
AUTODESK UNIVERSITY

Automation Thinking for Civil Engineers & BIM Professionals

Shinu Mathew

Head — BIM & Allied Technologies | Iinkedin.com/in/shinu-Mathew | Twitter: @ShinuMa00908902

© 2021 Autodesk, Inc.

About Me

Shinu Mathew Head – BIM & Allied Technologies Arcadis India Pvt Ltd Bangalore

Shinu Mathew have been working in the Civil Infrastructure industry for over 24 years and of that, 9 years with Arcadis as a BIM Professional and Automation Champion.

Have developed many advanced Automations since late 1990s, using Lisp, VBA & VB.Net.

Automation Thinking - Basics

Introduction

Technology evolution in the Design & Construction industry is forcing all of us to adapt to the fast-changing digital landscape.

Why Now?

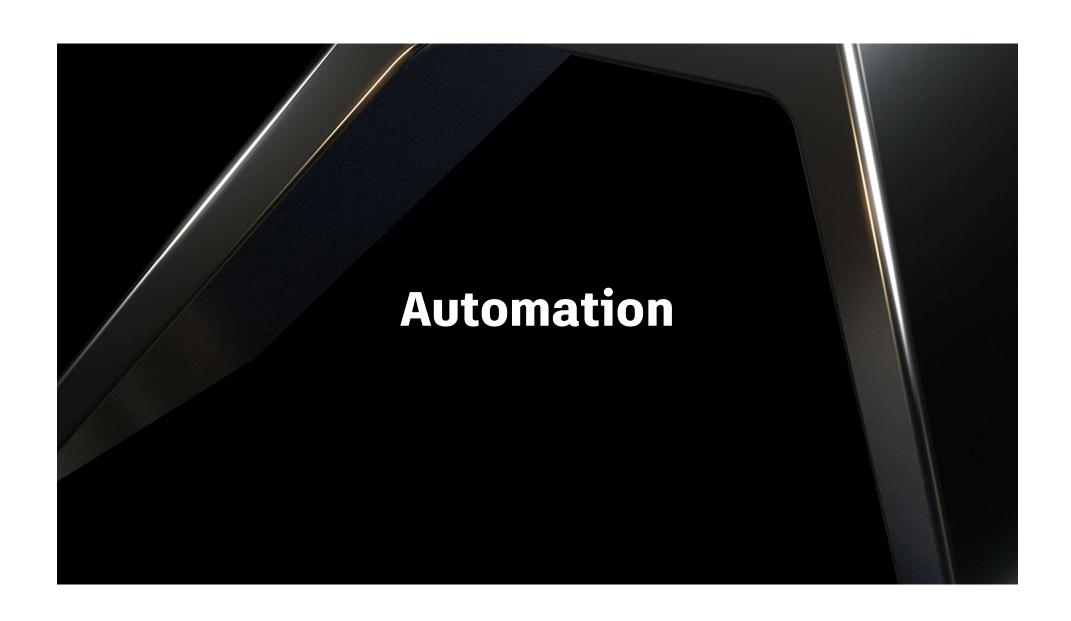
- Easier Programming Languages Visual Programming
- Anyone Could Automate –Attitude & Aptitude
- High Demand

Innovation

A presentation by Harvard Business School Professor, Clayton M Christensen, narrates the dilemma of Inventors. He talks about two types of innovations. Sustaining Innovation & Disruptive innovation.

Sustainable

Improving the current product by;


- Reducing defects
- Increasing efficiency
- Speeding up production time

Revolves around existing product portfolio & customer's current needs/expectations

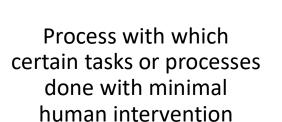
Disruptive

Often challenges the existing practices. It does not conform to the framework set by the present practices and the proponents of Sustaining Innovation would often neglect it.

- The need exists in the future
- Starts with the niche market & small clientele
- Once matured, unleashed upon the bigger market – often uprooting the market leaders

Standardization

We should always try to maintain a proper standard in, but not limited to;


- Naming
- Coding
- Commenting
- Grouping
- Repository

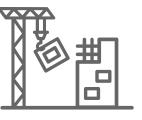
What is Automation?

