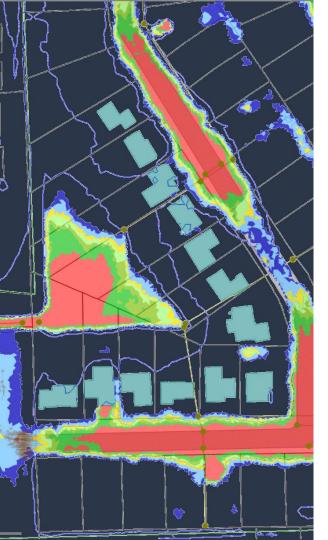


Safe Harbor Statement

We may make forward-looking statements regarding planned or future development efforts for our existing or new products and services and statements regarding our strategic priorities. These statements are not intended to be a promise or guarantee of business results, future availability of products, services or features but merely reflect our current plans and are based on factors currently known to us. These planned and future development efforts may change without notice. Purchasing and investment decisions should not be made based upon reliance on these statements.

A discussion of factors that may affect future results is contained in our most recent Form 10-K and Form 10-Q filings available at www.sec.gov, including descriptions of the risk factors that may impact us and the forward-looking statements made in these presentations. Autodesk assumes no obligation to update these forward-looking statements to reflect events that occur or circumstances that exist or change after the date on which they were made. If this presentation is reviewed after the date the statements are made, these statements may no longer contain current or accurate information.

This presentation also contains information, opinions and data supplied by third parties and Autodesk assumes no responsibility for the accuracy or completeness of such information, opinions or data, and shall not be liable for any decisions made based upon reliance on any such information, opinions or data.


Autodesk's partners frequently compete against each other in the marketplace, and it is critically important that all participants in this meeting observe all requirements of antitrust laws and other laws regarding unfair competition. Autodesk's long insistence upon full compliance with all legal requirements in the antitrust field has not been based solely on the desire to stay within the bounds of the law, but also on the conviction that the preservation of a free and vigorous competitive economy is essential to the welfare of our business and that of our partners, the markets they serve, and the countries in which they operate. It is against the policy of Autodesk to sponsor, encourage or tolerate any discussion or communication among any of its partners concerning past, present or future prices, pricing policies, bids, discounts, promotions, terms or conditions of sale, choice of customers, territorial markets, quotas, inventory, allocation of markets, products or services, boycotts and refusals to deal, or any proprietary or confidential information. Communication of this type should not occur, whether written, oral, formal, informal, or "off the record." All discussion at this meeting should be strictly limited to presentation topics.

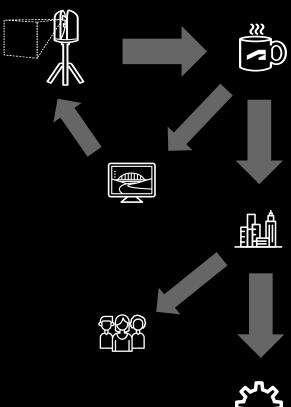
PLEASE NOTE: AU content is proprietary. Do Not Copy, Post or Distribute without expressed permission.


Course Content

A Flood Modelers guide to Project Impacts

InfoWorks ICM assists engineers and designers in understanding projects impacts on the environment. Extreme events continue to stress local and regional civil infrastructure, and our tools and techniques must change as we design projects in our communities. InfoWorks ICM enables team collaboration and empowers engineers to reach beyond single purpose tools to evaluate various options against a multitude of rainfall events within the context of the entire watershed. This technical instruction class will provide users through a number of considerations to preserve AutoCAD© Civil 3D designs in evaluation of possible flood damages across the wide range of flood scenarios.

