# Advanced BIM Workflows for Linear Infrastructure Modelling

Jens Wachter


Team Lead Building Information Modeling

**DB** Engineering & Consulting

Jens Luetzelberger

Implementation Consultant BIM





## Intro

What is perfection?

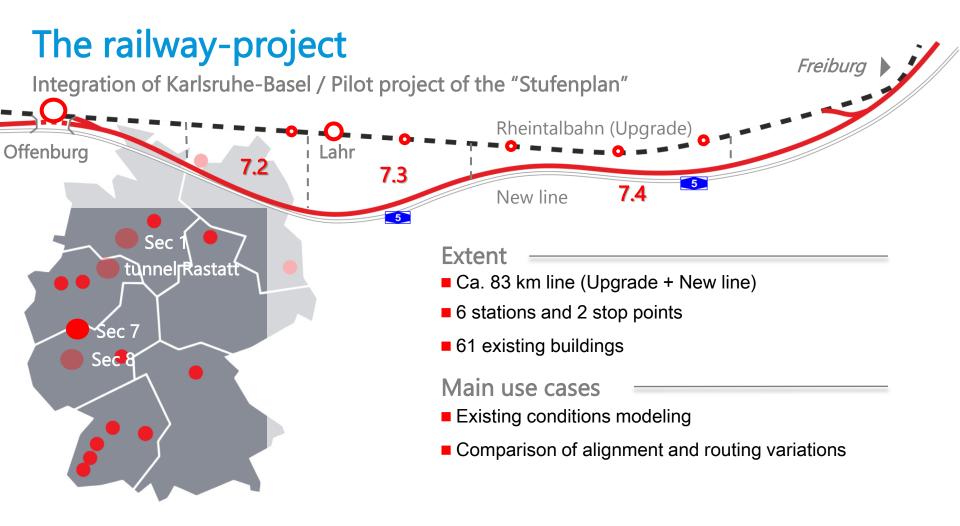
"Perfection is finally attained not when there is no longer anything to add, but when there is no longer anything to take away"

Antoine de Saint-Exupéry, french writer and aviator

# 3 key-experiences I had to make

No.1 Data: When in doubt, leave it out Sufficient data for main purpose




No.2 Minimizing staff means neglecting roles
BIM isn't just about technic



No.3 Throw away existing work



Model concept Revit-Dynamo in practical use



## No.1: Data – When in doubt, leave it out

Sufficient data for main purpose



- Modeling without planning
  - Lack of coordination
- Modeling of the existing conditions
  - 61 bridges
  - LOG of 1cm
  - Minimum 75% demolition
  - → Level of accuracy
  - → Time needed



5 month completion

→ Motivation of team Much work, no real benefit

## No.1: Data – When in doubt, leave it out

Sufficient data for main purpose



- Modeling without planning
- Modeling of the existing conditions
- Irregular scan with 2cm distance
  - Use heliscan
  - Combine with stationary scan
  - No minimizing
  - → No experience in offending
  - → Overload for later models

## No.1: Data – When in doubt, leave it out

Sufficient data for main purpose



- Modeling without planning
  - → Status: Pilot project
- Modeling of the existing conditions
  - → LOD follows purpose
- Irregular scan with 2cm distance
  - → set a well performing base instead of useless details

GAINED EXPERIENCE GIVES SELF-CONFIDENCE FOR FUTURE CONSULTING

# No. 2 Neglecting roles

Unite roles means increases role conflicts



### LESSONS LEARNED

• Who is in charge of providing a model-structure?

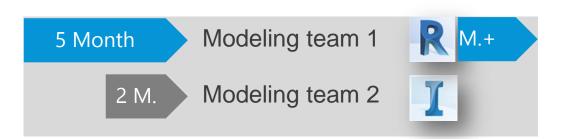


- Who defines sprint-backlog?
- Who collects user stories for the the next sprint?
- When is the right time to confirm the model?

