers, contractors across the globe to augment current design and execution process of their industrial and building projects, through integrated project delivery processes.
- He also focuses on the infrastructure sector and has spearheaded BIM and related technology implementation on various Metros, Highways and urban infrastructure projects across India and Middle east

Important Points

Some general points about this session

- As you're aware, this time AU 2021 is happening online, and thus, this is a prerecorded instructional demo.
- If you have any questions or comments, please drop them on the class page on the AU website. You're also recommended to attend my dedicated Q&A session during AU 2021 where some of the questions will be answered live.
- If you're watching this after AU 2021 is over, feel free to drop us an email with your questions, comments or constructive feedback on virai.voditel@techture.global

A Handout & this Presentation are also available for ready reference on the AU website.

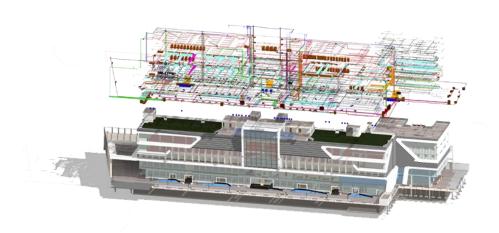
Learning Objectives

LEARNING OBJECTIVE 1

Discover some upcoming trends in the AEC industry and how certain Autodesk solutions will help in their adoption

LEARNING OBJECTIVE 2

Learn the depth & detail at which tools can be utilized for modeling & coordination, & then further extended via integrations

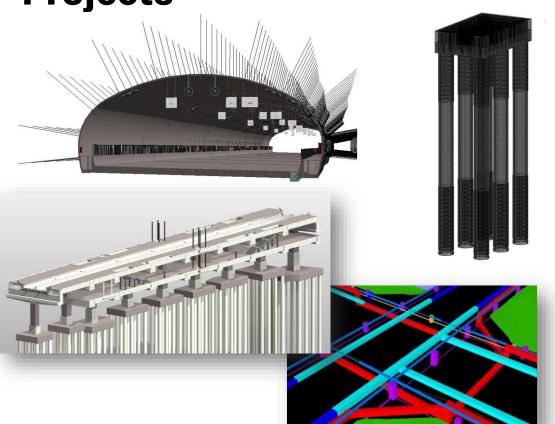

LEARNING OBJECTIVE 3

Understand how cloud technologies & data integration is quickly becoming the de facto standard in projects and organizations

LEARNING OBJECTIVE 4

Get to know advanced Rebar and structural fabrication workflows in Infrastructure projects through case studies

BIM Workflow for Building Projects



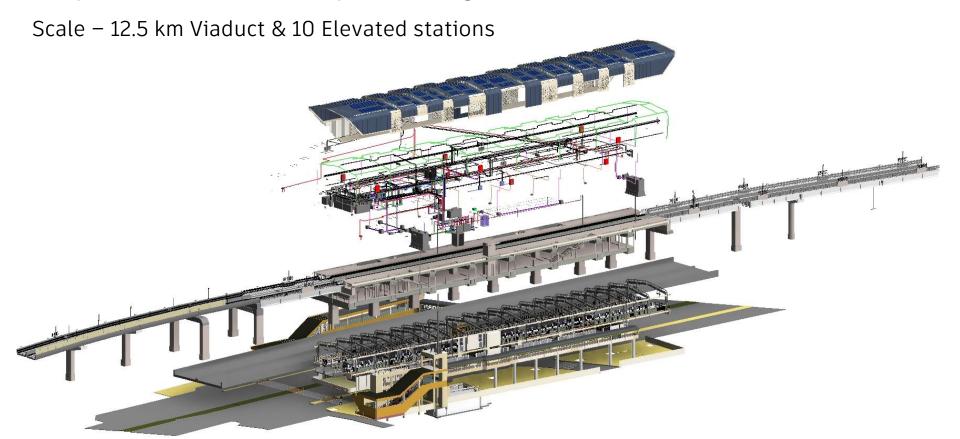
- Buildings specific BIM workflows have been well defined and documented over the years.
- The level of detail, information, definitions and 3D modelling tools have matured and are readily available.
- Various case studies published for 3D to 4D/5D/6D/7D workflows.
- The infrastructure sector still isn't familiar to similar workflows and many ambiguities are still present.