Learning Objectives



com·mu·ni·ca·tion

/kəˌmyoonəˈkāSH(ə)n/

process by which information is exchanged (Merriam-Webster)


AutoCAD[©] Civil 3D data InfoWorks [©] ICM models

Data Exchange

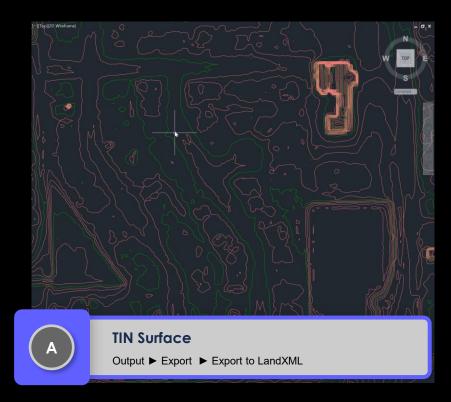


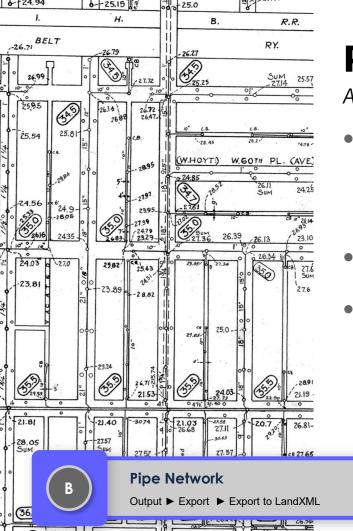
- Terrain Surfaces
- Pipe Networks
- Lines/Points/Polylines
- Rivers/Sections

- Model Inputs
 - Ground Models
 - 1D Pipe Networks
 - River 1D Networks
 - o 2D Mesh Models
- Model Results

Key Questions to ask

Source of Surface Data


- ➤Terrestrial
- ➤ LiDAR or GIS

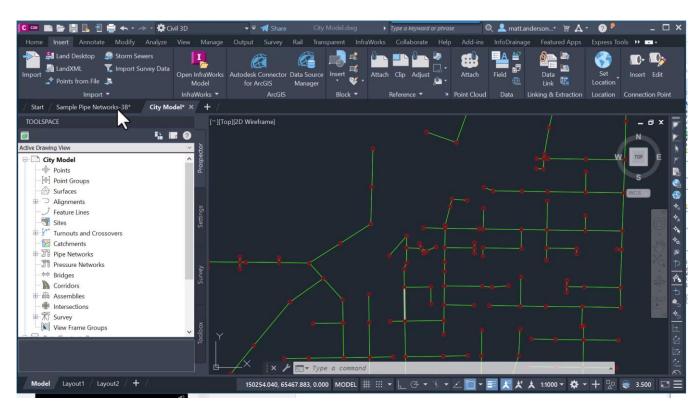

Scope of surface changes

- □Single
- ■Multiple

TIN Surface

Avoid Grid...

Pipe Networks


A model or reference?

- Existing Pipe Networks
 - Are they flat, CAD-entities lines and labels?
 - Are they attributed Asset Inventory from GIS?
- Civil 3D- Pipe Network
- Challenges Be On the Lookout!
 - Multiple Barrel Pipes
 - Unique Geometric Shapes Pipe & Structures
 - Inlet Configurations

Pipe Network

Prospector ► Copy to Clipboard

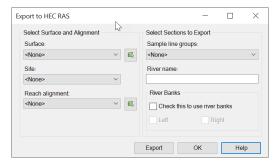
Pipe Networks

Linework

DWG Lines, Points and Polylines

- AutoCAD Linework to build Hydraulic Model elements
 - Points ► Nodes (Junctions, Outfalls, Storage)
 - Lines ► Linear elements, (River section, conduit, ...)
 - Lines ► Text Elements (General Line & Import Text into)
 - Polylines ➤ Area elements (Zone, polygon, roughness zone)
 - 2D Polylines ► Area element (One Z elevation)
 - 3D Polylines ➤ Mesh element (Many Z elevation)

