
BIM-CAD-GIS Integration for Civil/Transportation Project Delivery

Session: C1225911

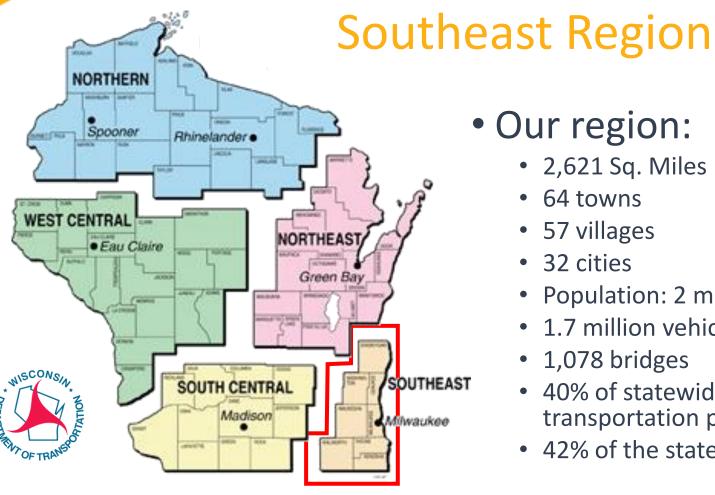
Presenter: Lance Parve

Sr Design-Construction Project Engineer, BIM Coordinator SE Freeways Design-Construction, SE Region, Wisconsin DOT TRB BIM Subcommittee Co-Chairperson, ABJ95 Committee

Date/Time: November 14, 2018 08:00-09:00 a.m.

Bio:

Lance Parve, MSEng, PG, GISP


Lance works as Senior Project Design-Construction Engineer /BIM Coordinator in SE Freeways/SE Region at WisDOT. His work involves planning, design, and construction of mega/major transportation projects and also provides BIM-CAD-GIS, 3D technologies, LiDAR/integrated survey coordination, and innovation support. Lance has over 27 years of industry experience - 12 public sector transportation/municipal and 15 private sector consulting - involving successful digital project delivery in civil infrastructure planning, design, and construction. Lance serves at TRB as Co-Chairperson of the BIM-CIM-VDC Subcommittee of ABJ95 Committee and also on the Steering Committee of the IICTG-International Intelligent Construction Technologies Group. He has a MS Engineering degree, MS Certificate Urban Planning GIS degree, and a BS Geological Sciences degree from the UW-Milwaukee.

Contact:

lance.parve@dot.wi.gov

Phone: 414-731-5375

• Our region:

- 2,621 Sq. Miles
- 64 towns
- 57 villages
- 32 cities
- Population: 2 million+
- 1.7 million vehicle registrations
- 1,078 bridges
- 40% of statewide transportation program
- 42% of the state's senators

Presentation Agenda

- BIM and Project Delivery at WisDOT SE Freeways
- Technology and Innovation Implementation
- Benefits, Return on Investment and Challenges
- GIS and Asset Management at WisDOT SE Region

Learning Objectives

- To leverage BIM Technologies for Project Delivery
- To implement Project Execution Plans (PxP) for BIM
- To address Challenges to deploy BIM
- To integrate GIS, BIM and CAD for Asset Management

Zoo IC Project Design Contacts

 Bob Gutierrez, PE, SE Freeways Design Chief <u>roberto.gutierrez@dot.wi.gov</u>

 (262) 548-5622

- Bill Mohr, PE, SEF Design Project Supervisor <u>bill.mohr@dot.wi.gov</u>
 (262) 548-5666
- Wafa Elqaq, PE, SEF Design Project Supervisor wafa.elqaq@dot.wi.gov (414) 750-1506
- Chris Zacharias, PE, SEF Design Project Manager <u>christopher.zacharias@dot.wi.gov</u>
 (262) 548-6716

Zoo IC Project Construction Contacts

 Ryan Luck, PE, SE Freeways Construction Chief <u>ryan.luck@dot.wi.gov</u>

 (414) 750-1461

- Jason Roselle, PE, SEF Construction Project Supervisor <u>jason.roselle@dot.wi.gov</u>
 (414) 750-0807
- Mike Burns, PE, SEF Construction Project Manager <u>mike.burns@dot.wi.gov</u> (414) 750-1413
- Lance Parve, MSEng, PG, BIM Design-Construction Coordinator <u>lance.parve@dot.wi.gov</u>
 (414) 750-1330

FHWA/WisDOT Bureau - SE Freeways Contacts

 Dave Platz, PE, FHWA Major Projects Oversight Manager <u>dave.platz@dot.gov</u>
 (608) 829-7509

- Laura Shadewald, PE, Bureau of Structures (BOS) Supervisor <u>laura.shadewald@dot.wi.gov</u>
 (608) 267-9592
- Brad Hollister, PE, BPD MDU Advanced Engineer <u>brad.hollister@dot.wi.gov</u>
 (920) 362-0659
- David Esse, Innovation and Technology Program Chief <u>david.esse@dot.wi.gov</u>
 (608) 261-6068

Zoo IC Project Consultant Contacts

- Andy Kowske, PE, HNTB Design Project Director <u>akowske@hntb.com</u>
- Tim Anheuser, PE, Kapur & Associates Design Project Director tanheuser@kapurinc.com
- Bill Stoeck, PE, Jacobs (CH2M) Design Project Manager bill.stoeck@ch2m.com
- Tom Collins, PE, Collins Engineers CEC Construction Manager tom.collins@collinseng.com

Zoo IC Project Consultant Contacts

- Aaron Bubb, PE, Kapur & Assoc Design-Construction Liaison <u>abubb@kapurinc.com</u>
- Kevin Cornnell, HNTB Utility Project Engineer kcornnell@hntb.com
- Chris Johnson, Jacobs (CH2M) BIM Coordinator <u>christopher.johnson@ch2m.com</u>
- Jess Hardel, PE, Kapur & Associates BIM Construction Modeler jhardel@kapurinc.com

BIM for Infrastructure In Digital Project Delivery

FHWA and BIM for Infrastructure

- FHWA promotes use of BIM concepts and other transportation innovations through its Every Day Counts (EDC) initiatives...
 - "...proven but underutilized innovations..."
- WisDOT has become a DOT leader in 3D modelbased planning-design-construction in digital project delivery and asset management

BIM for Infrastructure In Digital Project Delivery

BIM for Infrastructure

Building Information Modeling (BIM) involves the People, Processes, and Technology Products generating the digital, integrated, multi-disciplinary, collaborative representation of physical and functional characteristics (Information Models) throughout the Lifecycle planning, surveying, engineering, constructing, operating, and maintaining of Transportation Infrastructure Facilities included in Project Delivery and Asset Management.

BIM Technologies In Digital Project Delivery

State of the Industry & BIM-CIM

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

- NCHRP 20-68A, Scan 13-02 Advances in CIM Report (2015)
- http://onlinepubs.trb.org/onlinepubs/NCHRP20-68A_1002.pdf
- NCHRP 10/96, Report 831 CIM for DOTs (2016)
- Guidebook Volume 1 http://www.trb.org/Main/Blurbs/174318.aspx
- Report Volume 2 http://www.trb.org/Main/blurbs/174321.aspx

Civil Integrated Management (CIM) for Departments of Transportation

Volume 1: Guidebook

The flammed design and design and

Cost Savings vs. Cost Avoidance

Cost Savings - reduction in the cost of an item or service compared to the price paid previously or budgeted in the current fiscal year. Savings should generally be tangible. (e.g. elimination of a contract, negotiation of a lower rental fee for facilities/equipment, reduction in construction change order, etc.)

Cost Avoidance - expenses that have not yet been incurred. (e.g. reduction of a proposed price increase from a vendor, preventative maintenance, reduction in design of a future construction issue such as a hard clash, etc.)

SE Freeways: BIM for Infrastructure In Digital Project Delivery Project Life Cycle

Planning,
Programming &
Project
Initiation

Planning, Survey, Environmental, Design & Construction

Maintenance

Transportation Assets

(Roads, Structures, Utilities, RR, Lighting, Signs, Signals, FTMS/ITS, RE/ROW, LS)

Construction

Traffic Operations

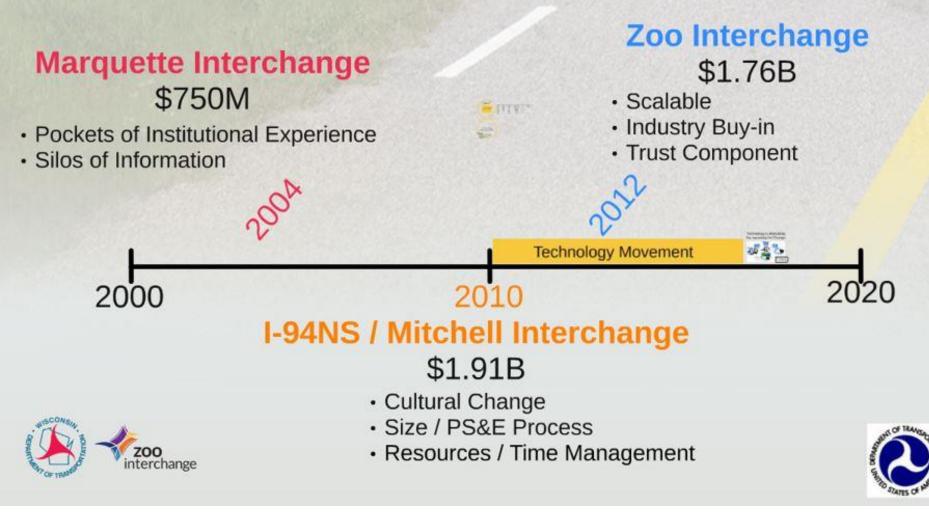
Maintenance Operations

Source: David Esse, WisDOT, 2015, Graphic Modified

BIM for Infrastructure In Digital Project Delivery WisDOT SER-SE Freeways and WisDOT DTSD Projects

WisDOT Investment \$18.4B over last 12 yrs
11, 800 mi STH Rds/4,900 Bridges +/-; 110,400 mi Local Rds/8,800 Bridges +/-

- Marquette Interchange (I-43, I-94, I-794)
 (2004 2008)
- I-94 N-S/Mitchell Interchange (2009 - 2012)
- Hoan Bridge/Lake Freeway (I-794) (2013 - 2015)
- Zoo Interchange (I-41, I-94, I-894)
 (2012 2018)
- I-94 N-S/Foxconn
 (2018 2020)



Historical Background

Design-Construction Goals: BIM

- Build On Time
- Build within Budget
- Build with highest Quality
- Build Safely
- Build with Community Involvement
- Build with Traffic Routes for Businesses

Zoo Interchange 2012-2018

Project Location/Overview

- Adjacent to the Milwaukee County Zoo
- Junction of I-94, I-894 and I-41/US 45
- 350,000 vehicles/day
- 60,000 jobs in the corridor
- \$1.7 Billion project
- 3rd Wisconsin Mega Interchange project