Unexperienced teams = Concentrated method






# No. 3 Throw away existing work

Unite roles means increases role conflicts

5 Month Existing conditions LOD 100

Version modeling LOD 200

Alignment choice



## Development



Lack of fundamental specifications

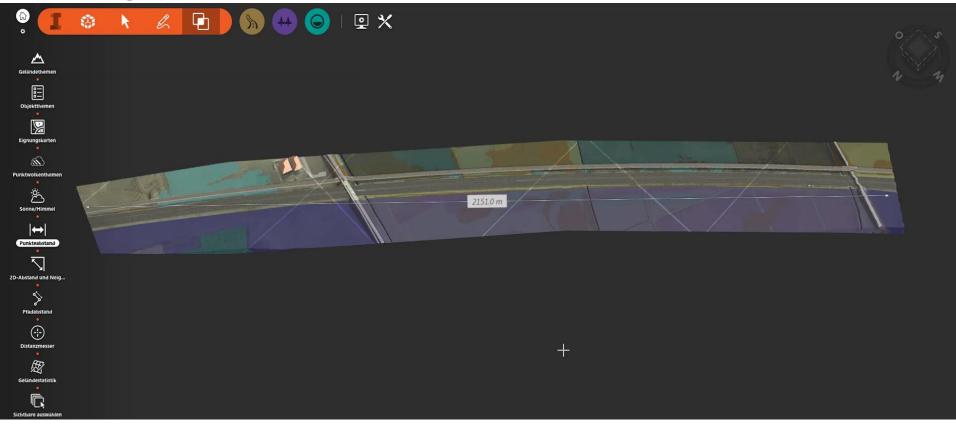


Mature planning base to model it



Well-rehearsed team modeling with interacting software

# Facing technical challenges


Tool set for main benefit

| Revit<br>R                                                                                     | Navisworks<br>N <sub>s</sub>                        | Infraworks                                                                                               |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| <ul> <li>Modeling existing<br/>bridges/under-<br/>pass based on<br/>point cloud</li> </ul>     | <ul> <li>Assembley of coordination model</li> </ul> | <ul> <li>Model LOD 100 for<br/>support of the<br/>alignment choice<br/>(conventional process)</li> </ul> |
| <ul><li>Modeling new<br/>alignment</li></ul>                                                   | <ul> <li>Clash detection</li> </ul>                 |                                                                                                          |
| <ul> <li>Inspection of the<br/>existing buildings<br/>compared wirt<br/>point cloud</li> </ul> |                                                     |                                                                                                          |

CDE of the employer: At frist <u>EPLASS</u> (Adv. processing)

## **Infraworks**

Generating a new LOD



# InfraWorks for trendsetting decision

## Requirement fulfillment



- Bridges constructed by Infraworks / dimension from point cloud
- Digital terrain model included (only helicopter)
- Main buildings included
- Surface use included (e.g. protective areas)
- Alignment included

#### Main use:

- Mass calculation +/- 10%
- Visual clash detection



# Facing technical challenges

Tool set for main benefit

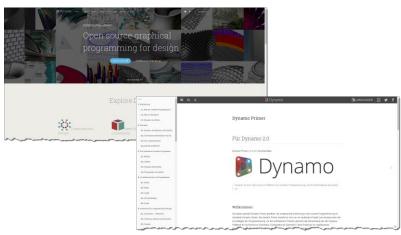
| ProVI                                                                                 | Dynamo D                                                        | Revit<br>R                                                                                     | Navisworks<br>N <sub>s</sub>                        | Infraworks                                                                                                |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <ul><li>Conversion &amp; editing</li><li>Alignement data</li></ul>                    | <ul> <li>Visual script of<br/>the Revit<br/>workflow</li> </ul> | <ul> <li>Modeling existing<br/>bridges/under-<br/>pass based on<br/>point cloud</li> </ul>     | <ul> <li>Assembley of coordination model</li> </ul> | <ul> <li>Model LOD 100 for<br/>support of the<br/>alignement choice<br/>(conventional process)</li> </ul> |
| <ul> <li>Output of<br/>listed points<br/>extracted from<br/>cross sections</li> </ul> |                                                                 | <ul> <li>Modeling new<br/>alignement</li> </ul>                                                | <ul> <li>Clash detection</li> </ul>                 |                                                                                                           |
|                                                                                       |                                                                 | <ul> <li>Inspection of the<br/>existing buildings<br/>compared wirt<br/>point cloud</li> </ul> |                                                     |                                                                                                           |