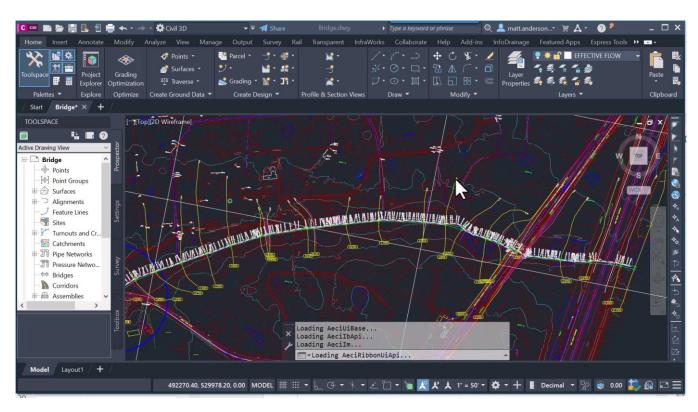
CAD Linework



Rivers

2-steps to convert

- Surface (cut cross-sections)
- Alignment
- Sample Line Groups (use polylines)
- Bank Lines (optional)

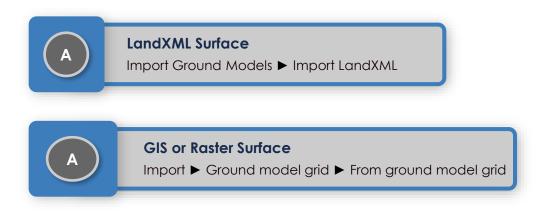

Open HEC-RAS v5 ➤ Import GIS data

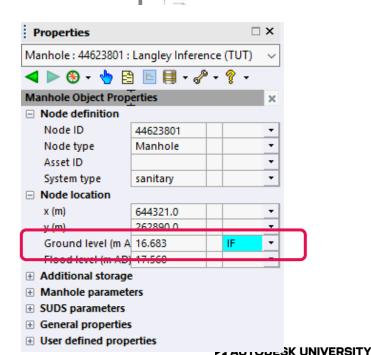
Flooding

Requires HEC-RAS for conversion

Export to HEC-RAS

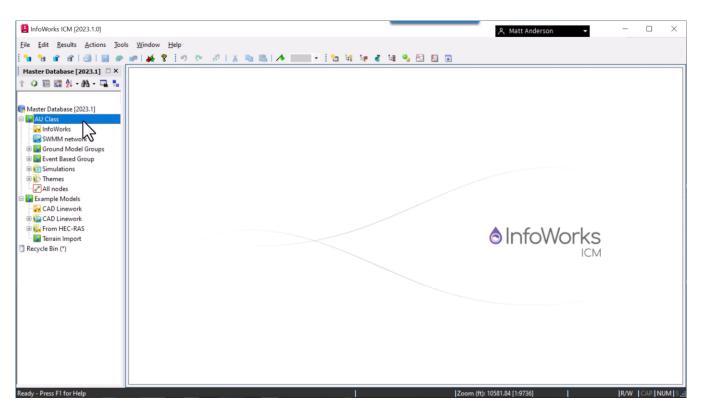
Ground Models

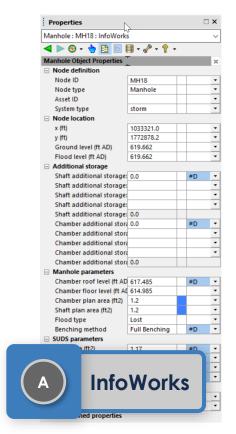

InfoWorks ICM

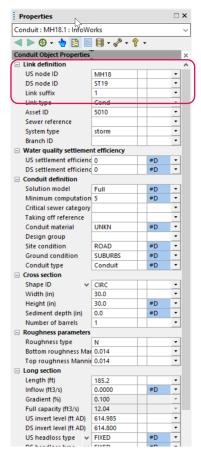

Master Database [2023.1] AU Class SWMM network Ground Model (Raster) Ground Model (TIN)

Surfaces from Civil 3D

1. Source Data

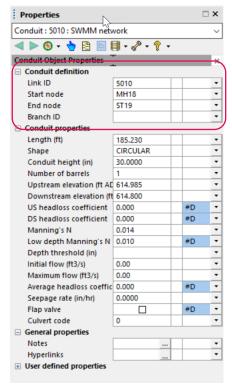

- a) LiDAR / Remote Sensing / GIS
- b) Terrestrial Survey
 - Point, Survey Database