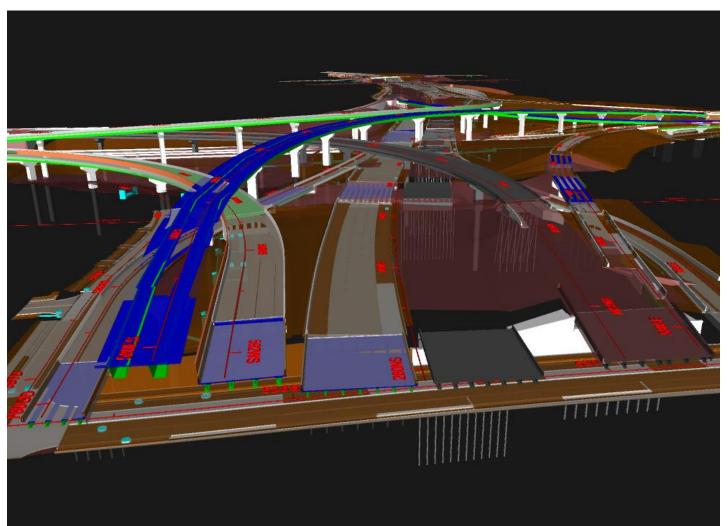
Project Location/Overview

- 50 PS&E Deliverables
 - 9 miles of freeway
 - 12 miles of arterial roadways
- Real Estate 455 parcels (4 Plats)
- Utility relocations
 - 325+ Permits Issued
 - \$100M+ compensable
- Railroad Coordination
- Highlights
 - 73 bridge structures
 - 108 retaining walls
 - 31 noise barriers
 - 115 sign structures
 - 1.94 million CY common excavation
 - 107,000 CY concrete pavement
 - 3D BIM for all Disciplines throughout Zoo IC Design-Construction

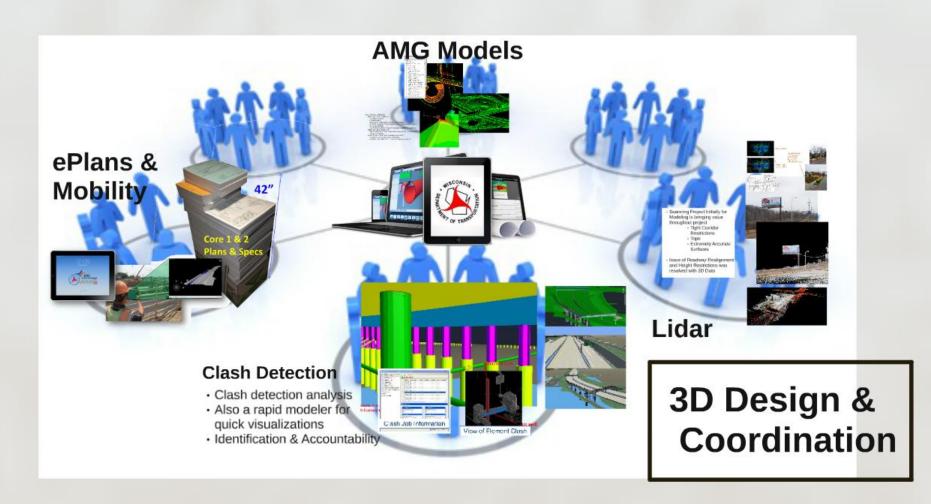
Design & Reconstruction of the Zoo Interchange

- The Zoo Interchange is the oldest and most heavily traveled interchange in the state
- Outdated design results in safety and congestion issues
- Closely spaced service interchanges
- Combination of left- and right-hand entrance and exit ramps
- Weaving across multiple lanes in a short distance

Existing Zoo Interchange


New Zoo Interchange

A 3D view of the planned Zoo Interchange core – looking northeast



Model-based Data-centric BIM in Project Delivery

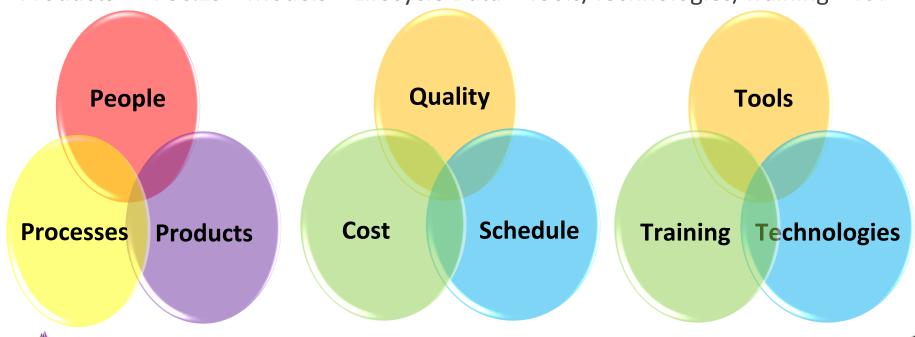
Technology is Motivating the necessity for Change

Q&A

- What are some of the challenges we face as an industry to deploy BIM for Project Delivery?
 - Plan-centric and DBB vs DB vs alternative contracts
 - Technologies Data Interoperability
 - Data centric, IT and Data Storage
- Managing change in delivering projects
 - People
 - Processes-workflows
 - Products-PS&Es, D-C Deliverables, Data

BIM for Infrastructure In Digital Project Delivery

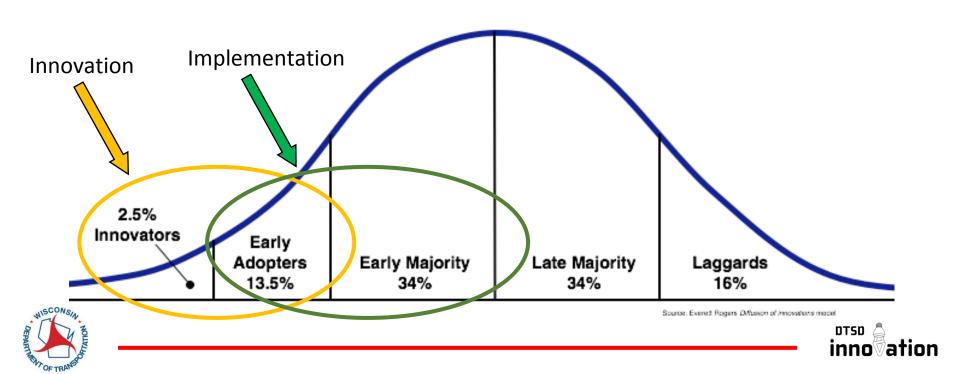
State of the Industry & BIM for Architecture/BIM for Infrastructure

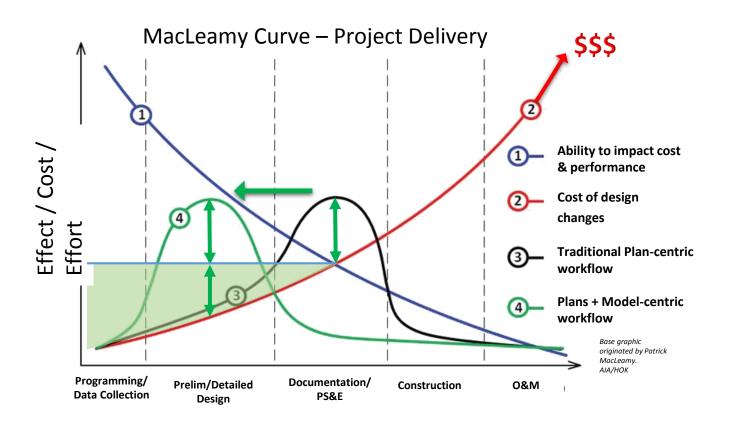

Traditional-

Plans, Profiles & X-sections Vertical BIM Horizontal BIM

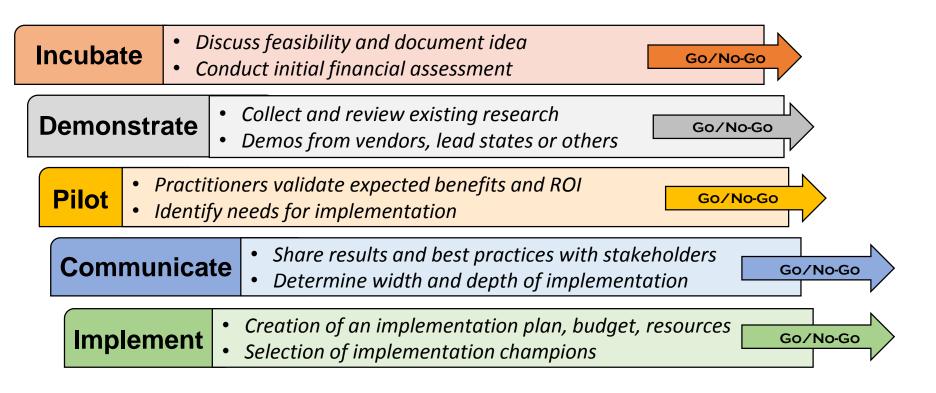
People - AEC + Owner Organizations + Workforces

Processes - Workforces + Tasks-WBS + Workflows + Performance Measures/Plans


Products - PS&Es + Models + Lifecycle Data + Tools/Technologies/Training + ICT

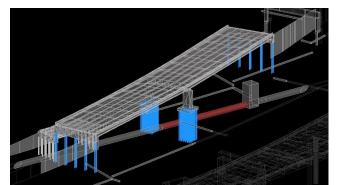

BIM in Digital Project Delivery

Culture: Innovation is all about people



BIM for Infrastructure In Digital Project Delivery

5 Steps to Innovation Deployment



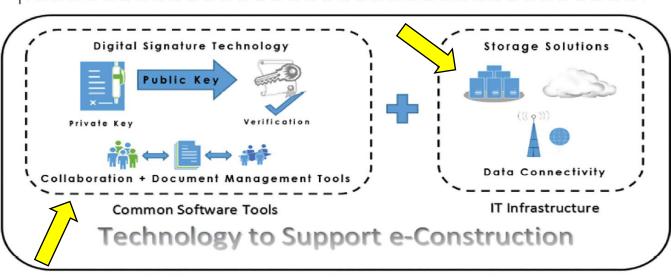
BIM 3D Model-based Design Applications-ROI

- 3D Modeling of All/Many Disciplines-Design (C3D/MS)
- Automated Clash Detection-Design (NVWKS/NAV)
- Visualization for Design Accuracy (BIM 360)
- Design-Construction Plan Reviews (BIM 360/BB)
- Improving the Quality of the Bid Documents (C3D)
- Conceptual Planning (Infraworks-Pilot)
- Automated Quantities-Cost Estimating (QTO/CTK-Pilot)
- Structures (Bentley/Infraworks/Revit-Pilot)
- Utilities (Bentley/C3D/Infraworks-Pilot)