Process with which certain tasks or processes done with minimal human intervention

Reducing errors & and increases efficiency

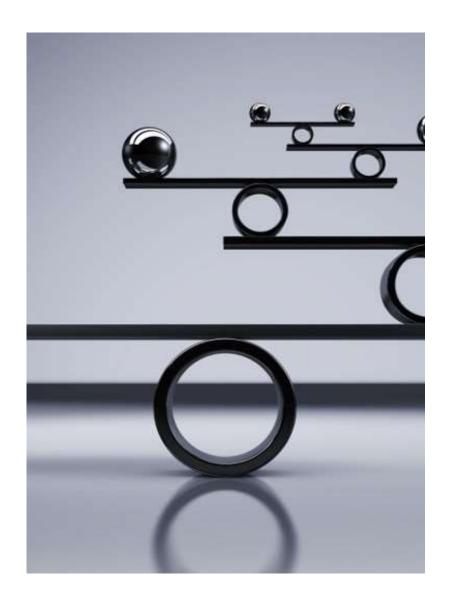
Automate boring, repeated tasks

What is Automation Thinking?


Automation thinking is the process of identifying / analyzing / executing Automation opportunities

Identify

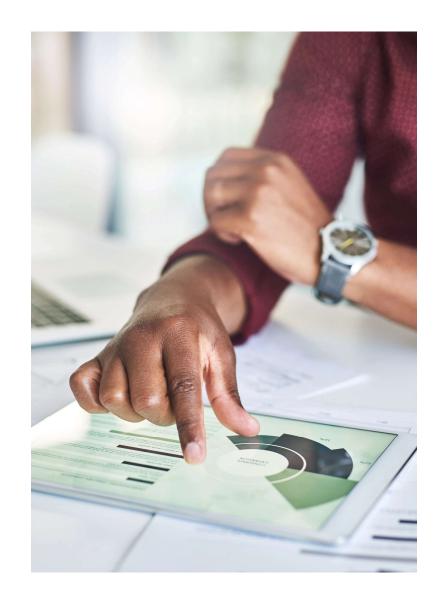
Analyze



Execute

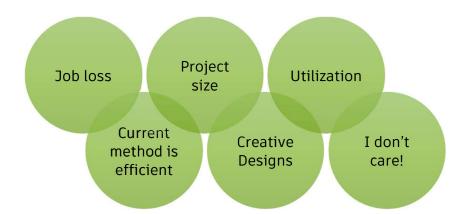
Background

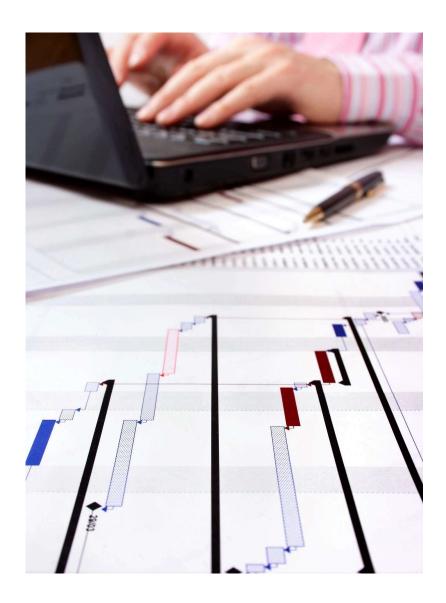
Evolution of design automation.


From the early days, designers found ingenious ways to automate their job. From T-Scale to Drafting machines, from plain tables to theodolites to total stations to laser scanners, they were always looking for easier & faster ways to achieve results.

Survival of the savvy

Automation is going to be an essential skill


To survive and succeed, one must adapt to the changing landscape. Clinging on to the dated techniques may buy some time, but not long. Change is already here.

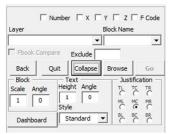


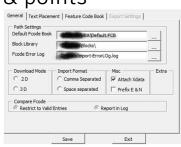
Why Automation

Resistance to change.

You must have heard it many times! The pushback to change, the resistance to adopt automations among the conservative civil engineers.

Early Examples


Examples from a decade ago.