(Adv. AD compatibility)

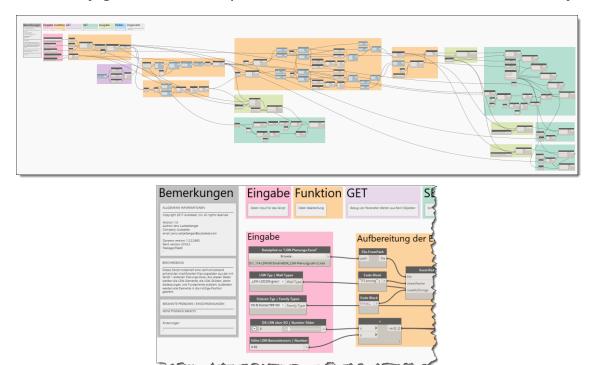
## Dynamo basics and why it is used

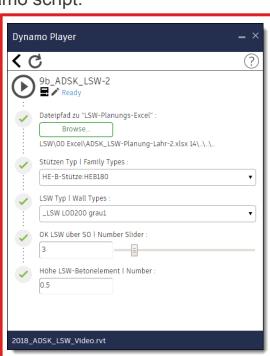

## **Modeling Concepts**

- What is Dynamo?
  - Open-source platform
  - Visual interface to construct logic routines
  - Geometry creation
  - Workflow automation
  - Interface for multiple software tools

#### Resources

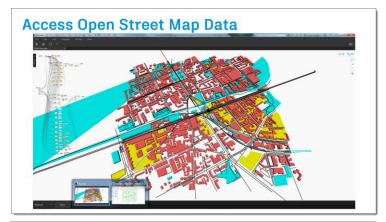
- http://dynamobim.org/ (Download, Blog, Forum...)
- http://primer.dynamobim.org/de/ (Online-Manual in different languages)



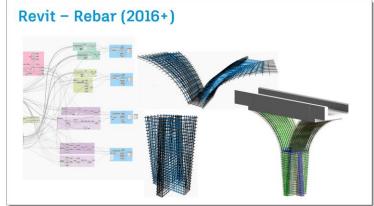



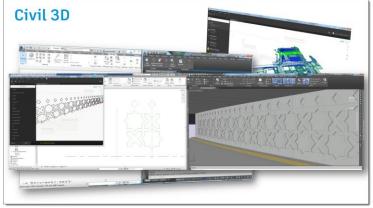

## Do I have to watch all the "spaghettis"?

## Dynamo Basic


A Dynamo script can be viewed and used directly, but also via the Dynamo Player. The Dynamo Player automatically generates an input mask based on the structure of the Dynamo script.