BIM 3D Model-based Construction Applications-ROI

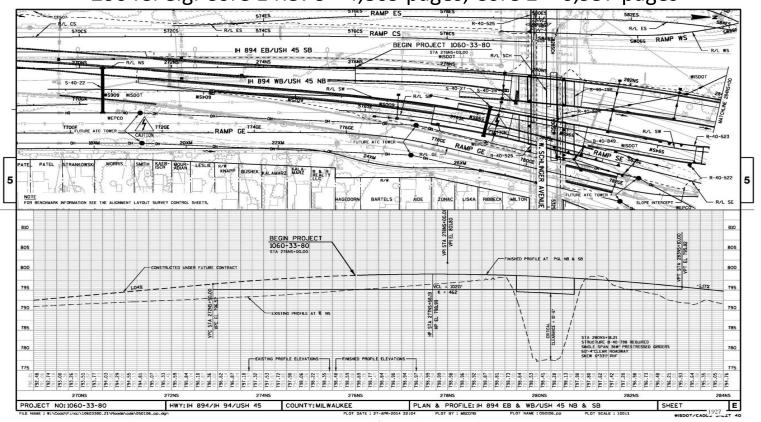
- Enhanced PS&E Review (BIM 360)
- Dedicated Design Liaison (C3D/MS)
- Visualization for Construction (BIM 360/NVWKS)
- E-Construction (BIM 360/Bluebeam)
- Digital Asbuilts (Bluebeam)
- Project/Issues Tracking (MasterWorks/Raxar-Pilot)
- Asset Management (ArcGIS/C3D/IW-New)

Cloud-based e-Construction-DDE-ROI


FHWA Tech Brief: FHWA-HRT-16-068

"Addressing Challenges and Return on Investment (ROI) for Paperless Project

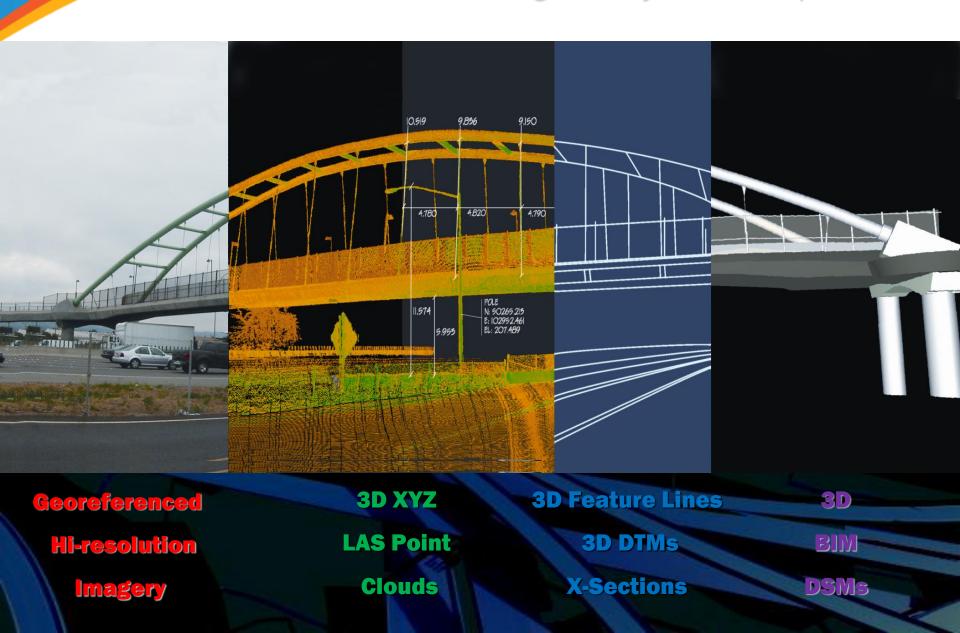
ZOO interchange

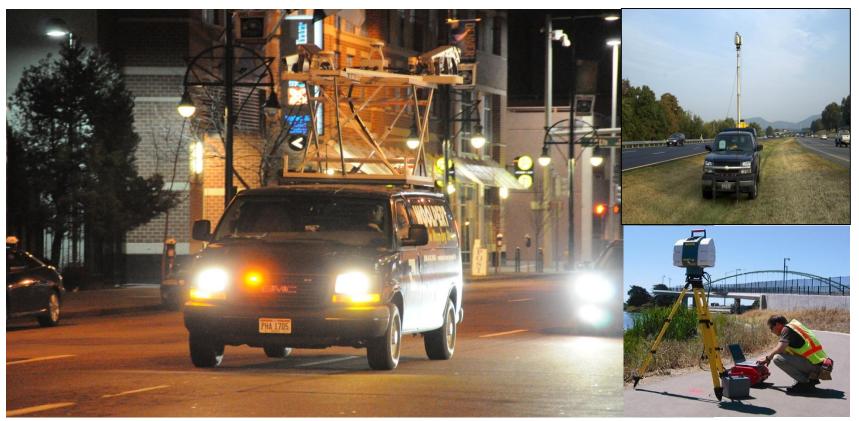


- Data Repository-Design-Construction-O&M (Box Enterprise)
- Project Delivery to Life Cycle Facilities Asset Management Approach

BIM for Infrastructure In Digital Project Delivery

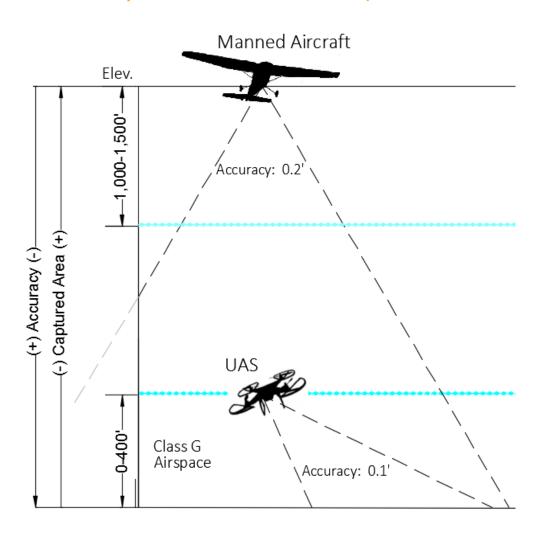
WisDOT Model-based Design & Construction Moving from Analog to Digital 2D/3D Models

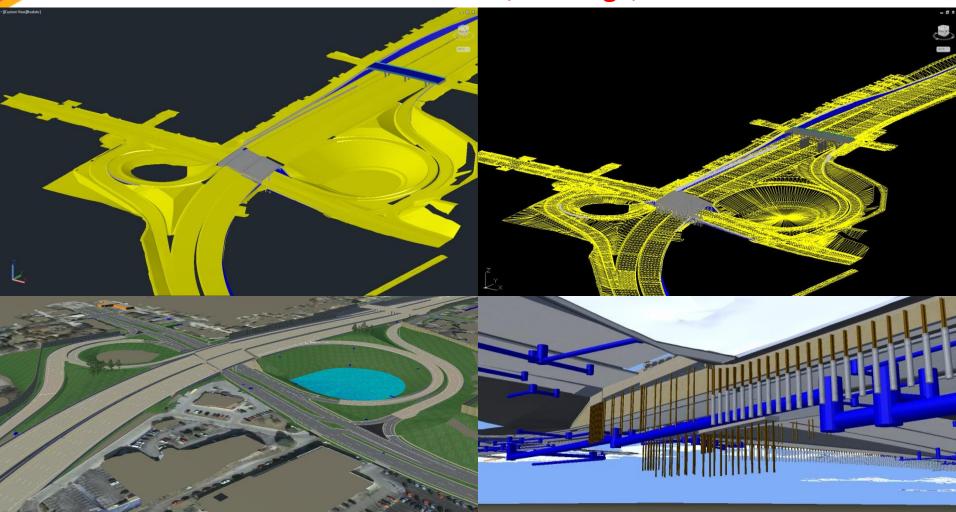

Zoo IC: e.g. Core 1 Rev 9 - 4,869 pages; Core 2 - 6,957 pages



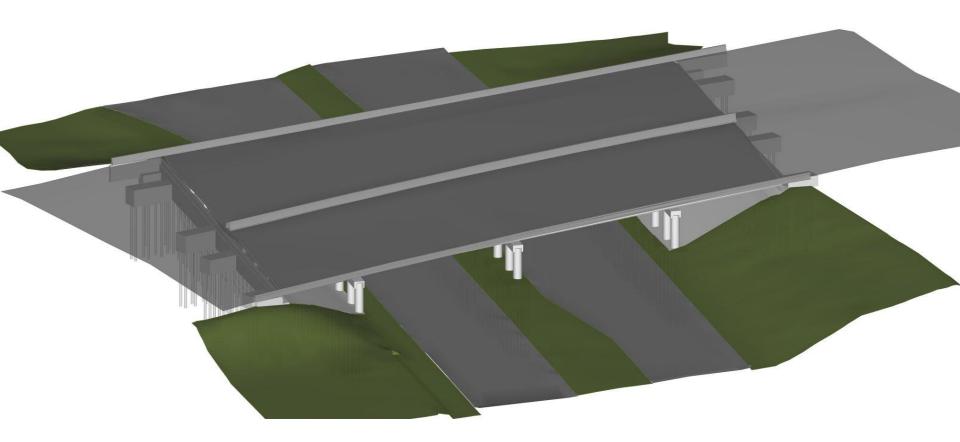
BIM for Infrastructure In Digital Project Delivery

BIM for Infrastructure In Digital Project Delivery SE Freeways: Zoo IC Pre Design-grade Integrated Survey


3D Survey Integrated Mapping using LiDAR-Static/Mobile/Aerial Scanning with Supplemental RTK GPS/Digital Leveling/TS for Existing Conditions


BIM for Infrastructure In Digital Project Delivery Integrated Survey

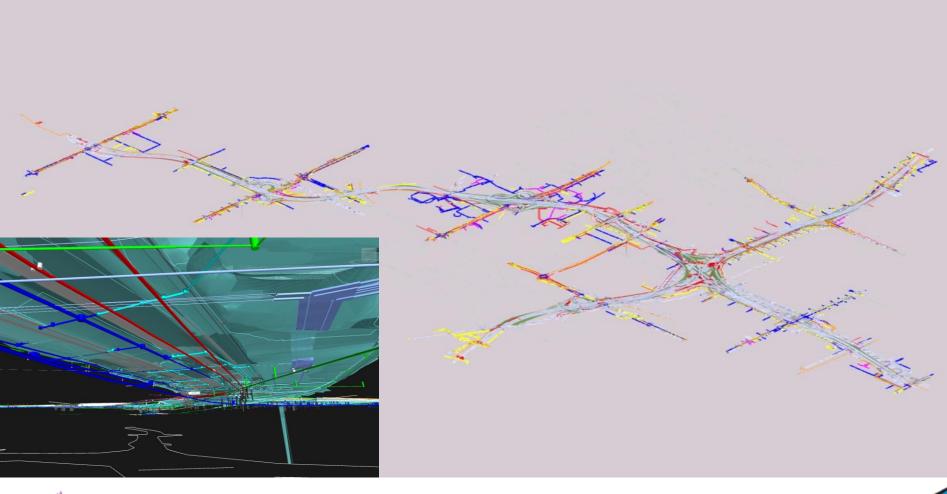
Unmanned Aerial Systems can add Value (Consultants vs DOTs)