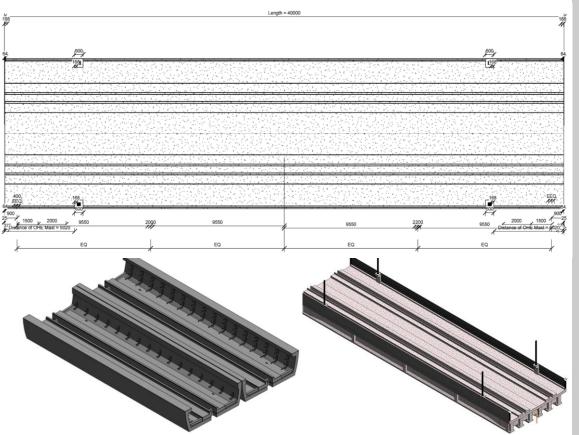
Extending BIM to Infrastructure Projects

BIM for Infrastructure Projects

Techture has been a pioneer in extending BIM workflows from buildings to large scale infrastructure projects.

- We have developed customized workflows in Revit, Civil 3D, Infraworks, Navisworks & Autodesk Construction Cloud to deliver 3D – 7D BIM outputs to large Infrastructure projects.
- Not just modelling, Techture has utilized Forge and various applications available in AEC Collection and ACC
- Techture has extensively utilized Cloud to provide integrated project management tools for various Infrastructure projects.

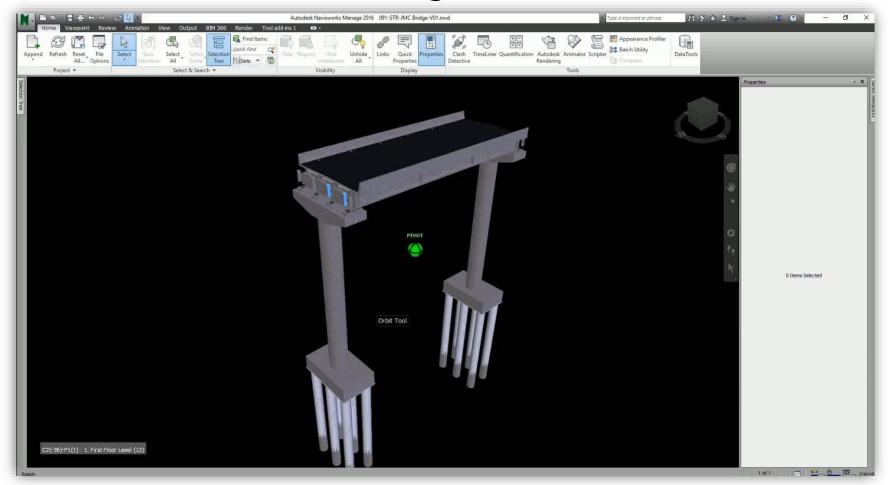



We will look at some case studies from large Indian construction projects where **Autodesk** tools were successfully utilized.

Case Study - Delhi Metro

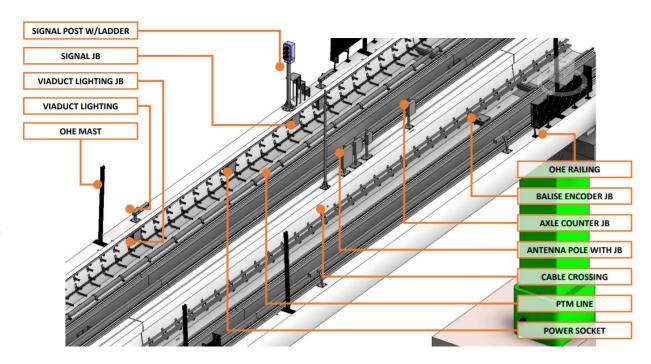
Complete 3D-5D Model development through Autodesk Tools.

Creating Complex Parametric Families


- Customized Parametric families were created in this project for elements like Viaduct U-Girder, T-Girder, Pi-Girders, etc.
- The main challenge was to define the length, angle of curvature, openings for lifting holes, shear block cut outs, drain pipe cutout, bearing locations, cable tray hangers, etc.
- Dynamo scripts were used for placing the girder along the Alignment centerline which was created using Civil3D.