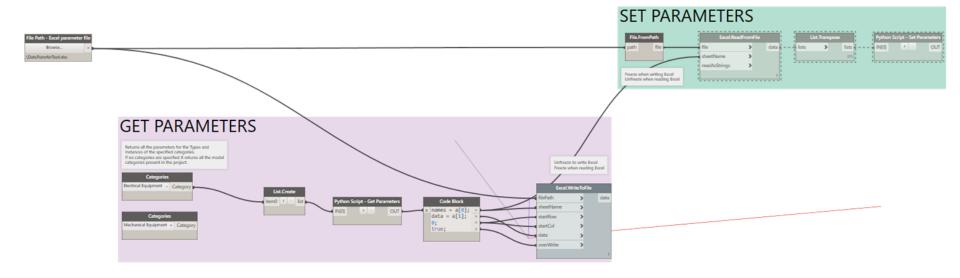


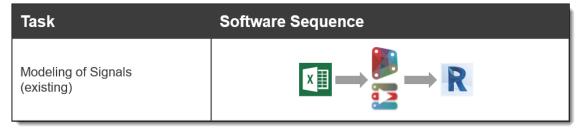




# **Applications / Use Cases**

**Modeling Concepts** 








# **Excel Interoperability**

## **Modeling Concepts**

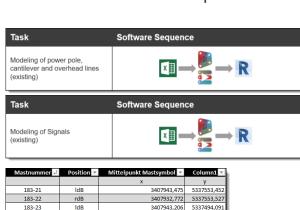






## **Workflow Overview**

## Pilot project "Karlsruhe – Basel"


| Task                                            | Revit Families                                                                                                                                                     | Dynamo script                                                                                                                                                                                                                                              | Note                                                                                              |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| rail track                                      | <ul><li>2x rail profiles</li><li>2x sleepers</li></ul>                                                                                                             | rail track solid geometry, placement of sleepers                                                                                                                                                                                                           | existing and new rail track modelling purposes                                                    |
|                                                 | <ul><li>bedding</li><li>subgrade</li></ul>                                                                                                                         | placing of bedding and subgrade families along the rail track                                                                                                                                                                                              | deviations in input make it necessary to revise the script for rail tracks next to train stations |
| aguipment                                       | 1x power pole U140 with 29x Types     cantilever                                                                                                                   | placement of power poles, cantilever and overhead<br>lines according defined rules                                                                                                                                                                         | existing conditions modeling; new in preparation                                                  |
| equipment                                       | overhead lines                                                                                                                                                     | automated creation of Revit family types by using<br>Excel input data (steel power pole types)                                                                                                                                                             | -                                                                                                 |
|                                                 | KS-Signal                                                                                                                                                          | <ul><li>placement of existing signals</li><li>placement of new signals</li></ul>                                                                                                                                                                           | existing conditions modeling; new in preparation                                                  |
| train platform<br>(existing conditions; LOD100) | <ul><li>precast concrete element BSK55</li><li>foundation</li></ul>                                                                                                | <ul><li>placement of BSK55 &amp; foundation</li><li>solid from boundary (DWG)</li></ul>                                                                                                                                                                    | existing conditions modeling LOD100; new currently not in focus                                   |
| noise barrier<br>(existing conditions)          | <ul> <li>noise protection elements</li> <li>joint-forming profile family</li> <li>precast concrete base element</li> <li>column cap</li> <li>foundation</li> </ul> | <ul> <li>noise barrier script 1         (calculation of top of nb and Excel export)</li> <li>noise barrier script 2         (automated modeling based on Excel import)</li> <li>noise barrier script 3         (replacement of base element(s))</li> </ul> | existing conditions modeling; new in preparation                                                  |
| drainage culvert                                | <ul><li>round profile</li><li>rectangular profile</li></ul>                                                                                                        | placement according rail track axis                                                                                                                                                                                                                        | parameter for rotation in Revit family included                                                   |

## **General**

#### Workflows

There are different workflows for existing conditions modeling and the modeling of a newly planned track section. The major difference is the structure of the input data for automated and semi-automated processes provided by the main authoring tool(s).

- Existing Conditions Modelling (e.g. overhead lines)
  - track data per track and per IVL-section (1 km section of whole track)
  - pylon data read from existing DWG or PDF files
    - no automatic assignment to rail track available (rotation)
    - no z-height, no pylon-height, no pylon type etc.
  - point clouds are used to detail and verify the Revit model
    - manual task
- New
  - track data per track and per IVL-section existing
  - spreadsheets of all relevant information for new pylons available
    - automated control of parameters such as e-value and others possible



Schiene li.