BIM for Infrastructure In Digital Project Delivery Zoo IC BIM 3D Roads/Drainage/Surfaces

3D Structures: Bridges, Ret Walls, Noise Walls, Tunnels, Sign Bridges, Other

■ 68 Bridges


108 Retaining Walls

3D Structures

3D Utilities-Gas, Steam, Electrical, Comm, Fiber Optic, Tel/Data, CATV/Data, Other

3D ITS/FTMS, Lighting, Signs, Signals, Landscaping, Water, San Sewer, Landscaping, Other

SE Freeways: Zoo IC 12-mi System Interchange Reconstruction Zoo IC Design-Construction BIM Project Execution Plan (PXP)

Digital Data Exchange (DDE) - 3D + 2D (+ 4D)

for Design Clash Detection-Resolution/Visualization-Inspection/Improved Bids and Construction Survey Stakeout-Verification/Contractor AMG-machine readable

Pre-Design Data Collection Integrated Existing Conditions 3D Survey incl Mobile/Static LiDAR (future UAS)

• 3D Modeling - Roads

• 3D Modeling - Structures

• 3D Modeling - Utilities

• 3D Modeling - Drainage

• 3D Modeling - Traffic

• 3D Modeling - FTMS, L, S, S

3D Modeling - QA/QC

• 3D Modeling - Clash Detection

• 3D Modeling - Temporary /4D Simulations

In-progress eConstruction RTGNSS Rovers/TS/QA-QC

• Post-Design Data Collection As-built Conditions 3D Survey incl Mobile/Static/Aerial LiDAR (future UAS)

• Life-cycle Use of 2D/3D Models

	<u>Discipline</u>	Modeling Approach
	Existing Utilities	Network & Drape
	Proposed Utilities	Drape
	Proposed FTMS	Drape
	Proposed Lighting	Drape
	Proposed Signals	Drape
	Proposed Roadway	Template/Subassembly
	Proposed Retaining Walls	Value
	Proposed Sign Structures	Individual
	Proposed Storm Sewer	Network
•	Proposed Bridges	Individual

SE Freeways: Zoo IC 12-mi System Interchange Reconstruction

Zoo IC Design-Construction BIM Project Execution Plan (PXP)

Project Phases

- Pre-Design Existing Conditions 3D Survey
- 3D Modeling Roads
- 3D Modeling Structures-Bridges/Ret Walls/Sign Structures
- 3D Modeling Utilities
- 3D Modeling Drainage
- 3D Modeling Traffic
- 3D Modeling FTMS-ITS, Lighting, Signals, Signs
- 3D Modeling QA/QC
- 3D Modeling Clash Detection
- 3D Modeling Temporary /4D Simulations
- In-progress RT GNSS Rovers/TS/QA-QC
- Post-Design As-built Conditions 3D Survey
- Life-cycle Use of 2D/3D Models

Existing Ground
Existing Utilities
Existing Structures
Proposed Roadway
Proposed Bridges
Proposed Retaining Walls
Proposed Drainage
Proposed Sign Structures
Proposed Lighting
Proposed Signals

Proposed Utilities

30%/Functional

X

X

X

X

X

X

X

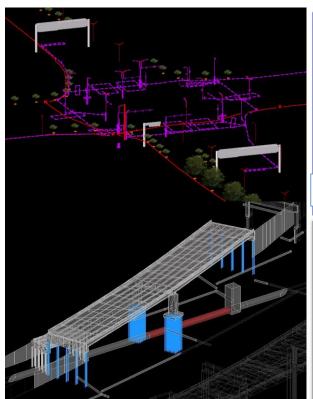
X

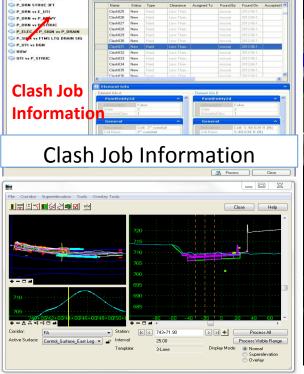
X

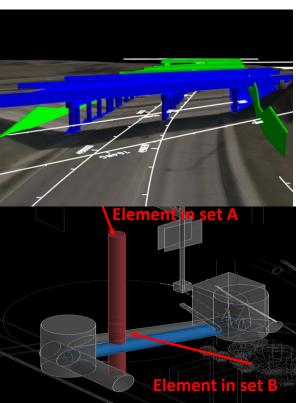
X

X

X

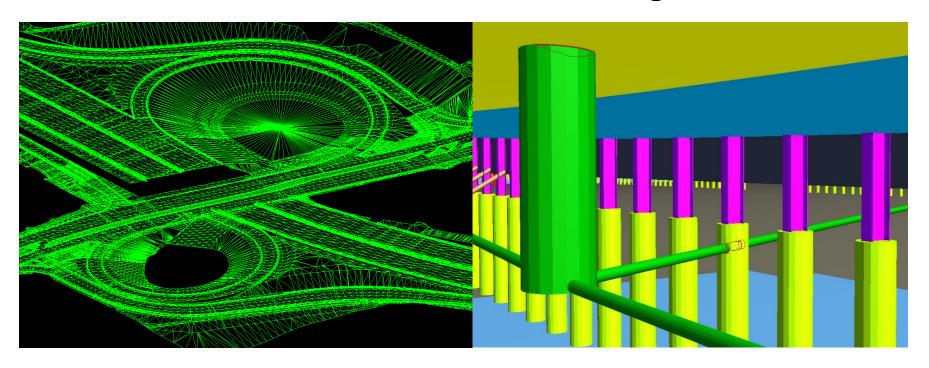



BIM In Digital Project Delivery


BIM 3D Model Clash Detection-Resolution

Clash Detection Jobs – Identifying Issues in Design Automated processing of interferences between 3D elements

E_WTR vs P_RDWY 6F



BIM In Digital Project Delivery

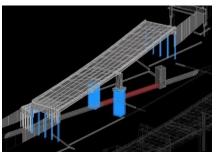
BIM 3D Model Clash Detection-Resolution

Clash Detection-North Leg

BIM 3D Model Clash Detection-Resolution

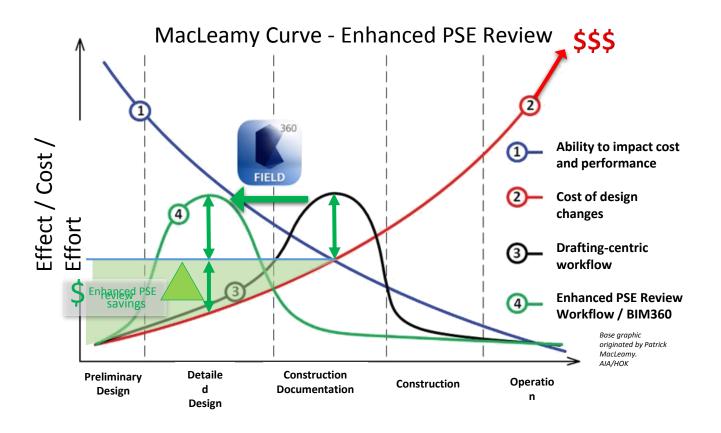
Clash Detection Jobs – Identifying Issues in Design Automated processing of interferences between 3D elements

Job Name	Results	Y (RFI)	Y (RDC)	Est. Impact	Comments
P_DRN STRUC 3FT	23	3	3	\$ 9,110.00	Used awarded bidder's unit price; 4 structures
P_DRN vs E_UTI	284	90	0	0	Investigation yeilded no conflict or workplans not available
P_DRN vs P_RDWY	37	10	9	\$ 55,480.00	Used awarded bidder's unit price; 548 LF pipe
P_DRN vs P_RDWY SUBGRADE	126	57	28	\$171,935.00	Used awarded bidder's unit price; 1768 LF pipe and 3 structures
P_DRN vs P_RDWY SUBGRADE EAST	37	16	5	\$ 30,703.00	Used awarded bidder's unit price; 18% of similar results (above)
P_RDWY vs P_WALL	245	25	16	???	Unknown impacts to design; resulted in elevation checks on 15 of 22 walls
P_ELEC and P_DRAIN	127	62	47	\$ 54,082.00	Used awarded bidder's unit price; 28 conduits, 15 pullboxes, 11 microwave detectors and 6 lightpoles moved
P_RDWY VERT CLR	27	0	0	0	
P_UTI vs P_RDWY	268	0	0	0	
P_DRN vs P_STRUC	59	8	6	\$ 11,665.50	Used actual replacement cost from recent construction; 6 anchor slabs
P_STRUC vs P_UTI	23	3	3	?	2 utilities conflicted with C&G and sign bridge footing
P_STRUC vs ABAN	117	0	0	0	
P_STRUC vs E_SS	162	2	0	0	
P_STRUC vs E_SAN	59	0	0	0	
P_STRUC vs E_W	115	31	30	\$ 59,400.00	Used awarded bidder's unit price; 198 LF ductile iron
P_STRUC vs E_GAS	132	6	5	???	
P_STRUC vs E_AG	21	0	0	0	
P_STRUC vs E_CONDUIT	224	1	0	0	
P_STRUC vs E_CONDUIT BYOTHERS	379	28	2	,	Electrical coordinated with wall designers
TIEBACK vs UTI 6FT	104	68	67	\$ 3,930.00	Used awarded bidder's unit price; 2 tiebacks
P_UTI vs E_DRN	39	1	1	\$234,580.00	Used awarded bidder's unit price; 317 LF steel casing with ductile iron
P_SAN-W vs P_DRN	6	6			
	2741	479	269	\$630,885.50	


BIM 3D Model Review-Resolution
Task Lead Representation – Design/Construction

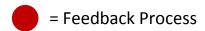
Model-based BIM Design: Keys to Success

- Right-size and Adapt BIM to Project (Mega, Major, RRR, HSP, Local)
- Collect High-Res Reality Capture Integrated Survey (LiDAR, etc)
- Model 3D, 4D, xD All/Majority of Disciplines
- Deploy Automated Clash Detection
- Visualize Data for Design Accuracy
- Conduct Collaborative Design-Construction Plan Reviews
- Improve the Quality of the Bid Documents for Lower Bids
- Track Project Issues
- Integrate BIM-CAD-GIS data