Reinforcement Modelling

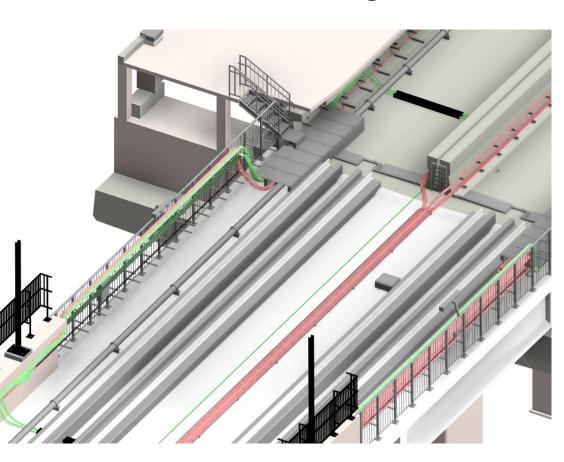
- Reinforcement Modelling was done for the structural elements as per the design.
- Clash Coordination was done for the Reinforcement Model to check the feasibility of the design.
- BBS was created to get the quantity from the model and to aid the construction process.
- GFC drawings were extracted from the model to be sent to site for construction.



Reinforcement Modelling

Signaling & Telecommunication Modelling

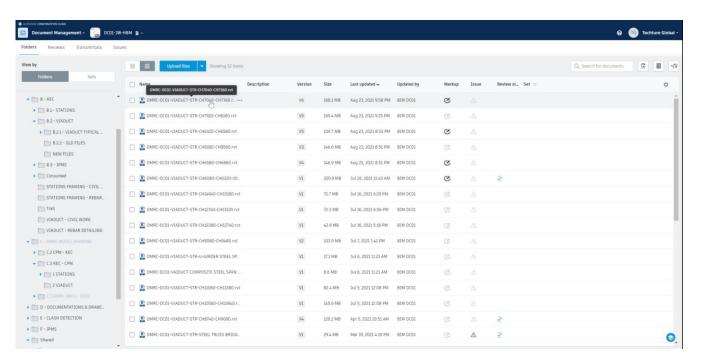
- No proper drawings are available for S&T due to which majority decisions are taken on site
- BIM Models provided a way to visualize the accurate positions of cross-overs and establishing locations of other components.
- BIM helped enable coordination with other disciplines and determine position of structural cutouts



Signaling & Telecommunication Modelling

 Equipment and cables for Signaling and Telecommunication were modelled over the viaduct to represent the S&T elements.

 This model is then further analyzed to validate the design provided by the consultants.


 It was also used to design the cable routing at the interface locations to check for space availability.
 Furthermore, elements like staircases, cable hangers, pedestals etc., were redesigned to accommodate the cables within the design

Model & Sheet Collaboration on the Cloud

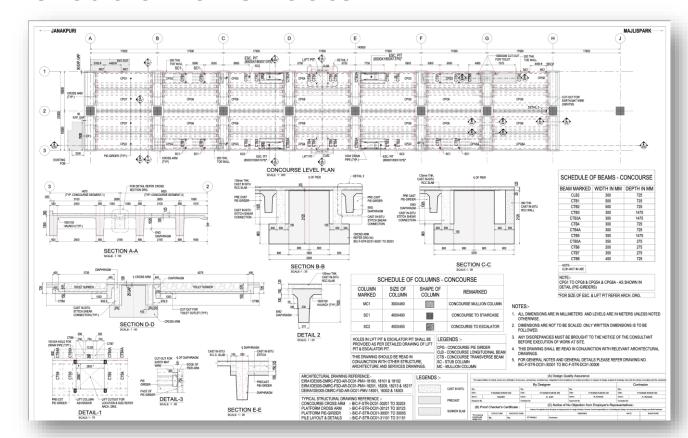
The project is hosted on BIM360.

BIM360 forms the common platform for Document Exchange, Model Hosting, Sheets and Models Approval System, Issue Creation and Design Coordination.

Design Validation

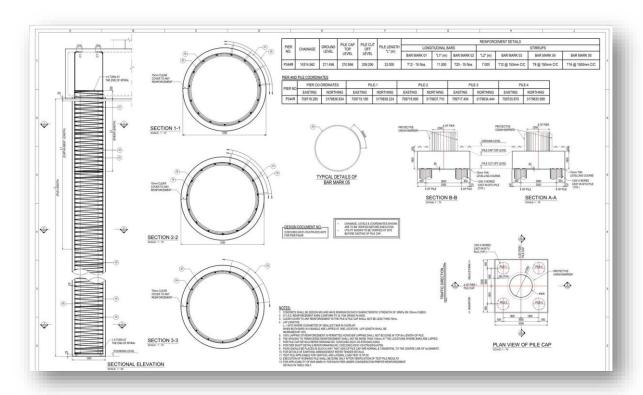
Quantification

Quantities were extracted from the model at various stages of the project like Tender stage, Construction stage.