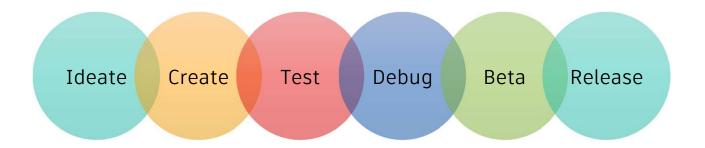

Survey points in AutoCAD

Surveyors produce CSV files, and plotting those points in AutoCAD was a tedious task. Some used Excel, some Lisp

Then I wrote a program that;

- Reads the CSV
- Determine blocks based on Feature code
- Places custom blocks & points

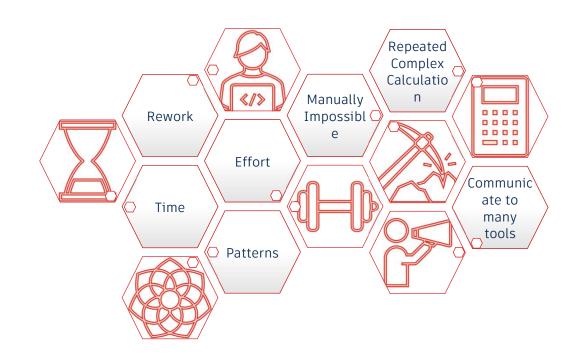
Executing series of commands


Automation by running a series of commands, as it would be if one were typing in them.

- Script files (*.scr)
- Recorded Macros

Automation - How?

To create a proper automation that can be used by a wider audience, it would require proper planning & execution. Below are some major steps in developing.

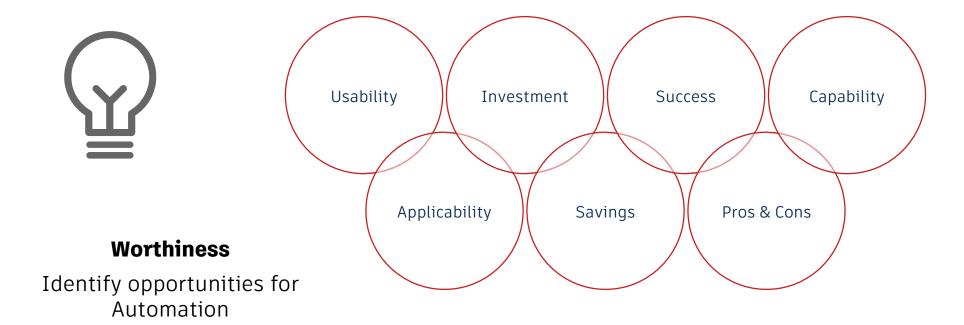

Ideate

Find opportunity

Identify opportunities for Automation

Ideate

Who can help us?

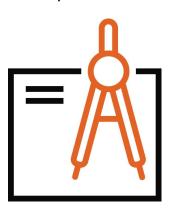


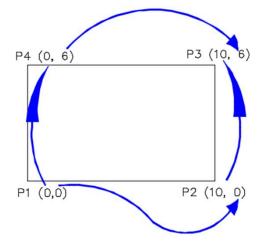
Brainstorm/Collaboration

Discuss the idea

Ideate

Is it worth Automating?


Geometrical vs Logical


To create automation, embrace the logical thinking

Geometrical Thinking

We tend to think in Geometrical terms.

- Design Visualization is in 2D/3D
- Shapes & Sizes

Logical Thinking

Visualizing the relation between elements.

- Looking at relations & patterns
- Mathematical analysis
- Problem solving mindset

Application Programming Interface

Tool-Targeted applications need API

Application Programming interface (API) will enable the *Coding Platform* talk to the *Target Application*, by exposing the Target's internal functions to the code language.

- Connection between coding platform & targeted tool
- Exposes target tool's properties, functions etc.
- Help coders in accessing all the objects

API

Exposes target tool's properties, functions etc.

Target Tool &

Help coders

in accessing

all the

objects

Intelligence

Branching / Conditional Logic

Intelligent decision making is important in coding. If a certain value meets a criterion, then it should execute a branch of the code, and if it does not a different one. A programmer must accommodate all scenarios for the code to cater to the need.

Data Types

Data type is the type of a certain value / parameter with which the programmer intends to process. Each host application will have its defined types, below are the ones outside of that.

- String
- Integer
- Long
- Double / Real
- Boolean
- Datetime

Events

A certain block of code executed when the user/application trigger an action.