Schiene re

Bettung

Planum

Plan, Kante re

3417622,911

5364765,417

183-26

183-27

183-28

154520

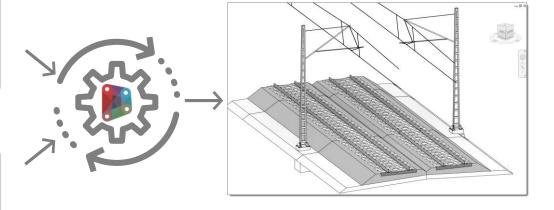
154520

154520 154520 154520

154520

154520 154520

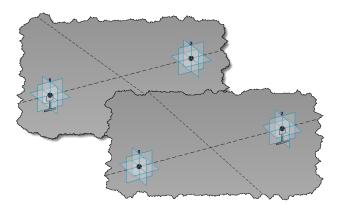
154520 154520 154520

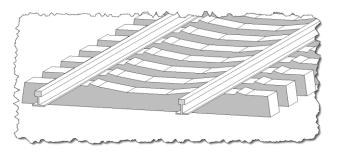

154530

# General

## Workflows

| Station    | Beschreibung   | Höhe     | Rechtswert  | Hochwert    |
|------------|----------------|----------|-------------|-------------|
| ~          | ~              | ~        | ~           | ~           |
| 154520     | Plan,Kante re, | 152,5311 | 3417623,054 | 5364776,404 |
|            |                |          |             |             |
| 154520     | Schiene li,    | 153,4468 | 3417627,174 | 5364774,463 |
| 154520     | Schiene re,    | 153,4468 | 3417625,81  | 5364775,105 |
| 154520     | Bettung        | 153,0494 | 3417628,301 | 5364773,931 |
| 154520     | Bettung        | 153,2688 | 3417628,003 | 5364774,072 |
| 154520     | Bettung        | 153,2688 | 3417624,98  | 5364775,496 |
| 154520     | Bettung        | 152,5864 | 3417624,054 | 5364775,933 |
| 154520     | Planum         | 152,8211 | 3417628,301 | 5364773,931 |
| 154520     | Planum         | 152,7211 | 3417626,492 | 5364774,784 |
| 154520     | Planum         | 152,5311 | 3417623,054 | 5364776,404 |
| 154520     | PSS            | 152,5207 | 3417628,301 | 5364773,931 |
| 154520     | PSS            | 152,4207 | 3417626,492 | 5364774,784 |
| 154520     | PSS            | 152,2064 | 3417622,614 | 5364776,611 |
| 154530     | Plan,Kante re, | 152,557  | 3417618,792 | 5364767,358 |
|            |                |          |             |             |
| 154530     | Schiene li,    | 153,4726 | 3417622,911 | 5364765,417 |
| 154530     | Schiene re,    | 153,4726 | 3417621,547 | 5364766,059 |
| ~~~~ £30 V | Carl James     | 152      | Come        | 764.886     |

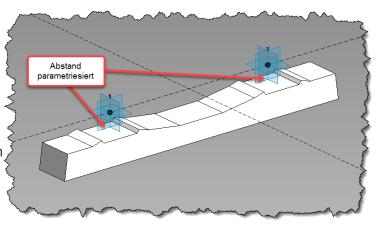

| Mastnummer 🗐 | Position 🔻                             | Mittelpunkt Mastsymbol 🔻 | Column1 🔻   |
|--------------|----------------------------------------|--------------------------|-------------|
|              |                                        | x                        | у           |
| 183-21       | IdB                                    | 3407943,475              | 5337553,452 |
| 183-22       | rdB                                    | 3407932,772              | 5337553,527 |
| 183-23       | IdB                                    | 3407943,206              | 5337494,091 |
| 183-24       | rdB                                    | 3407932,754              | 5337494,239 |
| 183-25       | IdB                                    | 3407944,084              | 5337444,042 |
| 183-26       | rdB                                    | 3407823,066              | 5337457,193 |
| 183-26       | rdB                                    | 3407933,477              | 5337443,864 |
| 183-27       | IdB                                    | 3407946,552              | 5337379,22  |
| 183-28       | rdB                                    | 3407935,793              | 5337378,9   |
|              | ~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | The many have            | ~           |

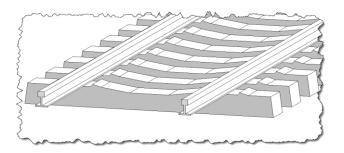



## Rail Track Components

#### Rail Profile

- RFA Template
  - Generic model adaptive
- Structure of the RFA
  - two adaptive points are placed in a side view at a distance of 1500 mm
  - the rail profile is placed under one of these points
  - rail profile with reduced detailing
- Idea / Concept
  - to make rotation easy, you have to work with one RFA for SO left and one for SO right (SO = top of rail)
  - placement of 2-point AC takes care of the cant
- Level of automation
  - 100% placement of the profiles and rail solids which are created by Dynamo
  - Dynamo script to be used in project environment of Revit