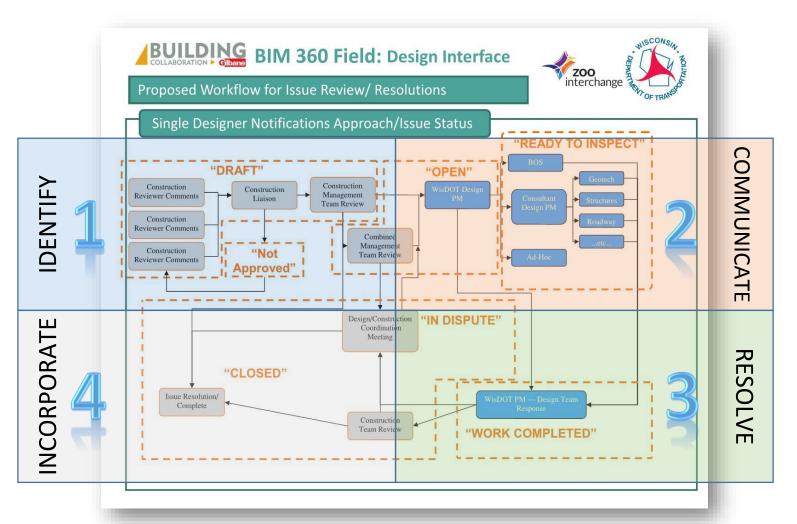

Model-based BIM Construction: Keys to Success

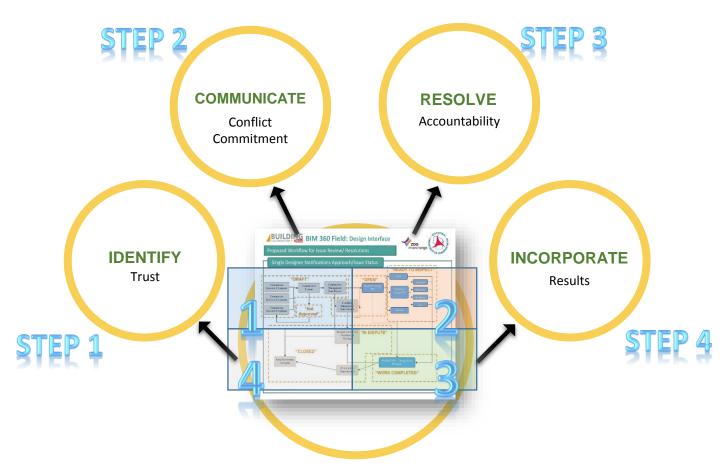
- Enhance PS&E Review
- Provide Dedicate Design Liaison
- Adopt E-Construction Practices
- Visualize Data for Construction
- Provide Digital Asbuilt Plans/Models
- Reuse Data/Digital Data Exchange
- Deploy Cloud-based Data Repository
- Integrate of CAD-BIM-GIS Data
- Track Project Issues

Enhanced Delivery Process


Enhanced PS&E Review

- Integration of Feedback into Traditional Process
- Involve Industry, Ad Hocs, and Construction Early



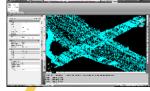


Enhanced PS&E Review

Improving Quality: Bid Documents

Improving Quality: Bid Documents

Transparent Communication


Early Identification:

- Bid-ability
- Risk Management
- Contractor
 Feedback on design and constructability
- 3D Model & AMG Surfaces for estimating

IDENTIFY

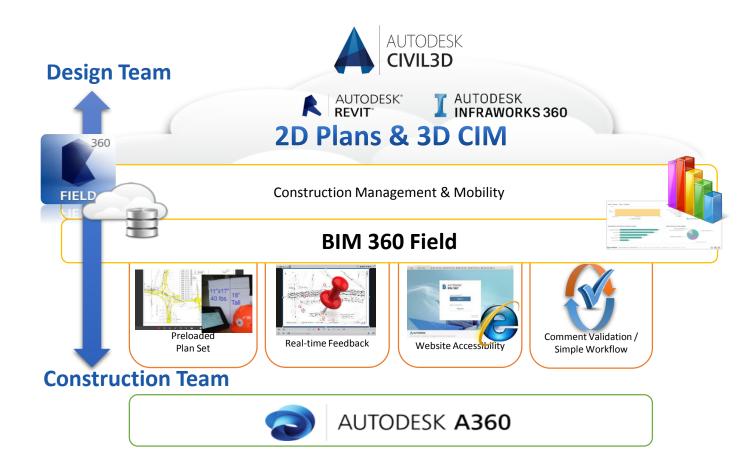
STEP 1

Internal

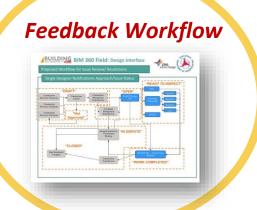
Communication

Design | Construction

Plan Review at

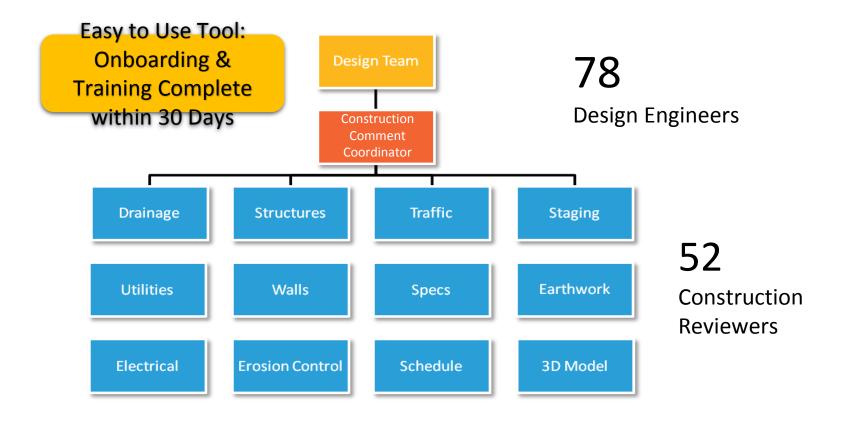

• 30/60/90 Design Streamline Communication

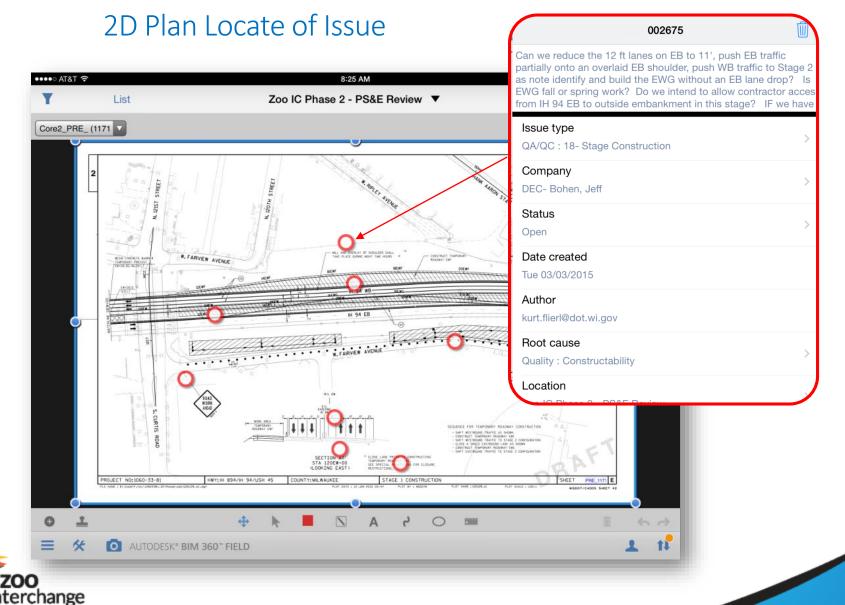
> Autodesk -BIM 360 Field


Identify: Enhanced Process

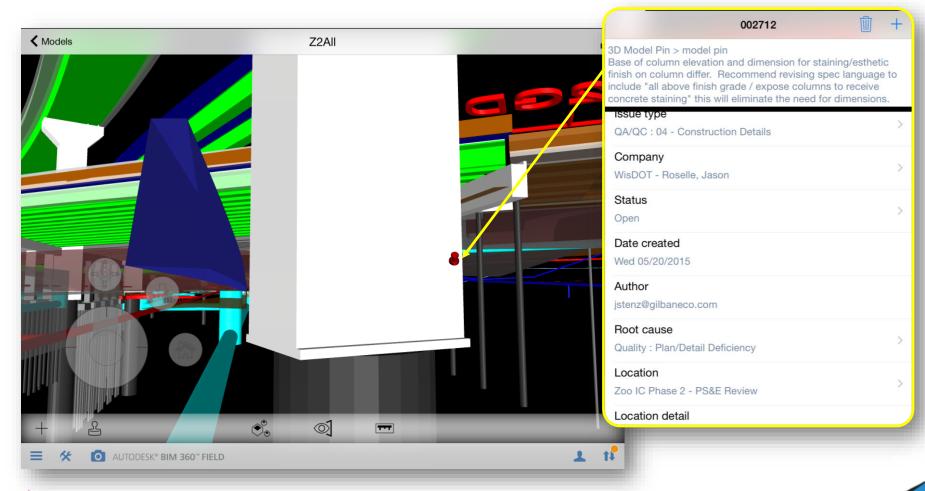
Improving Quality: Bid Documents COMMUNICATE

STEP 2





Communicate: Team Structure



Communicate:

Communicate:

3D Locate of Issue

Improving Quality: Bid Documents

RESOLVE

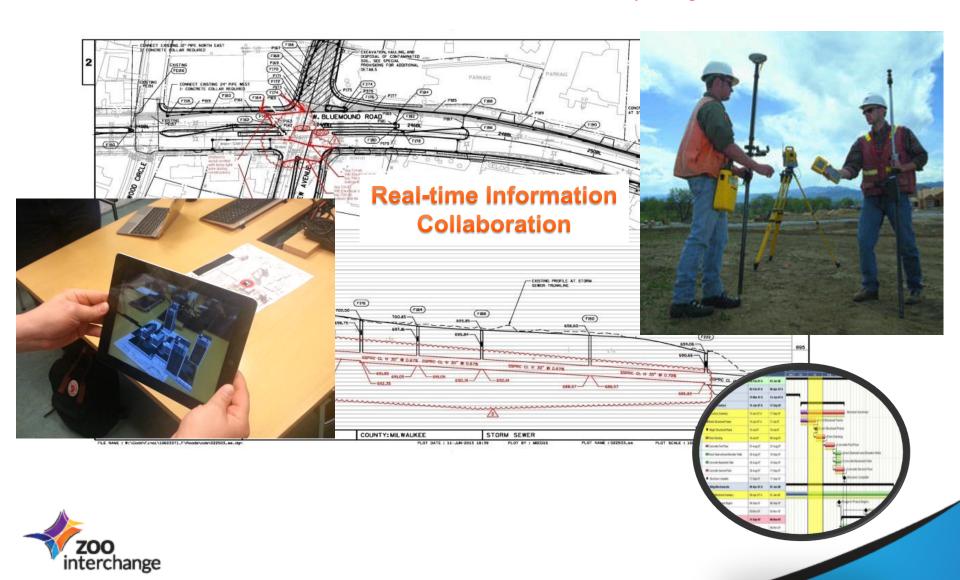
STEP 3

Integration of
Feedback into
Traditional Process

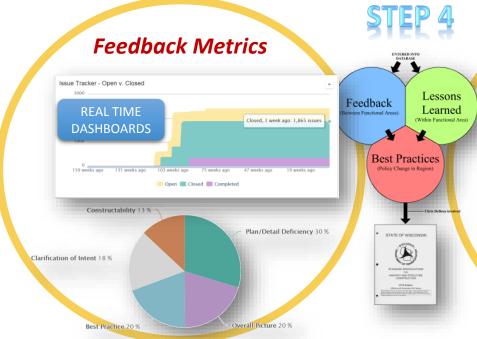
Functional Breakouts
Drive to Resolution