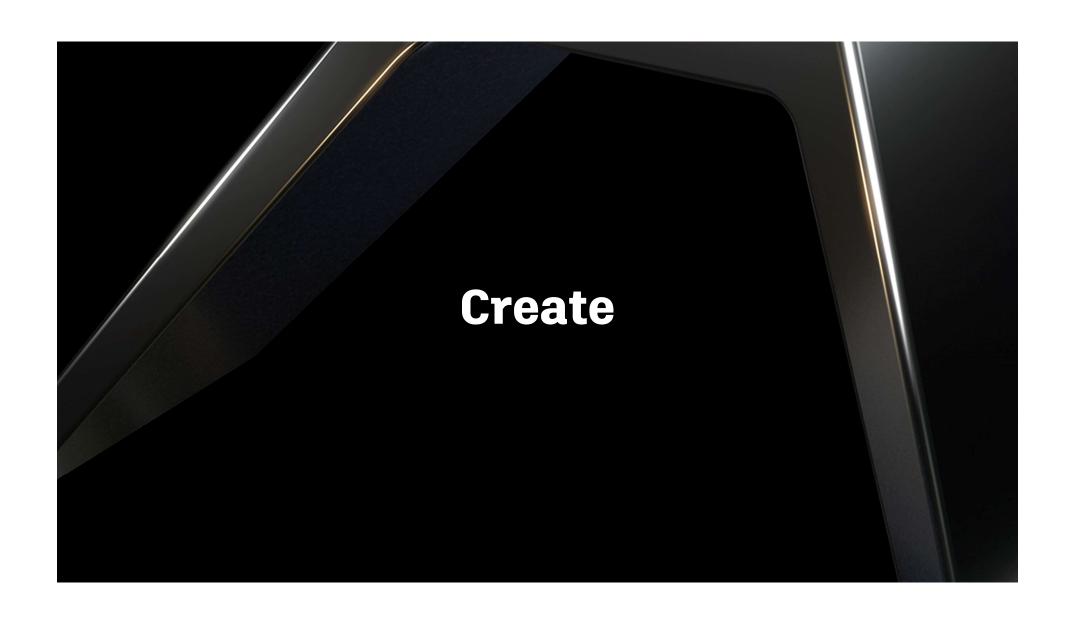
- Click of a certain button on mouse / keyboard
- Click on a button/control on user interface
- Change of status of a control / object
- Addition / Deletion / change status of an element.

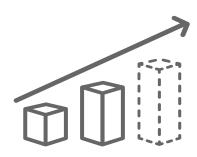
End Result

End Result

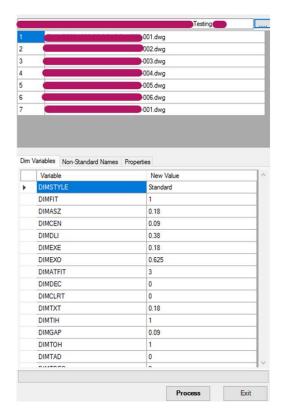
Stand Alone

An Independent package, with no dependence on other tools


Coding Platform



VisualEasy, predefined nodes


TextComplex programs

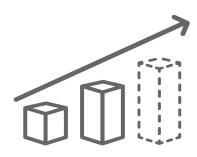
Scalability

Provisioning for future scale-up

TSTYLE TSTYLE LAYER LAYER LAYER	OBLIQ COLOR COLOR	Standard Standard 0 7 GIS_PRJ_BDRY RD_C_HATCH	1 0 222 1
LAYER	COLOR	RD_C_HATCH	1
LAYER	COLOR	RD C TABLE	7
LAYER	\$0\$Z_35TEXT	s Defpoints Z_35TEXT Z_35TEXT	
		Z DIMS	
LAYER	_Acm-CT-RM-	Sign RD	_PR_TS_SIGN
LAYER	_Acm-CT-RM-	Sign_Board RD	_PR_TS_SIGN
LAYER	_Acm-G-BLUE RD_PR_TS_SIGN		
LAYER		ker Defpoints	
LAYER	_	ind hatch RD	
		ind cable RD	FX_21_CRFF
LAYER		Z_18TEXT Z 25TEXT	