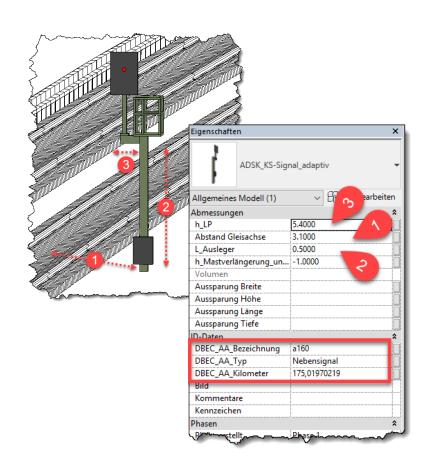


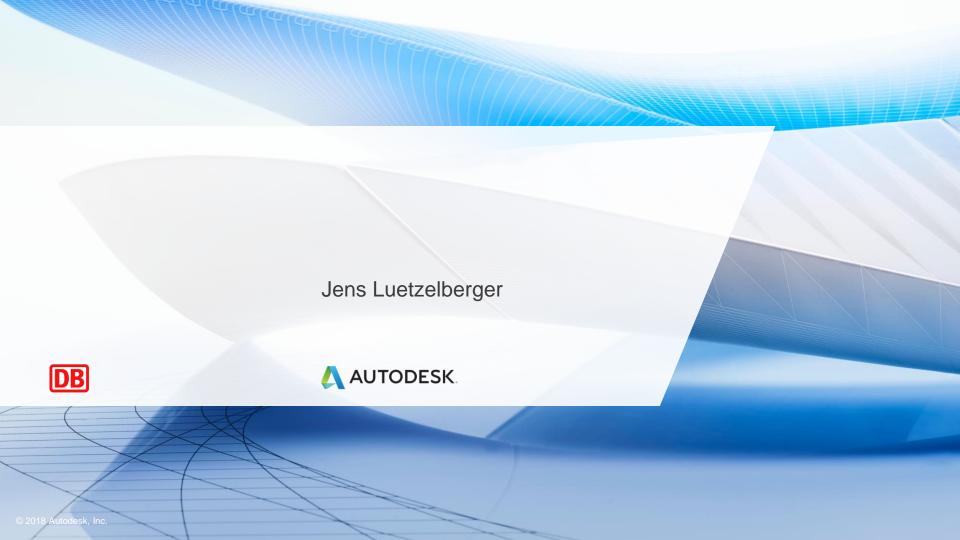




## Rail Track Components

## Sleeper

- RFA Template
  - Generic model adaptive
- Structure of RFA
  - two adaptive points are placed in a side view at a distance of 1500 mm
  - depending on the adaptive points, the shape of the sleeper is modeled including a parameter to control the distance to the SO
- Idea/ Concept
  - placement of 2-point AC takes care of the cant
  - the parameter controlling the distance from SO to sleeper ensures usability with different rail profiles (different heights)
- Level of automation
  - 100% placement of the sleepers
  - Dynamo script to be used in project environment of Revit

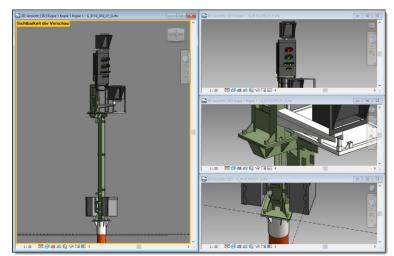


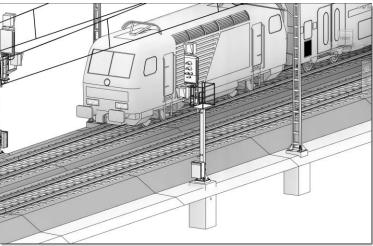




## Rail Track Equipment

## Signal existing conditions

- RFA Template
  - Generic model adaptive
- Structure of RFA
  - 2x adaptive points ensure coordinate-correct placement and rotation to the track
  - Parameters control the position of the light spot to the track axis, the extension of the mast to the ground and the length of the arm
- Idea / Concept
  - Signaling is required both in inventory and in planning, so two placement methods are needed
  - the signal is placed over a coordinate list and automatically rotated to the track axis
- Level of automation
  - 90-100% placement and rotation are automated, the extension to the ground is partially manual to solve