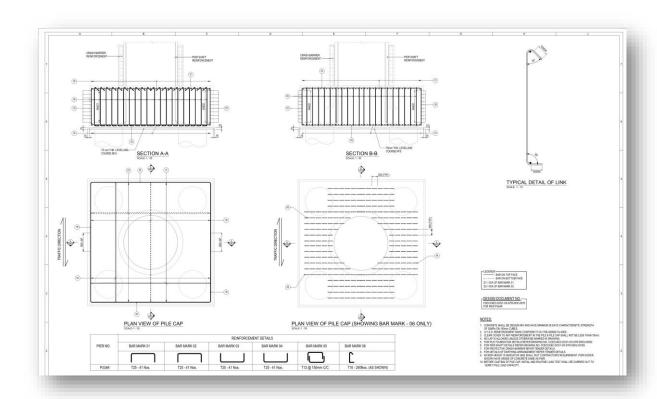

These quantities were then used for various activities like feasibility check, procurement, Cost Estimation, etc.

Structural Code	Tender Stage Volume	Design Stage Volume	Difference
Pile Cap	228.18	278.12	49.94
Pile	602.84	712.23	109.39
Pier Cap	261.66	320.72	59.06
Pier	181.95	177.04	-4.91
Superstructure	1320.89	1412.22	91.33
Total	2595.52	2900.33	304.81

Tender v/s Design Comparison


Sr No.	Structural Code	Concrete Type	Tender Stage Volume	Design Stage Volume					Total Design Volume	Difference	
SI NO.	Structural Code			M15	M35	M40	M50	M60	Total Design Volume	Difference	
1	Pile	Cast in Situ	1928.34	-	3334.31	-	-	-	3334.31	1405.97	
2	Pile Cap	Cast in Situ	873.52	-	2031.98	-	-	-	2031.98	1158.46	
3	Pier	Cast in Situ	653.8	-	-	-	518.62	-	518.62	-135.18	
4	RCC Column	Cast in Situ	70.43	-	-	-	14.43	-	14.43	-56	
5	Structural Framing	Cast in Situ	2002 55	-	-	-	67.9	279.8	347.7	4047.46	
6	Structural Framing	Pre-cast	3002.55	-	-	-	985.35	2686.66	3672.01	1017.16	
7	RCC Slab	Cast in Situ	4255.74	-	-	523.89	-	-	523.9	-821.08	
8	RCC Slab	Pre-cast	1356.74	-	11.76	-	-	-	11.76		
9	PCC Slab	Cast in Situ	34.21	74.23	-	-	-	-	74.23	40.02	
10	RCC Wall	Cast in Situ	315.13	-	-	96.28	-	17.94	114.22	-200.91	
11	RCC Staircase	Cast in Situ	66.45	-	-	51.08	-	-	51.08	-15.37	
12	Foundation Rebar	Cast in Situ	-	-	-	-	-	-	520239.64 kg	-	
-	Total	-	8301.17	74.23	5378.05	671.25	1586.3	2984.4	10694.24	2393.07	

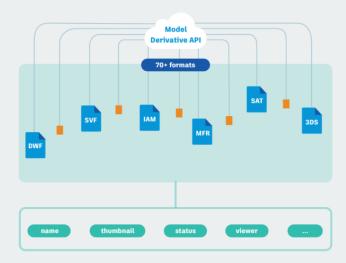
Creation of Sheets


The models were used to generate the CRD and GFC Drawings for the station and viaduct portions.

Creation of Sheets

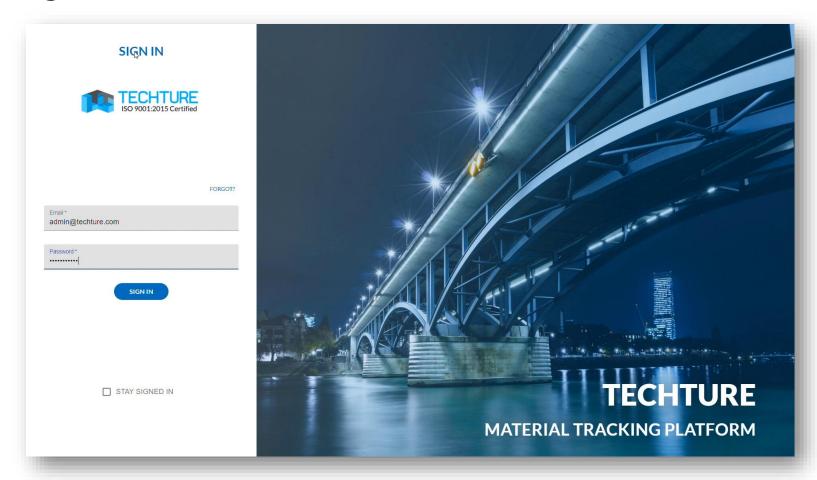
The drawings include details for Concrete details as well as Reinforcement details.