Ground Models

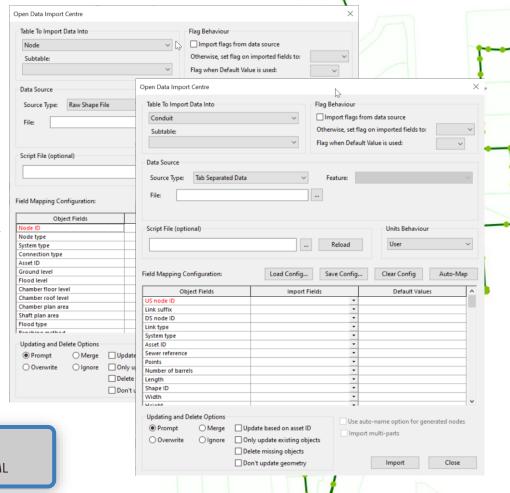
From GIS or From TIN

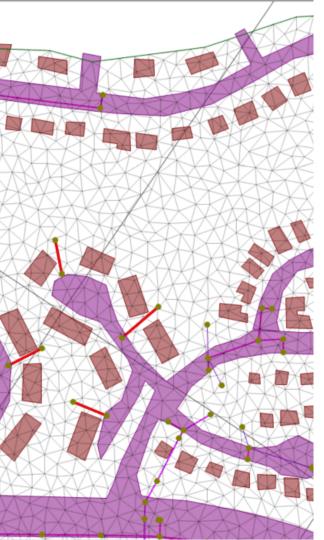
Network types



InfoWorks ICM

→ 🕪 • 👆 🖺 🖺 [1 - & • ?	•	
Node Object Properties			
─ Node definition			_
Node ID	MH18	T	٠,
Node type	Junction		٠,
■ Node location			
x (ft)	1033321.0	T	
y (ft)	1772878.2		
■ Node properties			
Invert elevation (ft AD)	614.985		,
Ground level (ft AD)	619.662		٠,
Max depth (ft)	4.677	#D	,
Initial water depth (ft)	0.000		٠,
Surcharge depth (ft)	0.000		٠,
Ponded area (ft2)	0.000		٠,
Treatment			,
Sewershed contributing	0.000	#D	•
Unit hydrograph ∨			٠,
Flood type	2D		٠,
Flooding discharge coeff	0.50	#D	•
■ Direct inflows			
Baseline inflow (ft3/s)	0.00	#D	
Inflow scale factor	1.000	#D	,
Inflow pattern			٠,
Pollutant inflow			٠,
□ DWF			
Base flow (ft3/s)	0.00	#D	
Base flow pattern 1			,
Base flow pattern 2			,
Base flow pattern 3			,
Page flow mattern 4			,
			E
B S	NMN	1	




InfoWorks Networks

Open Data Import Center

- Open Data Import Center (GIS)
 - Raw Shape File
 - CSV or Tab
 - Avoid field ground-level cannot accept value 650.836
 - Other GIS formats
- Model Imports
 - Import SWMM Network
- Exchange SWMM into InfoWorks

SWMM Networks

Open Data Import Center Open Data Import Centre Table To Import Data Into Flag Behaviour Import flags from data source Conduit Otherwise, set flag on imported fields to: Open Data Import Centre Subtable: Flag when Default Value is used: Table To Import Data Into Flag Behaviour Import flags from data source Node Data Source Otherwise, set flag on imported fi Subtable: Source Type: Tab Separated Data Feature: Flag when Default Value is used: Data Source Tab Separated Data Source Type: Script File (optional) Units Behaviour User Reload Script File (optional) Field Mapping Configuration: Load Config. Save Config. Clear Config Reload User Object Fields Import Fields Default Values Link ID Start node Field Mapping Configuration: Load Config. Save Config. Clear Con End node Length **Object Fields** Import Fields Defau Points Node ID Shape Node type Horizontal ellipse size code Vertical ellipse size code Standard size material Route to subcatchment Concrete size code Unit hydrograph Plate 18 size code Sewershed contributing area Plate 31 size code Steel 1/2 inch size code Ground level Invert elevation **Updating and Delete Options** Use auto-name option for generated nodes Max depth Prompt Update based on asset ID Surcharge depth Import multi-parts Only update existing objects Initial water depth Overwrite Delete missing objects Updating and Delete Options Don't update geometry Close Use auto-name option Update based on asset ID Import multi-parts Only update existing objects Delete missing objects Don't update geometry Close ✓ AUTODESK UNIVERSITY

Import ► Model...