## Rail Track Equipment

## Signal 2.0 - detailed

- RFA Template
  - Generic model adaptive (1-Point)
    - face-based Revit families included, carrying the shrink-wrap geometry from inventor files
- Structure of RFA
  - 1x adaptive point ensure coordinate-correct placement on the rail track axis; rotation provided from authoring tool (parameter driven)
  - all standardized signal types are provided by Revit families
- Idea / Concept
  - the signal is placed over a coordinate list and automatically rotated to the track axis
  - relevant signal types are provided by the authoring tool (ProSig)
  - exported FBX files of the RFAs can be reused as InfraWorks content
- Level of automation
  - 100% placement, rotation and type selection are automated

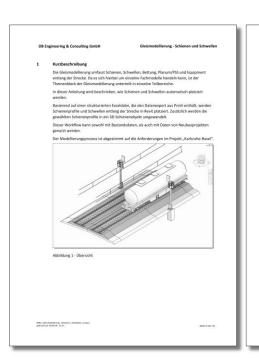


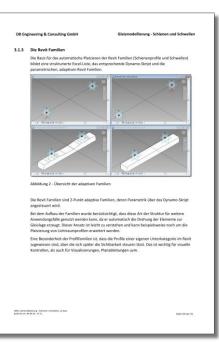


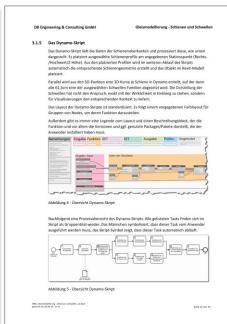
# Signal Placement 2.0

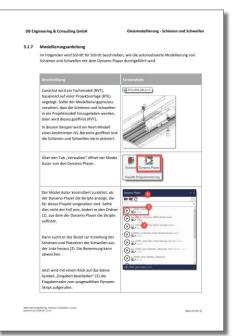
Highly flexible Revit-Family




#### Signal Family 2.0


- 1-point adaptive
- offset and rotation all axis
- made out of Inventor files with a minimum of effort