Creation of Sheets

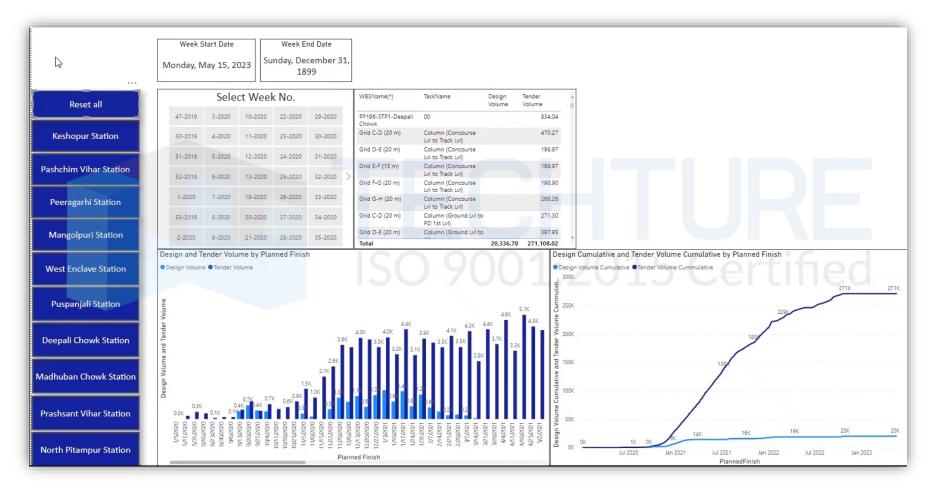

The drawings were created after coordinating all the elements within the model to provide the site team with accurate details and avoid issues during construction

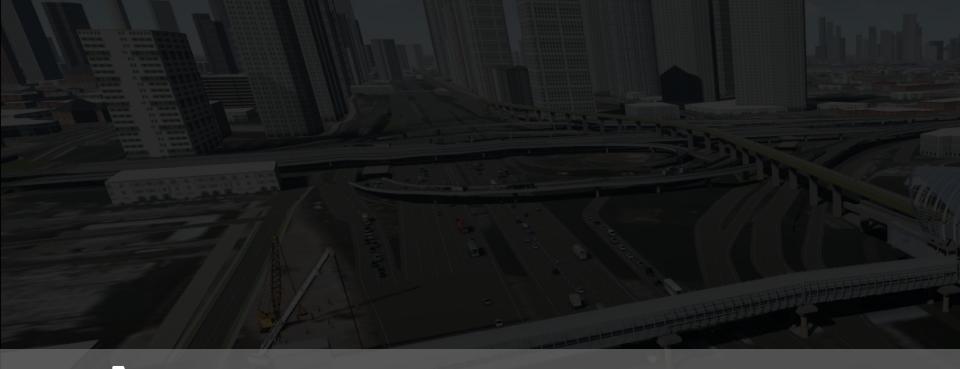
What is Forge?

Forge is a cloud-based developer platform from Autodesk. The Forge Platform offers APIs and services that help you access and use your design and engineering data via the cloud.


- BIM 360 API
- Data Management API
- Model Derivative API
- Design Automation API
- Authentication API
- Viewer API
- Reality Capture API
- Token Flex API
- Webhooks

Model Derivative API

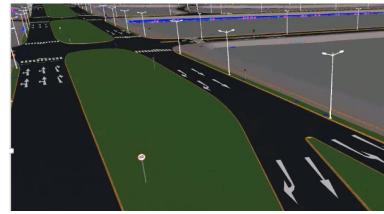



- This API can be used to prepare designs for rendering in the Viewer
- It can also be used to convert design files into other formats