Other Hydraulic networks

- from HEC-RAS network data...
- from SWMM5 text file...
 - Autodesk Storm & Sanitary export
 - From SWMM Network

from InfoDrainage data...

from MicroDrainage data...

from XPRAFTS XPX file...

from HEC-RAS network data...

from Mouse text file...

from Mouse PFS file...

from SWMM4 text file...

from SWMM5 text file...

from SOBEK network data...

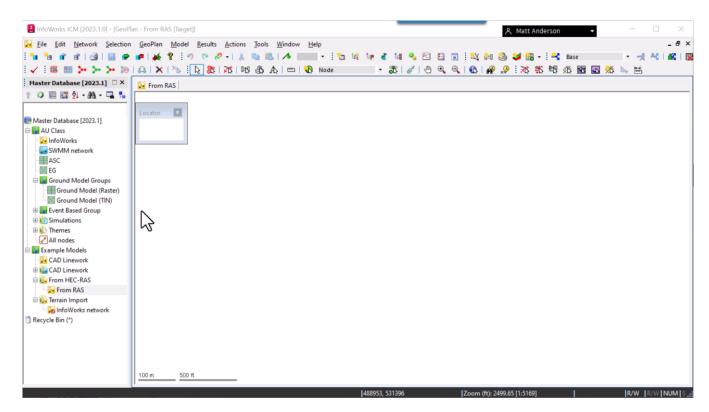
from EACSD network data...

from TUFLOW network data...

from HYDX network data...

from SWMM network...

from XPSWMM/XPStorm...



Model Import

Network ► Import ► Model ► from HEC-RAS network data

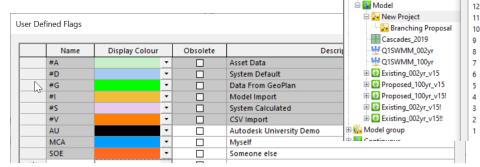
Import from HEC-RAS

Scenarios & Collaboration

Start Optioneering

Collaboration

Building a modeling team


Workgroup Server

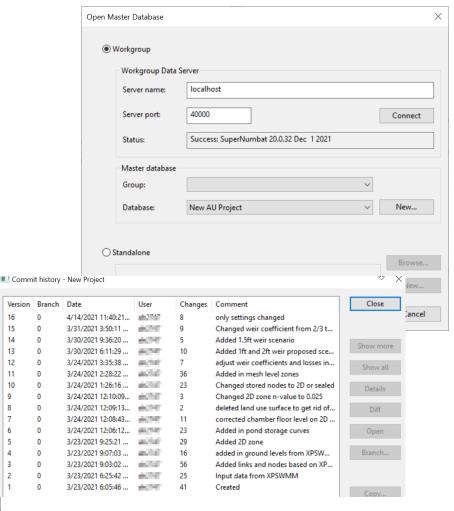
Server Installation

Multi-user version control system that allows concurrent editing of a

network

User Define Flags

Master Database [2023.0] □ ×

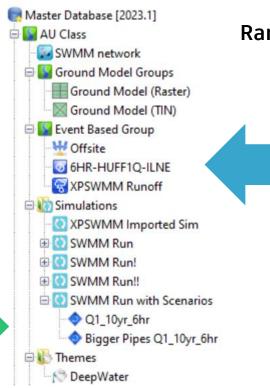

Master Database [2023.0]