Transparent Communication

Improving Quality: Bid Documents


RESOLVE

STEP 3



3D BIM Models in Construction-SE Freeways/Region

Improving Quality: Bid Documents

INCORPORATE

Additional Value: Feedback to Design

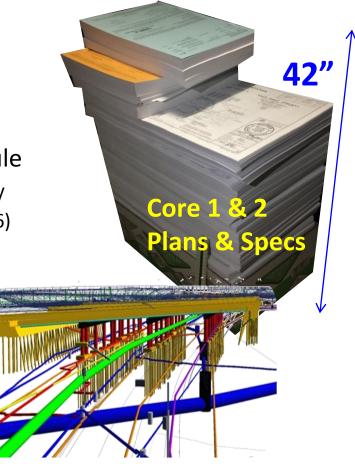
Leveraging Project Feedback to implement Regional & Statewide Change

- Currently **70 FBTDs**
- Southeast Freeways Design Manual 50 FBTDs
- Statewide Facilities
 Development Manual

 3 FBTDs

STEP 4

Dedicated Design Liaison

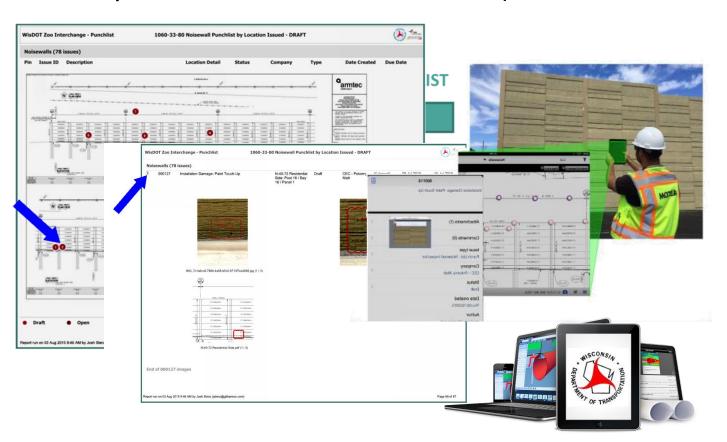

- Post-Design Support
- Involved and Engaged throughout Construction
 - Attend Project Meetings
 - Respond to RFIs/DINs
 - Minor Re-Design to Adjust to Field Changes
- Issue Resolution and Timely Decision Making

```
Transparent = Effective Issue and Collaboration = Effective Issue and Risk Mitigation = Cost $avings
```

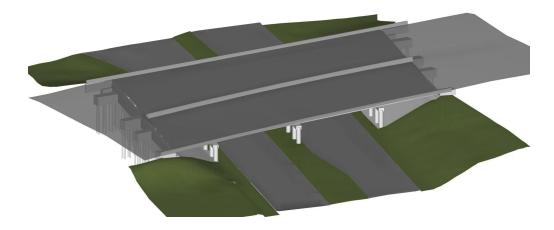

- Complexity
 - Unique Construction Elements
 - Staging/Access
 - Traffic Management
- Aggressive Construction Schedule
 - "Burn" Rate = \$1.2 million per day (Fall 2016)
- 3,711 issues on project to date

3D Model Visualization

3D Engineered Models in Construction


Automated Machine Guidance (AMG)

- 2D contract documents
- 3D model provided for reference
- Model updates during construction



Mobile Inspections Software - Punchlist (BIM 360/Bluebeam)

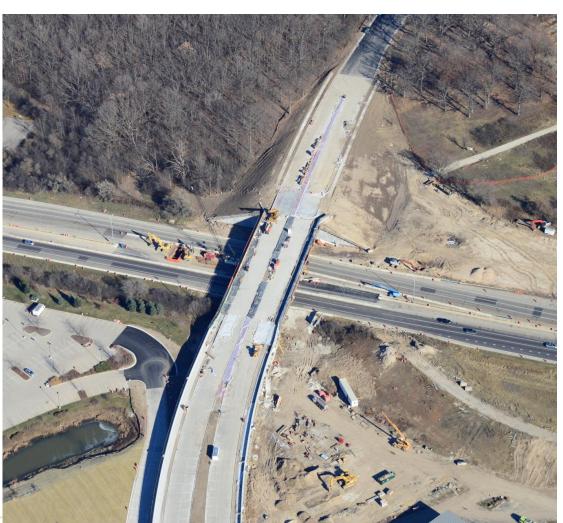
- Full time 3D Model Technician on CEC team
 - Staging changes/sequencing
 - Interface with utilities
 - Grading changes/blending slopes
 - EBS
 - Adjusting noise barrier alignments
 - Temporary overhead lighting clearances

Q&A

- How can our industry become more efficient and manage disruptive transformative change in delivering projects?
 - People
 - Processes
 - Products-PS&Es, D-C Deliverables, Data
- Benefits and Return on Investment

2013 - WIS 100

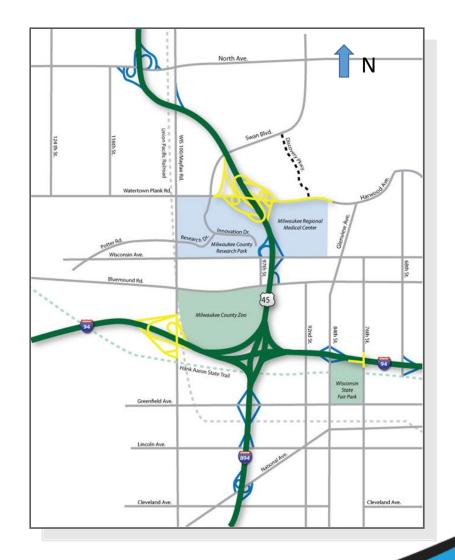
Final Cost: \$36.4M


Changes: 1.17%

Labor: 131,020 hrs

2013 – Swan Boulevard

Final Cost: \$12.3M


Changes: 3.77%

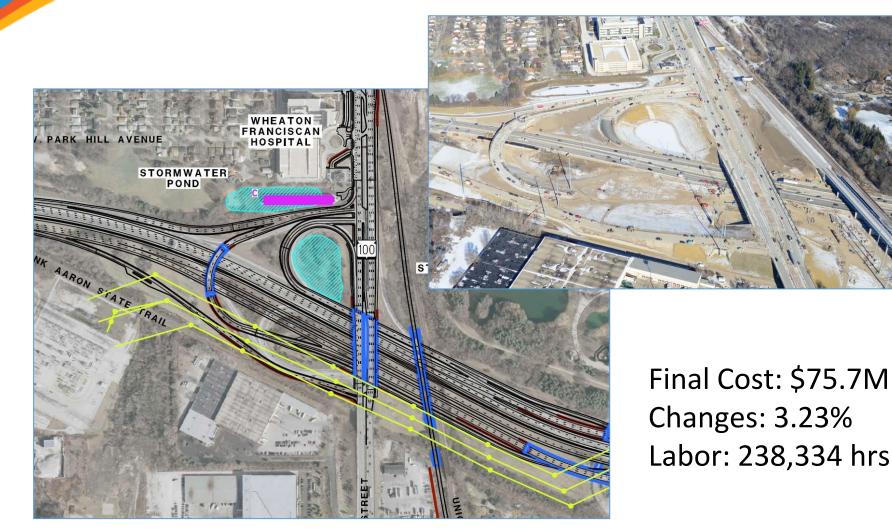
Labor: 36,518 hrs

2014 Construction

- 76th Street Bridge
- Box Culvert crossing at I-94 and 84th Street
- WIS 100 Interchange / UPRR Bridge
- Watertown Plank Road Interchange

2014 – 76th Street Bridge/Honey Creek Box Culvert

Final Cost: \$33.0M

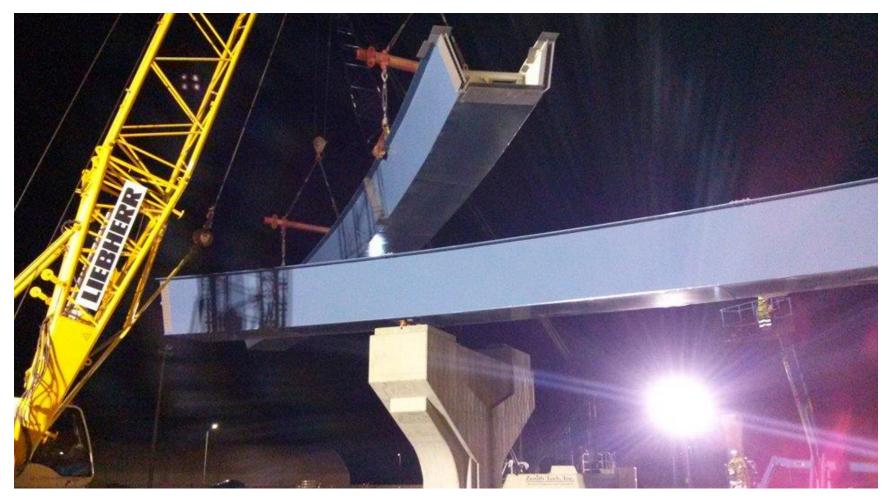

Changes: 1.35%

Labor: 170,086 hrs

- 84th Street ramps closure for Honey Creek Box Culvert Work
- 84th Street lane restrictions winter 2013-14
- Kearney closed nine months
- Temporary 76th Street ramp
- 76th Street bridge closed for six months
- Detours to use 68th/70th Interchange

2014 - WIS 100 Interchange

New Union Pacific Railroad Bridge over I-94



2014 – Watertown Plank Road


Watertown Plank Road U-Ramp tub girders being set

Core 1: Fall 2014 – Spring 2016

- LET = \$198M
- WisconsinConstructors II
 - **≻**Michels
 - **>** Lunda
 - ➤ Edgerton