Forge based Customization

Dashboard Generation

BIM for Highway Infrastructure Projects with the help of **Autodesk** tools


Case Study – Bidkin Industrial City & Expressways

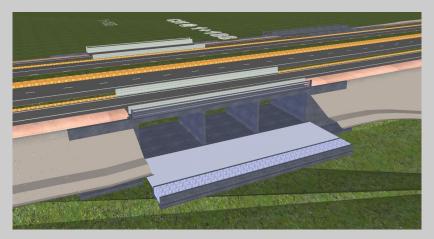
Benefits

- Improved coordination in design & Clash detection
- Quantity Extraction, cost estimation and report management
- 4D, 5D BIM, Improved Scheduling & Sequencing
- Improved Execution, productivity and Saving in resources
- Preconstruction Project Visualization
- Digital Documentation and Common Data Environment
- Coordinated and Shop drawings generation

Highway & Roads BIM Modelling

Infraworks

Civil 3D

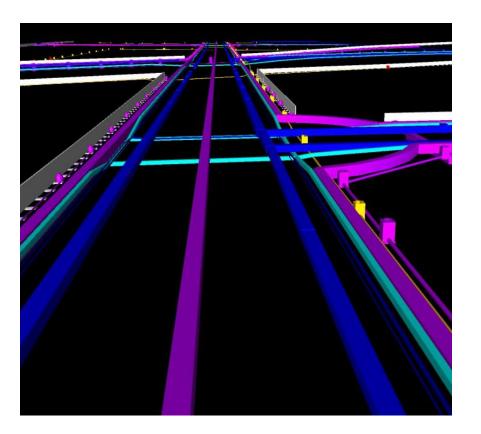

Highways & Utilities – Modelling Process

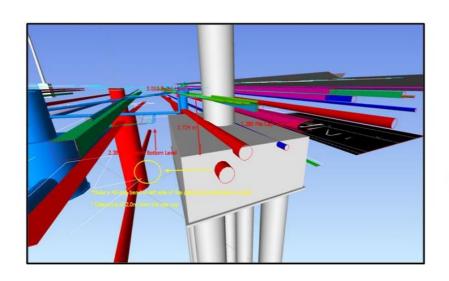
Structure Model:- The design drawing prepared by design consultant is basically a 2D AutoCAD drawing. The data rich 3D BIM model of the structures across the road is prepared with reference to design drawing and placed at designed elevation at its original location on road.

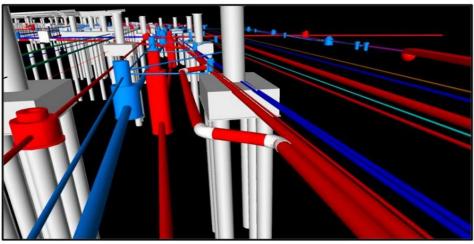
With this process we will get an idea about the level issues, clashes between the components etc. We can extract the shop drawings from the 3D BIM model which will be used in onsite construction.

Highway Model:- Using the Plan & profile and other design drawing of highways, highway model reflecting the design highway geometry and other elements like road furniture, l junctions etc can be created.

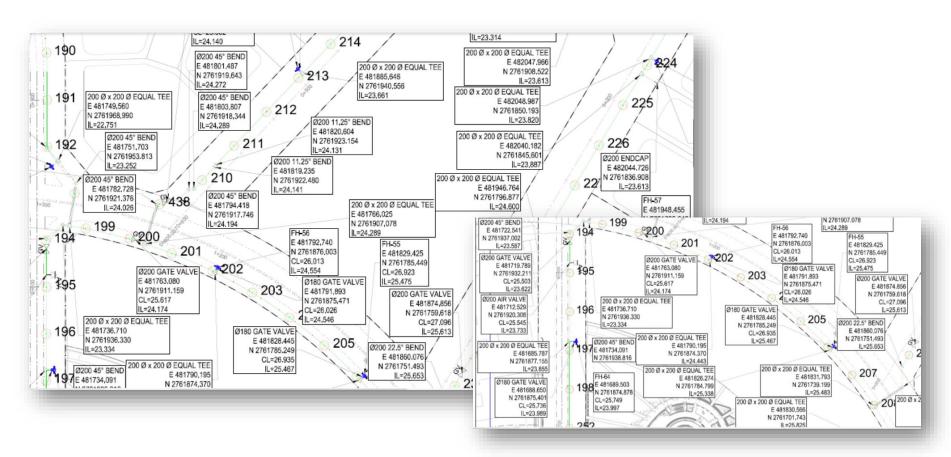
We can get the quantities, shop drawing, 4D/5D BIM model generation etc from the model. By combining road and structure model client and designers can get better visualization and it helps stakeholders in decision making process.




