
Large scale point cloud visualization
in Forge Viewer with Airsquire

Yue You
Airsquire CTO

YouYue123
youyue@airsquare.ai

Michael Beale
Developer Advocate

@micbeale
michael.beale@autodesk.com

Class Summary

• Industry Trends
• AirSquire Demo
• Revit+Point Cloud Scan
• Advanced Topics: streaming / sectioning / measuring
• Q & A

Code:>

Code:>

© 2019 Autodesk, Inc.

Terms
• Point Cloud

• Streaming

• Octree

• LiDAR - Light Detection and Ranging

• How do I Access point cloud data?

• How do I Organize point cloud data?

• Why is a web service for point clouds needed?

• What is the expected data volume of point cloud data?

• Do existing technologies already address
the challenge?

Questions you may have…

Trends in the Point Cloud industry

• Downstream analysis the “norm” - Segmentation,
Classification, Summary attributes

• Compute / Scanner costs dropping, making
“measurement activity" more viable/practical

• Scanner density and data volume increasing

• Increasing demand for management & access
tools of massive collections

• Move to Point Cloud Web Services

• Access Points via Streaming

$$$ > $

Forge
Accelerator’s

How it all started…

http://forge.autodesk.com/accelerator

You Yue

Airsquire CTO

youyue@airsquare.ai

Who is Airsquire?
Airsquire as-built Visualisation and Verification. Process,
interrogate and verify point clouds in hours, not days.

Our proprietary A.I. algorithm compares BIM model against
Point Cloud scan to automatically detect progress and
deviation.

Use cases: existing verification, progress verification, as-
built verification

Current customers includes UK and
BeNeLux top Constructors:

Benefit

Why large scale model + points in the cloud, matters

• In construction management, Reality is complex

• Traditional communication is not accurate

• Contextual model and point cloud, keeps everyone,
on the same page

Simplest workflow

Intuitive workflow that
fits with industry best
practices

Big data volume

Not just 10GB… 100GB and more!

Smartest technology

mm precision in predictive /
cost-preventive suggestions

AIRSYNC construction verification with AI assistance

Demo

https://www.youtube.com/watch?v=wGxr-DLHHxM

• Uploads
• Auto Analysis
• Reporting
• Team Reviews

Now, the hard part…

Potree Custom BuiltVs

Potree Custom Built

• Use point cloud class
• Add simple loading

• Use Recap.dll for RCP decode
• Use octree index from .RCP
• Connect camera FOV to Octree
• stream in/out

• ForgeViewer still THREE.js R71
• Find old R87 Three + Potree
• Must port code from R87 to R71
• Compatibility with Forge

WebglRenderer
• Add latest ForgeViewer

 geometry.isPoints = true;

Let’s start with a basic point-cloud…
const geometry = new THREE.BufferGeometry();

 const numPoints = width * length;

 const positions = new Float32Array(numPoints * 3);

 const colors = new Float32Array(numPoints * 3);

 geometry.addAttribute('position', new THREE.BufferAttribute(positions, 3));

 geometry.addAttribute('color', new THREE.BufferAttribute(colors, 3));

 geometry.computeBoundingBox();

 geometry.isPoints = true;

const material = new THREE.PointCloudMaterial({ size: PointSize,

 vertexColors: THREE.VertexColors })

const pointcloud = new THREE.PointCloud(geometry, material);
this.forgeViewer.impl.createOverlayScene('pointclouds');

this.forgeViewer.impl.addOverlay('pointclouds', this.points)

This flag will

force Forge Viewer

to render the

geometry as

gl.POINTS

 geometry.isPoints = true;

- Highly Compressed
- Open Source

- Web Friendly

- KD Tree (NN-Search)

- Tooling
- Google (draco-encode)

- Cesium (PC Tiler)

- glTF

- RCP > PLY > .DRC

http://docs.opengeospatial.org/per/18-048r1.html

Let’s add Draco compression…

Demo - putting it together … a sample scan with Three.js

Sample Scan

• 2 Million Points

• PLY file: 80MB

• LAZ file: 8MB

• DRC file: 4MB

https://github.com/wallabyway/forge-point-clouds

Let’s Code !

• Floor - 6 scans
• Factory - 60 scans
• Oil/Gas - 600 scans

Examples

• 100,000 elements
• 100 GB point cloud

So, for one Floor

But ‘Real’ point-clouds are big …. Really big !