Final Cost: \$206.2M

Changes: 3.75%

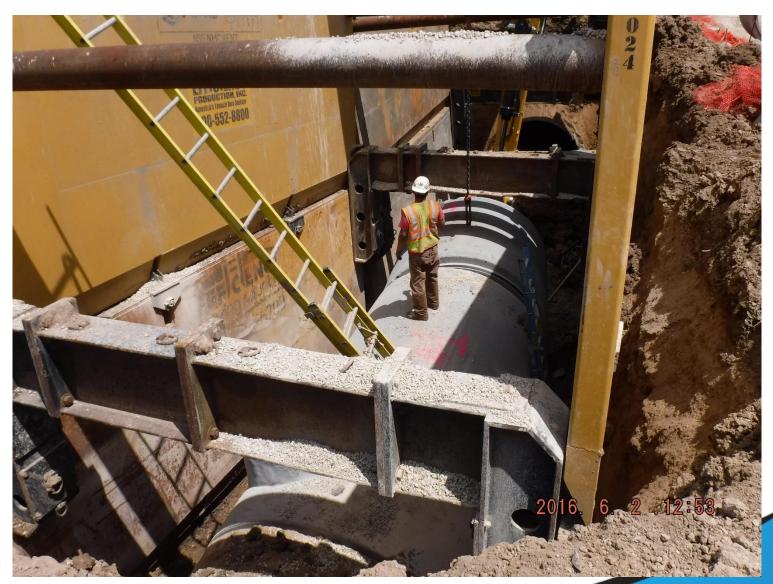
Labor: 772,864 hrs

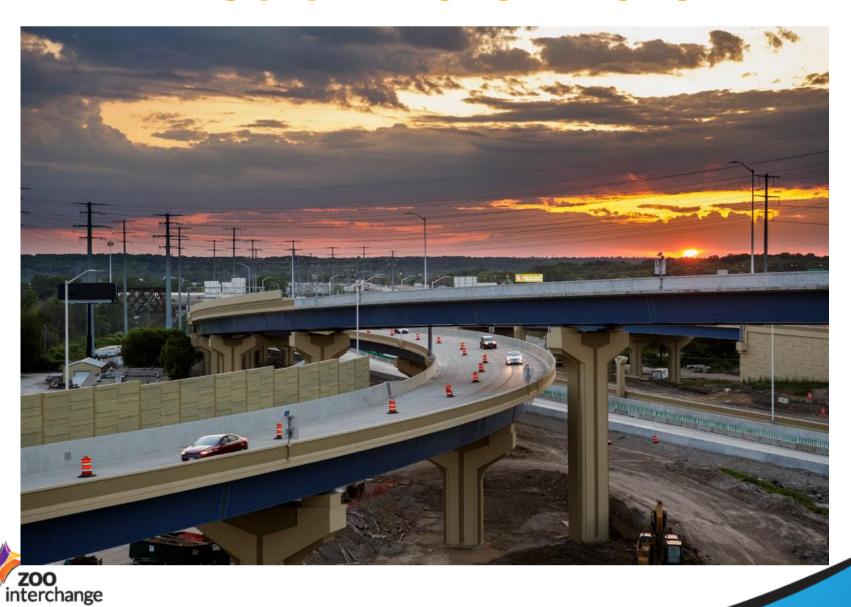
Core 1 – May 2015

Core 2: Fall 2015 - Summer 2018

- LET = \$302.2M
- WalshConstruction
- Changes = 4.05%

Core 2: 2015 - 2018





Core 2 – 96" Storm Sewer

Core 2: 2015 - 2018

Core 2: Fall 2015 - 2018

SE Freeways: Conclusions on ROI-BIM

- Earlier Clash Detection/ Resolution of Construction Discipline Interface Conflicts, Multi-disciplinary Collaboration
- Improved Existing Conditions Accuracies with 3D Integrated LiDAR Surveys
- Visualization, Simulation, 3D-4D Staging, AR/VR-Pilot
- Improved Quality of Design Plan Sets/Bid Docs / Enhanced PS&E Review
- e-Construction Real-time Field Construction Management (GPS Hand-helds/Rovers)
- Verification with 3D Models 3D to 4D Schedules-Pilot
- Contract Modification Costs significantly reduced by using BIM

SE Freeways: Summary on ROI-CIM

(Zoo IC CBA-ROI Final Report in 12/2018)

- I-94 N-S Program Changes (4.5%) vs (\$26.93m / \$806.85m) Zoo IC Program Changes 3.43%
- Complex Project Changes (e.g I-94 N-S) typically range from 5%-9% (+/-)
- Zoo IC Core 1 Contract is complex and Changes are 3.75% (\$7.45m / \$198.77m)
- Zoo IC Core 2 Contract is complex and Changes are 4.05% (\$10.42m / \$302.20m) and 1.62% excluding a \$5.52M Cost

SE Freeways: Summary on ROI-CIM

(Zoo IC CBA-ROI Final Report in 01/2019)
Zoo IC Project Contract \$ CO \$ CO %

 Core 1 System IC 	206.2m	7.5m	3.75%
 Core 2 System IC 	305.8m	10.4m	4.05/1.62%
 Mayfair Rd (STH 100) 	36.4m	0.4m	1.17%
 Watertown Plank IC 	68.1m	1.3m	1.97%

• (Swan Blvd-Bridge	12.3m	0.5m	3.77%
-----	------------------	-------	------	-------

• UP RR-STH 100 Bridge 75.7m 2.4m 3.	AN SIII 100 bilage 75.71	2.4m 3.23%
--------------------------------------	--------------------------	------------

 Bridges 	(6)	62.5m	0.9m	1.47%
<u> </u>				

• Total (includes next slide) 822.3m 25.3m 3.43%

SE Freeways: Summary on ROI-CIM

(Zoo IC CBA-ROI Final Report in 01/2019)

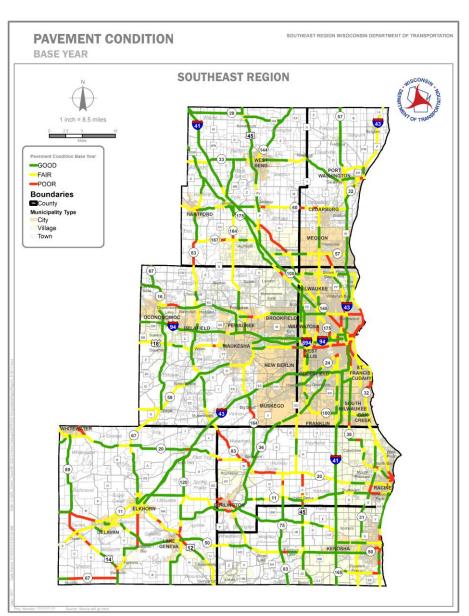
Zoo IC Project	Contract \$	CO\$	CO %
• I-94/I-894 Aux Lanes	16.3m	0.7m	4.05%
 Local Roads/Other 	11.0m	01m	-0.07%
 Adj Facilities 	12.6m	1.0m	8.10%
 Traffic Mitigation/TMP 	15.4m	0.2m	1.53%
• Total (includes prev slid	e) 822.3m	25.3m	3.43%
• Adj Streets-Bridges (9)	26.8m	1.4m	5.46%

Q&A

How can we reuse CAD and BIM data for asset management?

- How can we integrate BIM-CAD-GIS data?
 - ArcGIS
 - AGO
 - SDE
 - ArcGIS Connector (New)
 - Smart Cities, Smart Transportation Corridors

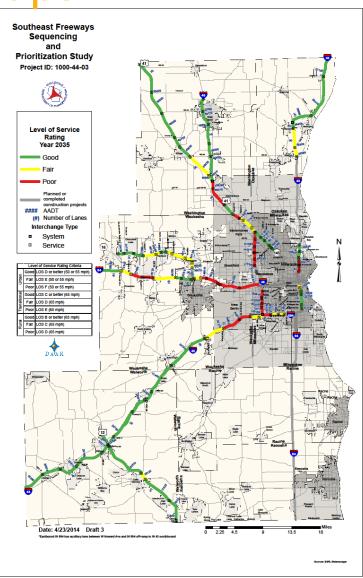
Asset Management (GIS) Deliverables


- 2,818 miles of highway
- 125+ GB of data analyzed
 - SERGIS: 6 GB
- 33,000+ files
- 50+ layer files
- 100+ scripts
- 32 map templates
 - 4 sizes
 - 7 counties plus Region
- ArcGIS Online