BIM for Highways & utilities


Exported Samples

Spatial Coordination & Clash Resolution



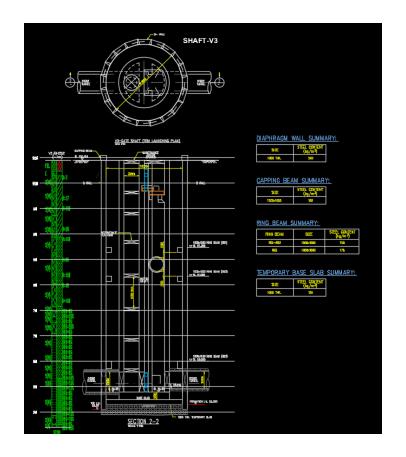
Original Model as per IFC Drawings

Revised Clash Free Model after Technical Discussions

Use of Civil 3D for Drawings Generation

Highway & Roads BIM Modelling

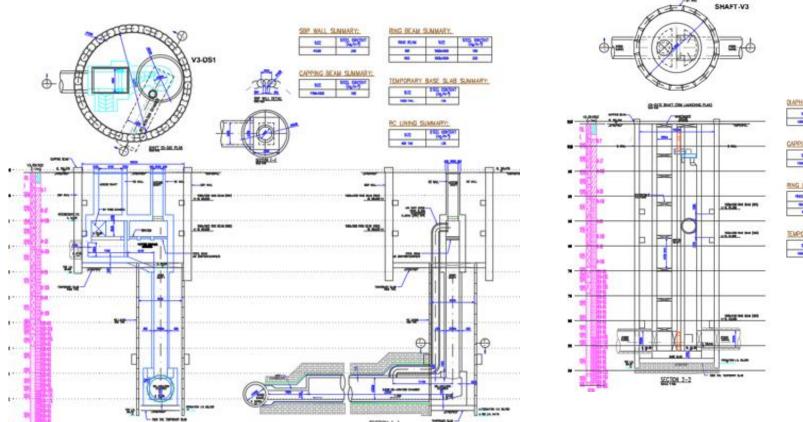
Quantity Estimation

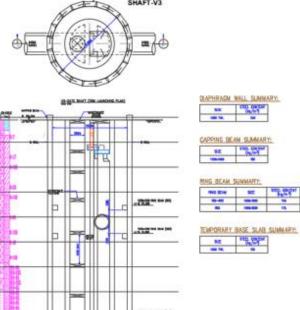

Pipe Table							
NAME	SIZE	LENGTH	SLOPE	MATERIAL	START STRUCTURE	END STRUCTURE	PIPE INVERT IEVEL
Pipe - (9)	1800 mm	304.3 m	0.12%	RCC PIPE with HDPE lining	MH-8	MH-16	SIL - 97.985 EIL - 97.605
Pipe - (2)	1800 mm	129.7 m	0.37%	RCC PIPE with HDPE lining	MH-16	MH-17	SIL - 97.605 EIL - 97.130
Pipe - (3)	2100 mm	48.4 m	0.08%	RCC PIPE with HDPE lining	MH-17	MH-18	SIL - 97.130 EIL - 97.090
Pipe - (4)	2100 mm	261.9 m	0.08%	RCC PIPE with HDPE lining	MH-18	MH-19	SIL - 97.090 EIL - 96.872
Pipe - (5)	2100 mm	235.3 m	0.08%	RCC PIPE with HDPE lining	MH-19	MH-20	SIL - 96.872 EIL - 96.676
Pipe - (8)	2100 mm	340.0 m	0.08%	RCC PIPE with HDPE lining	MH-20	MH-21	SIL - 96.676 EIL - 96.393
Pipe - (7)	2100 mm	89.0 m	0.00%	RCC PIPE with HDPE lining	MH-21		SIL - 96.393 EIL - 96.393

- 3D model can be used to create quantity estimation outputs in the form of tables which can be exported or displayed on drawing sheets (DWG/PDF files)
- Can be customized to suit any standards
- Data directly linked to the 3D model and updates continuously as changes are made