SIMPLEX8

ISOCP.SHX


TSTYLE FONT

Decomposition

Breaking up a complex problem into manageable chunks

Charting the flow

High-level data flow, decision juncture & branching chart

```
If TypeOf holdObj1 Is Pipe Then
    Dim mySPipeNormal As Pipe = CType(holdObj1, Pipe)
    stEleS = mySPipeNormal.StartPoint.Z
    enEleS = mySPipeNormal.EndPoint.Z
    If TypeOf holdObj2 Is Pipe Then
       Dim myePipeNormal As Pipe = CType(holdObj2, Pipe)
       Dim newSTP As Point3d = New Point3d(myePipeNormal.StartPoint.X, myePipeNormal.StartPoint.Y, stEleS)
       Dim newENP As Point3d = New Point3d(myePipeNormal.EndPoint.X, myePipeNormal.EndPoint.Y, enEleS)
       If StrComp(userAns, "Both", CompareMethod.Text) = 0 Then
            myePipeNormal.StartPoint = newSTP
            myePipeNormal.EndPoint = newENP
        ElseIf StrComp(userAns, "Start", CompareMethod.Text) = 0 Thecommand
            myePipeNormal.StartPoint = newSTP
        ElseIf StrComp(userAns, "End", CompareMethod.Text) = GruTher
            myePipeNormal.EndPoint = newENP
        End If
                                                        Command2()
    Else
       ed.WriteMessage("Transfer of Elevation from same types of
    End If
```

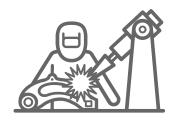
Capturing / Trapping Errors is another integral part of programming. Without proper error handing, the program could crash at the smallest error, can corrupt databases, or simply not work.

- Pre-Empt prevent errors from happening by anticipating them and take necessary measures
- Capture trap the error as it happens, and take the next action based on the type of error.

Error Trapping

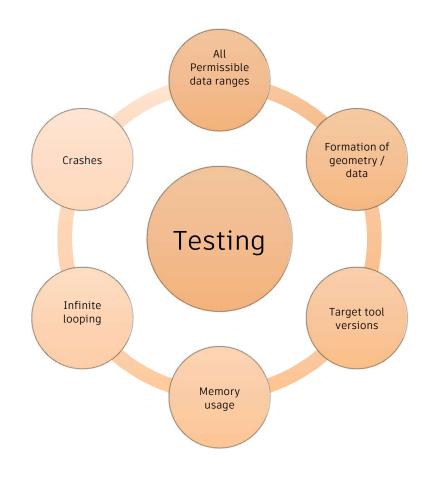
A minimum viable product

A no-frills, non-finished, bare minimum product to see;

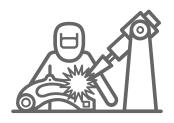

- Flaws in the logic
- Flaws in the process
- Flaws in the structure
- The behavior of various parameters
- Basic error trapping & triggers
- Internal testing

Prototype/MVP

A minimum viable product



Testing / Debugging


Test / Debug

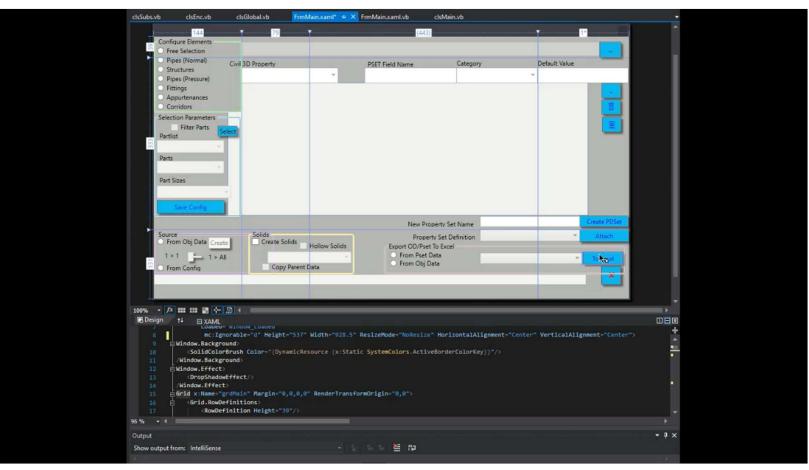
Testing out the tool & de-bugging the obvious shortcomings, flaws etc

Beta & Release

- Version each Beta release 0.1, 0.2.
- Ensure it works as intended All computers, environments
- Collect systematic feedback
- Not all feedback can go into the first release.
- Valid comments that is not implemented must go in a future version.

Beta Testing

Initial release to domain experts, only to find our the realworld behavior of the tool


Release

Tool released to intended audience

<u>Demo - Property Data Set Manager</u>

AUTODESK UNIVERSITY

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.