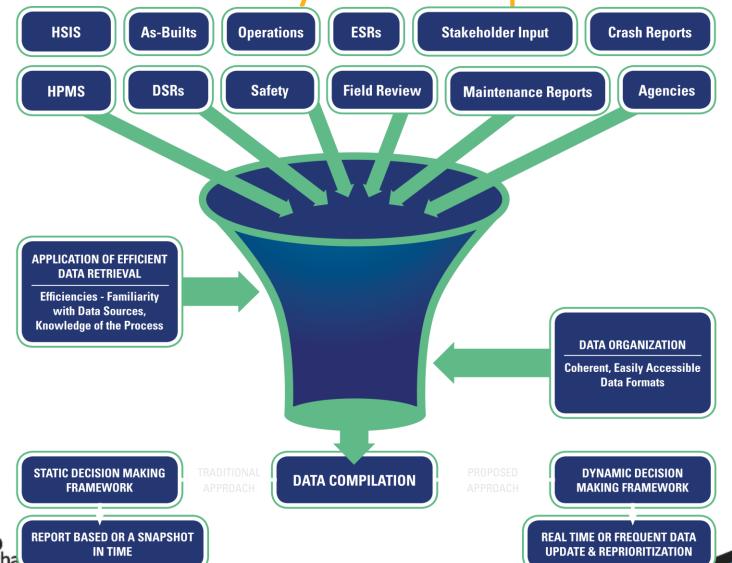
Asset Management (GIS) Data Layers

SERGIS Dat	.a La	уŧ	31	116	acking			Deliverable			
			1					Tier (Target	Assignment		
Interdependent Meta-Manager Data Data	External Data	Dat	a Stewa	_	npty Supporting			Date)	(who is	Status	
Data Data			1 8	R = Region	ocuments			1= 1/19/2018 2= March	responible for completing	(Active, Not Active,	
	Data Tupe	Data_Dictio		C = County				2018	immediate next	Complete	
	Data Type	15	1 5	R&C _			Assigned	3 = June	steps of data		Next Steps
ex ID +1 Laver/Datasets Used/Needed	¥ ¥	- E		TI CO	Spatial Feature Name	Laver File Name	Consultant	2018	layer)		(Completed steps and history of next steps is being stored in the comments)
19 Construction Map Data	Line				oparar carac name	Edyerr ne rigine	CONDUNCTR	20.0	layery		Investigating data source. Construction map data is derived from an application. Data and o
		×	×	R			GRAEF				stored on the network. Determining if data is dervided from improvement project data or if we
		-	_					3	WisDOT	Not Active	create a new feature class to house the data.
20 Zoning	Polygon										Data Dictionary updated with DOT field names - only Racine and Milwaukee county had zoni
						MILWAUKEE ZONING.lur:					available. Layer files were created for these two counties
		X	X	C	MKE_Parcels_with_Property_Infor	RACINE_ZONING.lvr	GRAEF				No data dictionary and process
					mation_20171011; RacineParceLd	THOUSE_CONTROLS					Investigation of Zoning data, data layer exist from Statewide parcel initiative but does not cov
					ownload_20171003			1	WisDOT	On Hold	This may change in the future. In the interim counties my be the best reliable source for cons
21 PLSS Section/Qsec (SEWRPC)	Line	X	×	В	PLSS_QTR_SECT_SEVRPC_POL	. SEWRPC_QTR_SECT_POLY.ly	GRAEF			١	Data Dictionary updated with DOT Field Names
(05, 155, 155, 155, 155, 155, 155, 155, 1					Y; PLSS_SECT_SEWRPC_POLY	r.		1	Consultant	Complete	
22 Section Corners (SEWRPC) 23 Wetlands - ADID (SEWRPC)	Point	X	X	R R	PLSS_SECT_CNR_SEWRPC_PT		GRAEF DAAR	1	Consultant Consultant	Complete	Data Dictionary updated with DOT Field Names
23 Wetlands - AUID (SEWRPC) 24 Landuse (SEWRPC)	D.I.	X	X	B	various names	LAND USE 2010.lvr	GRAEF			Complete	Empty Data Dictionary
24 Landuse (SEWRPC) 25 Landuse (Future) (SEWRPC)	Polygon Polygon	X	X		LDU_2010_SEWRPC_POLY LDU_2035_SEWRPC_POLY;	LAND_USE_2010.lyr		2	Consultant	Complete	
25 Land use (Future) (DEWINFC)	rolygon	×	X	B	LDU_2035_SEWRPC_POLY	LAND_USE_2055.lyr;	GRAEF	2	Consultant	Complete	
26 Existing & Proposed Trails (SEWRPC)					LBO_2030_3EWAFC_FOET	EAND_03E_2030.igi			Constitution	Complete	
		×	×	В			DAAR				We will utilize SEWRPC trail file that was assembled for Vision 2050. This data has both curren
		~	-					1	Consultant	Complete	trails. The definition of the file are off street (this does not inloude on street accomodations).
27 Environmental Corridors (SEWRPC)				В			DAAR				Data Dictionary updated with DOT Field Names, Aliases & Descriptions
		X	X	н			DAAR	1	Consultant	Complete	
28 Topo/DTM	Polygon	×	×	r.	TOPO_DTM_WDOT_POLY		GRAEF				Data Dictionary updated with DOT Field Names, Aliases & Descriptions
		_ ^	Δ.		TOPO_BINCWBOT_POET			2	Consultant	Active	
29 Historical Sites (NRHP)		X	X	R			GRAEF	2	WisDOT	Not Active	Data comes as is. SHPO was contacted, data needs to be purchased - DOT not pursuing at
30		×	×	R			DAAR				Utilizing streaming service from FEMA we will create regional layer files from regional views.
Floodplain (FEMA) streaming								1	Consultant	Complete	
30.1				R&C	DFIRM_FEMA_POLY		GRAEF	1			Using DFIRM downloaded from FEMA we will create county and Regional feature classes to b
DFIRM - Digital Flood Insurance Rate Map 31 Surface Water (DNR)	Polygon			H&L B					Consultant	Complete	business area workflows. Surface water feature class from DNP. This feature will only be a regional data layer.
31 Surrace Water (DINH)	Polygon	×	×	н		SURFACE_WATER_VIEWER.lyr	GRAEF	1 1	Consultant	Complete	ourrace water reature class from DNH. This reature will only be a regional data layer.
31.1		_			HYDRO_CNTY_POLY:				Constitution	Complete	Second, is hudro area and line sourced from the counties. This feature class will be produce
Hudro Area and Line				R&C	HYDRO_CNTY_LINE		GRAEF	1 1	Consultant	Complete	county and regional level.
32 Wetlands - DNR (WWI)	Polygon	X	X	B	TH BHO_CIVIT_CIVE	WWLlor	GRAFE	i	Consultant	Complete	Empty Data Dictionary
33 Soils (USDA)	Polygon					, , , , , , , , , , , , , , , , , , ,					Merge Script Completed & Data Dictionary updated with DOT field names
	-72	1	,	_	COL HODA BOLL	501.61	CDAFF				Process document - merge MD_Soil_Join and MD_SOIL_USDA_POLY. Both
		X	X	B	SOIL_USDA_POLY	SOILS.lyr	GRAEF				pertain to the creation of one feature. Add a break between documents so the
								1	Consultant	Complete	can understand where one process ends and the other begins.
34 Soils Management (Cuts & Fills)	Google KMZ										Soils quantites data is new data that is just starting to be collected. This data set will be a sup
											that we will incorporate into SERGIS structure. The base spatial feature will be either the impr
											project or construction map feature class. (see Current improvement programs (LET) and Co
											row items above.) The data will be manually entered into a spreadsheet for now. We will crea
		×	×	В			DAAR				table based on data from the spreadsheet to be joined to the features listed previously. Deve
		"	-	"			- CAMIT				structure for geodatabase table.
											Evaluate table with data, determine how best to store data. We will us the current data that we
											available. We will use IDT_RDWY_NPROJ_LINE and IDT_PPROJ_FOR_GIS both located in I
									LE DOT		SDELayers/Region/geodatabase folder to create a generic project line work. After we make t
25 C (C)	Line		-		TODG LINE		CDAFE	2	WisDOT	6 1	join the spreadsheet with out and fills and symbolize appropriately.
35 Contours (County)	Line	X	X	С	TOPG_LINE		GRAEF	2	WisDOT	Complete	Data Dictionary updated with DOT field names
36 Utility Permits	Database										Data Dictionary is filled out for base spatial feature. Data steward managed kmz file on google
											needs to be converted an actual feature class. User also maintains three spreadsheets for tripurposes. We will want to look at how the user can maintain some of his work flows but merge
			1				1			l	
				C			DAAR				join the data to the spatial feature. Longer term development of the data laver will include

Asset Management (GIS)


Asset Management (GIS) SER System Maps

- 1) LOS (2013, 2035, 2050)
- 2) Crashes
- 3) Bridge Condition
- 4) Pavement Condition (2013, 2019)


Segment Classifications

- Urban
- Transitional
- Rural

Asset Management (GIS)
SER System Maps

Asset Management (GIS) **SER Team Organization**

Southeast Region Leadership Team

Project Management Team

Bill Mohr **WisDOT Project Supervisor**

Chris Hager WisDOT Project Manger

Andrew Levy Mitch Moline **WisDOT Planning Supervisor**

WisDOT GIS Lead

Lance Parve WisDOT Technical Expert

Marshall Quade **Consultant Project Manager**

Jon Schwichtenberg **Database Development Leader**

Data Steward Committee

Planning

Tony Good (Scoping/30%)

Tim McElmeel (Corridors)

Brian Carranza (Corridors)

SEF

Jason LeVegue (Design)

> Mike Burns (Construction)

Lance Parve (Design - Construction)

Operations

Allison Blackwood (Traffic)

> Jason Zemke (Structures)

Scott Reay (Structures)

PDS

Ryan Bernard (Backbone)

Ronnie Haynes (3R)

Kurt Flierl (Design - Construction)

TSS

Craig Ostovich (Survey)

Walter Zendek (Plats)

Casey Wierzchowski (Geotech)

> Todd Deloria (Utilities)

Joev Nelson (Real Estate)

Nicole Mauch (Real Estate)

Laci Kazan (Environmental)

Josh Stenz (Program Controls)

BTS

Asset Management (GIS) Project Schedule

	T .	2017									2018												
	Task	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	Sept	Support Oct 2018 - July 2019		
	Data Gathering			Gathering											•					·			
	Planning		0 0									1											
∞	Operations		0 ◊															Legend					
Data Planning Collection	Maintenance		0 ◊														0	Functiona					
unn scti	Project Development		0 0	>														Needs As	sessment				
Pla	Project Oversight/		0	\Diamond													\Diamond	Meeting			0		
Ç İğ	Program Controls																· ·				n		
Da	Environmental			0 0													\Rightarrow	Deliverabl	е		a a		
	Real Estate			0 0																	0		
	Additional Data			0 ◊																	i		
	Data Modeling &				Data N	Modeling & I	Design														n		
	Design					, i	Ť														g		
ing	Database					Database Compilation & Integration																	
Modeling	Compilation & Integration					Datab	ase Compil	ation & inte	gration												S		
Лос	GIS Maps												GIS Maps								u		
	GIS Implementation													mentation							р		
Data	Database										_										р		
	Implementation										D	atabase Im	plementation	n							0		
	Documentation															D	ocumentati	ion			ŗ		
	Internal Coordination	\Q	(>	\Diamond			\Q	\Diamond	\Diamond	\Q	\Diamond	\langle	\Diamond	\Q	(\Q	(\rangle	į.		
م س س	BITS	-	\langle			\Diamond		Ť		·		•			-	,							
Meetings 8 Reports	SE Region TSC	\Diamond		\Diamond		\Q		\Q		\Diamond		\Diamond			♦	\Diamond	\Diamond	\Diamond	\Diamond				
etii	SE Region TAC		\Diamond			\langle		(>				\langle						Final F	PT& Docu	mentation		
Me	Final PPT &																			\Rightarrow			
	Documentation																			M			

Asset Management (GIS) Project Delivery Approach

- Needs Assessment
- Universe of Needs & Wants
- Prioritization
- Tiered Delivery of Data Layers
- Close Coordination with Project Management Team
 & Data Stewards

Asset Management (GIS) Documentation

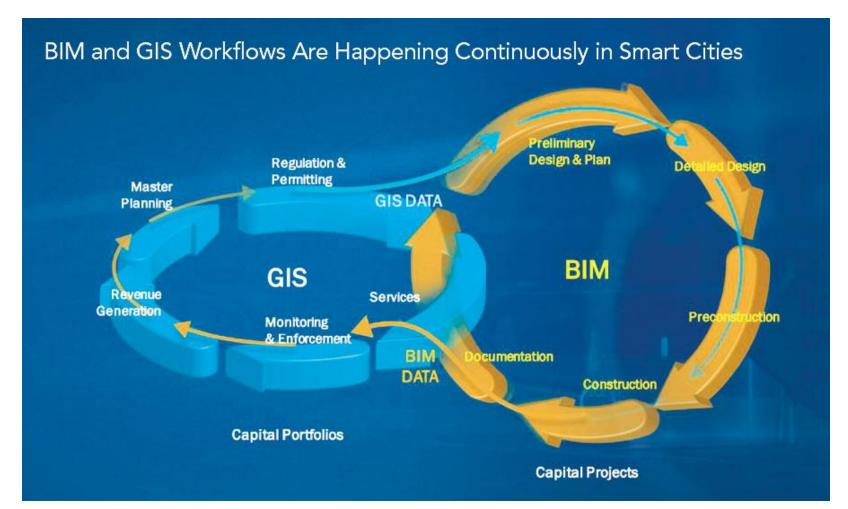
- Needs Assessments
- Data Dictionaries
- Process Workflow Diagrams
- Metadata Documentation
- Layer Tracking Spreadsheet
- Naming Convention
- File Structure
- SharePoint/Box Enterprise

Asset Management (GIS) SER Needs Assessment Findings

- Findings
 - Siloed data storage
 - Disparate data formats
 - Redundant data & processes
 - Unique, individual workflows
 - Need for more access to data
 - Accurate
 - Current
 - Need for more efficient workflows
 - Timely creation of data/maps
 - Need for useable outputs

Asset Management (GIS) Challenges & Lessons Learned

- Data
 - Where is it?
 - What should we start with?
 - How good is it?
 - How complete is it?
- Access
 - Where should data be stored?
 - Who should have access to what?
- Maintenance
 - Who's responsible?



Asset Management (GIS): Keys to Success

- Champion
- Point Person
- Define Roles
- Prioritize Data
- Internal Department Coordination
- IT Coordination
- Documentation
- Standardization with Flexibility

BIM - CAD - GIS

Q&A?