Older Model

Project ABC

O III 🛅 🕺 - 🗚 - 🖳 🚦

Version



Scenarios

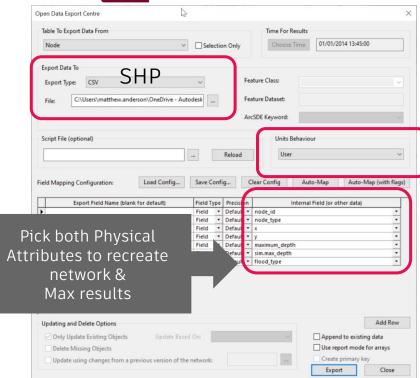
Optioneering

Physical Networks

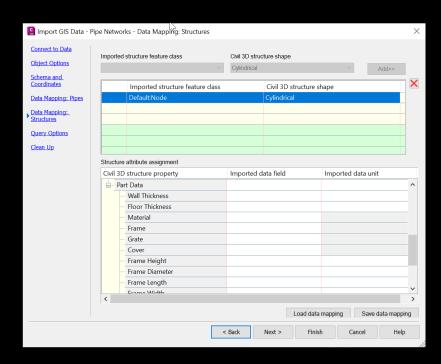
- How does the system perform with changed physical attributes?
 - Option 1 Single Pipe Size X
 - Option 2 Single Pipe Size Y
 - Option 3... other options

Range of Events

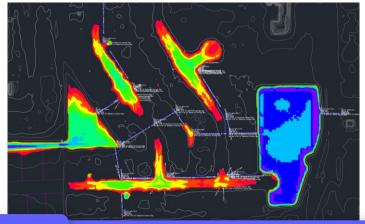
- Network is separate from Event-based conditions
- Simulations and Results bring events together.

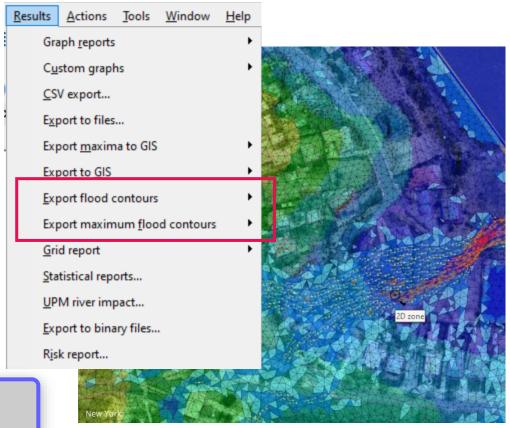

Flood Damages

Pulling results into Civil 3D


Open Data Export Center

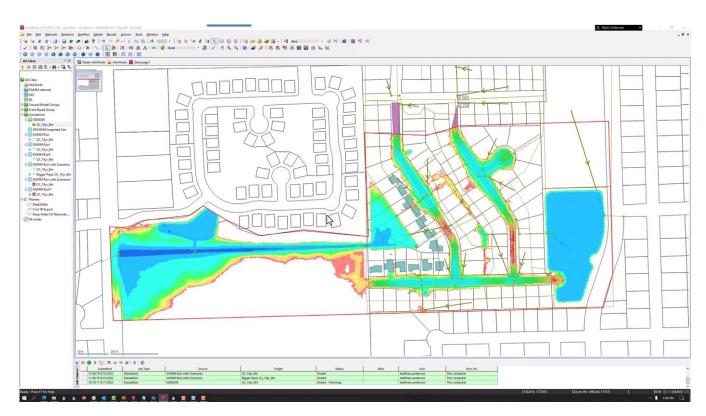
InfoWorks ICM




Import GIS Data

Pushing Results Back

- InfoWorks ICM Networks
 - Themes drive values exported
 - Depths looks good but elevation is needed.



Export maximum flood contours

Surface ► DEM ► Import ► from DEM

Results back to Civil 3D

Data Exchange between C3D and ICM

Know Data

Understand potential scope of data exchange across a project.

Surfaces ► Ground Models

Pipe Networks ► Networks

CAD linework ► Sections...

Results ► C3D Object

Scenarios & Branches

ICM supports groups and multiple networks in one master database – use scenarios and branches to migrate data back and forth.

Test designs fit & performance

Understand Limits

Be on the lookout for those unique situations outside of the commonalities.

- Unique Structures
- Multiple Barrels
- Inlet Conditions
- Export Themes

Engage

Let us know what problems you would like to see tackled.

feedback.innovyze.com

<u>Civil Infrastructure – Public</u> <u>Roadmap - Infrastructure</u> <u>Reimagined (autodesk.com)</u>