Streaming + Spatial Index

1 TB

Oct-Tree
XYZ’s

Pre-Process Scan’s on upload

Oct-Tree
XYZ’s

100 GB
Point-cloud

Upload Model to Cloud

Revit / Navis Models

Model + PointCloud:
combined inside ForgeViewer

Browser

Advanced Topics

• Spatial indexing
• Level of detail(LOD)
• Shading
• Sectioning
• Measuring

Scalability of point cloud is insane

• A Flat point cloud data structure is not scalable

• Render performance drops with the amount of points

• ie. 10 times more data → response 2-3 times slower in rendering

• 100 +GB data is very normal

*Data is from Netherland escience center
2014 presentation

Spatial data organization for scalability

Problem:
- How can the “flat data structure” be organized more efficiently

Challenge:
- No assumptions on “how the data is organized”

Answer:
- Spatial clustering (e.g.octree)

*Data is from Netherland escience center
2014 presentation

- as obtained by Morton code

Octree

An octree is an object that represents a spacial partitioning. It is made up by a tree data structure in which each node has
exactly eight children. Occupied leaf nodes are represented as voxels. Octrees can be used to offer a simplified representation
for shapes or point clouds, or can act as an occupancy grid/space:

　　Octrees are collidable, measurable and detectable objects. This means that octrees:

● can be used in collision detections with other collidable objects.
● can be used in minimum distance calculations with other measurable objects.
● can be detected by proximity sensors.

*Figure is from Wikipedia

Morton encoding is a mapping from a multi-dimensional space to one dimension [32].
When generating a Morton code, first, a bit code is constructed for every node. This node
is then converted to an integer, if needed. The nodes, once laid out, follow a Z-order
curve, which enhances data-locality.

*Figure is Jaber J. Hasbestan Inanc Senocak’s paper (Binarized octree generation for Cartesian adaptive mesh refinement around immersed
geometries)

Morton Code(Z-order code)

*Figure is from Jeroen Baert's Blog Morton encoding/decoding through bit interleaving: Implementations

3D Morton code to construct Octree

https://www.forceflow.be/

 uint64_t getSpaceIndex(int x, int y, int z){

 uint64_t answer = 0;

 for (uint64_t i = 0; i < (sizeof(uint64_t)* CHAR_BIT)/3; ++i) {

 index |= ((x & ((uint64_t)1 << i)) << 2*i) |

 ((y & ((uint64_t)1 << i)) << (2*i + 1)) |

 ((z & ((uint64_t)1 << i)) << (2*i + 2));

 }

 return index;

}

Get 3D Morton code

based on position

3D Morton code to construct Octree

LOD - “Level of Detail”

https://www.youtube.com/watch?time_continue=1&v=mJlF4wbnhpc

• GPU perf should not be wasted to
render points which is not
necessary

Solution

• Morton code allows fast LOD
selection and compact storage with
minimum necessary information

LOD - Level of Detail

Example: Query of Octree with perspective view

*Data is from Netherland escience center
2014 presentation

Example: Query of Octree with perspective view

*Data is from Netherland escience center
2014 presentation

Example: Query of Octree with perspective view

*Data is from Netherland escience center
2014 presentation

000

Example: Query of Octree with perspective view

*Data is from Netherland escience center
2014 presentation

001

Example: Query of Octree with perspective view

*Data is from Netherland escience center
2014 presentation

010

Point cloud rendering loop

 const pointCloudRenderingLoop () => {

 requestAnimationFrame(pointCloudRenderingLoop)

 const overlayScene = forgeViewer.impl.overlayScenes[pointCloudOverlayName]

 const result = pointCloud.queryPointBlock(

 forgeViewer.impl.camera,

 forgeViewer.impl.glrenderer()

)

}

Class PointCloud {

 function queryPointBlock(camera: THREE.Camera, renderer: THREE.WebGLRenderer) {

 updateVisibility(this, camera, renderer)

 postProcessPointCloud(this)

 }

}

LOD / Streaming - Summary of workflow

1. Pre-process point cloud in streaming server

2. Persist spatial index information

3. Load spatial root in frontend and binding LOD checking in render loop

4. Send data request to streaming server based on checked LOD

Shading

http://docs.opengeospatial.org/per/18-048r1.html

EDL Shading
- doesn't rely on any information apart from the geometry itself

- Eye Dome Lighting (EDL)

faster alternative to normal-based shading

SSAO Shading

Measurement /Section

To Pick a point

0. Add a toolbar button and panel

1. For model point picking we use Forge VIEWER - “Snapper” Class

2. For point cloud picking we render a “Color Buffer” Target,

PointCloud index === color

3. Calculate and ‘display’ the distance

Steps for “Measuring”

Quick Demo

Let’s look
at

the code:>

0. Use forge built-in section toolkit

1. Bind native forge clip plane change event to change

shader uniforms

Steps for “Sectioning”

Let’s look
at

the code:>

Summary

• Learnt about a ‘verification’ workflow
• Learnt how to combine pointcloud+Model

in Forge Viewer
• Learnt about streaming point-clouds
• Learnt how to Measure and section

point-clouds in Forge Viewer

Be heard !

Provide feedback in the
CLASS SURVEY in the app

Questions ?

Yue You
www.Airsquire.ai

YouYue123
youyue@airsquire.ai

Michael Beale
Developer Advocate

@micbeale
michael.beale@autodesk.com

Contact

https://github.com/wallabyway/forge-point-clouds

Links

https://www.youtube.com/watch?v=wGxr-DLHHxM

http://forge.autodesk.com/accelerator