# Insight into the Documents

#### Documentation of the Workflows

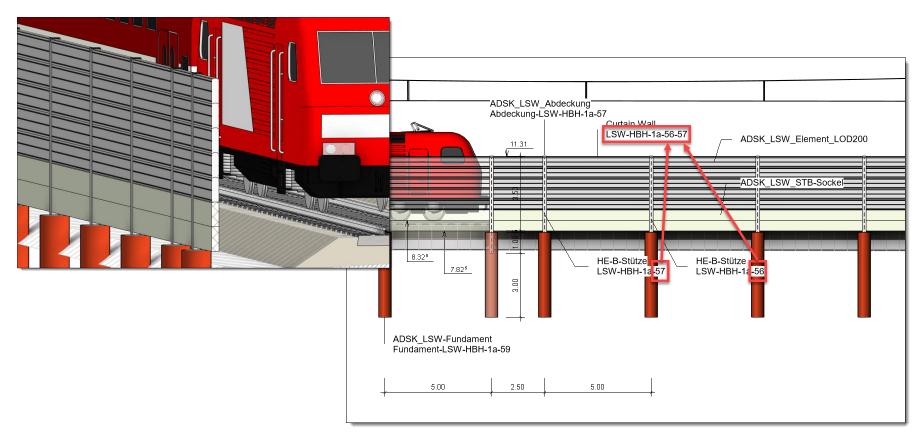











# Modeling of a Noise Barrier

**Practical Example** 

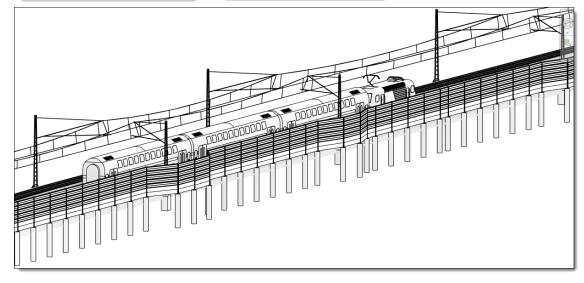


# Modeling of a Noise Barrier - Drawings

**Practical Example** 



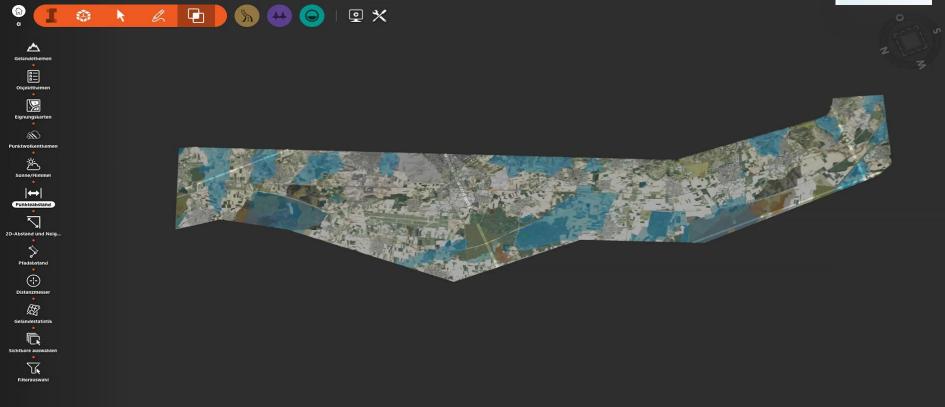
# Modeling of a Noise Barrier - BOM


## **Practical Example**

| <lsw stützen=""></lsw> |        |              |        |
|------------------------|--------|--------------|--------|
| Α                      | В      | С            | D      |
| Count                  | Туре   | Mark         | Length |
| HEB180                 |        |              |        |
| 1                      | HEB180 | LSW-HBH-1a-1 | 4.550  |
| 1                      | HEB180 | LSW-HBH-1a-2 | 4.550  |
| 1                      | HEB180 | LSW-HBH-1a-3 | 4.550  |
| 1                      | HEB180 | LSW-HBH-1a-4 | 4.550  |
| 1                      | HEB180 | LSW-HBH-1a-5 | 4.600  |
| 1                      | HEB180 | LSW-HBH-1a-6 | 4.550  |
| 1                      | HEB180 | LSW-HBH-1a-7 | 4.550  |
| 1                      | HEB180 | LSW-HBH-1a-8 | 4.550  |
| سر                     | HER180 | LSW-HBH-1a-9 | 469    |

| 1. My            |        | eomanuth, 28°  | 4.590~~ |
|------------------|--------|----------------|---------|
| 1                | HEB180 | LSW-HBH-1a-129 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-130 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-131 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-132 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-133 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-134 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-135 | 4.550   |
| 1                | HEB180 | LSW-HBH-1a-136 | 4.550   |
| HEB180: 136      |        |                |         |
| Grand total: 136 |        |                |         |

| <lsw panels=""></lsw> |        |        |  |
|-----------------------|--------|--------|--|
| Α                     | A B C  |        |  |
| Count                 | Туре   | Height |  |
| Grau 1                |        |        |  |
| 675                   | Grau 1 | 0.500  |  |
| Grau 1: 675<br>STB    |        |        |  |
| 270                   | STB    | 0.500  |  |
| STB: 270              |        |        |  |
| Grand total: 945      |        |        |  |


| <gemischt></gemischt>                       |        |  |
|---------------------------------------------|--------|--|
| Α                                           | A B    |  |
| Count                                       | Family |  |
| ADSK_LSW-Fundament                          |        |  |
| 136 ADSK_LSW-Fundament                      |        |  |
| ADSK_LSW-Fundament: 136  ADSK_LSW_Abdeckung |        |  |
| 136 ADSK_LSW_Abdeckung                      |        |  |
| ADSK_LSW_Abdeckung: 136                     |        |  |
| Grand total: 272                            |        |  |



# **Emergency solution to first choice**

**Using Infraworks** 





# Q&LA