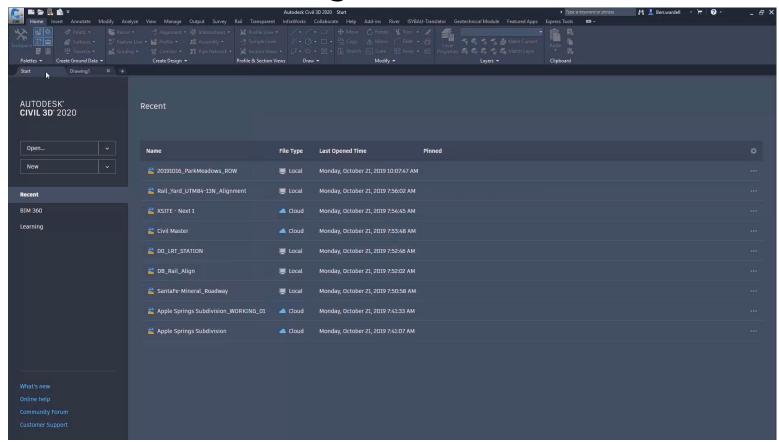
STRUCTURE TABLE				
STRUCTURE NAME:	DETAILS:			
MH-8	E = 19846.5260 N = 35811.6580 RIM = 115.90 m SUMP = 97.83 m RIM to SUMP HEIGHT = 18.075 m			
MH-15	E = 19904.7512 N = 35513.0003 RIM = 112.49 m SUMP = 97.44 m RIM to SUMP HEIGHT = 15.046 m			
MH-20	E = 19776.8650 N = 34872.8910 RIM = 109.32 m SUMP = 96.49 m RIM to SUMP HEIGHT = 12.829 m			
мн-17	E = 19880.9070 N = 35385.5380 RIM = 109.18 m SUMP = 97.13 m RIM to SUMP HEIGHT = 12.051 m			
мн-18	E = 19890.5719 N = 35338.1372 RIM = 108.21 m SUMP = 96.90 m RIM to SUMP HEIGHT = 11.305 m			
MH-21	E = 19606.4477 N = 34580.3792 RIM = 107.87 m SUMP = 96.21 m RIM to SUMP HEIGHT = 11.662 m			
MH-19	E = 19765.7930 N = 35107.8990 RIM = 106.84 m SUMP = 96.69 m RIM to SUMP HEIGHT = 10.153 m			

UTILITY STRUCTURES

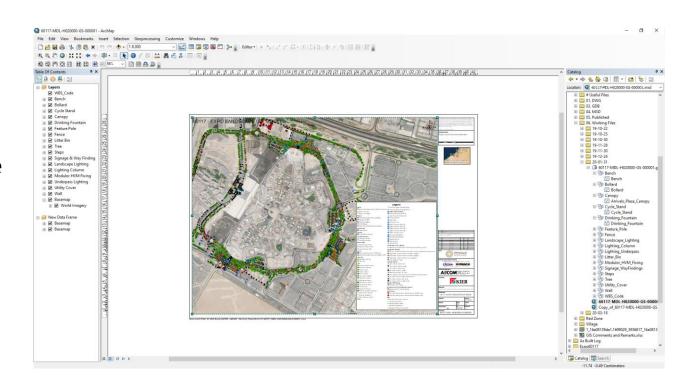

Model and Sheet Automation - Dynamo


Objectives & Challenges

- Infrastructure modelling tools like Civil 3D etc. don't support higher LOD of manholes, especially to detail parts, rebar, piping connections etc. That is possible in a tool like Revit.
- However, in Revit, the major challenge is to place the manholes at the correct coordinates and also with the right orientation, and the pipes at correct invert levels. This is solved using a combination of a complex parametric family and Dynamo to drive the parameters.
- Dynamo scripts helped automate placement of the manholes, as well as generate shop drawings of the same.


Model and Sheet Automation - Dynamo

Creation of Shop Drawings



Collaboration using BIM Collaborate Pro - ACC

BIM & GIS Integration

- The Integration of the BIM Model, as seen for Roads, Water Tank and Street Furniture has happened with the GIS Imagery and the Digital Elevation Model
- The Platform for Integration as used here Autodesk Infraworks and ArcGIS.

Summary

- Although infrastructure projects in India have not utilized Autodesk tools to their potential, there is a lot to explore.
- Autodesk tools already have robust capabilities to deliver Infra projects including linear infrastructure, rail, metro, water utilities and highways.
- Enhanced tools for Rebar modelling make it possible to deliver highly detailed BIM Models and related sheets.
- Need to think out of the box to create practical workflows utilizing Revit, Civil 3D and Infraworks and extend the possibilities using tools like Dynamo
- Using cloud-based tools like BIM Collaborate Pro (for Revit as well as Civil 3D) and other offerings within Autodesk Construction Cloud collaboration is eased and tailor-made solutions can be built using Forge.

AUTODESK UNIVERSITY