
Automating Tasks with the
Fusion 360 API
Patrick Rainsberry, Autodesk
Business Strategy, Fusion 360

• Get started with the Fusion 360 API

• Learn how to write a basic script

• Learn how to create a custom add-in or feature

o Using Add-in Skeleton

o Automating Tasks

▪ Holes in a plate - CSV Import

▪ Change something, export, g-code

▪ Solid Infill - Analyze model to create new geometry

o Other Examples

• Learn how to find necessary information and troubleshoot a Fusion 360 add-in

Outline

API Overview

Things to Automate

Repetitive tasks

Data import / export

Complex operations

Fusion 360 API

▪ Platform independent API supports OSX and Windows
▪ Designed to be program language independent, currently supports:

▪ Python
▪ C++

▪ Python is a widely used general-purpose, high-level programming
language that is designed to be concise and human readable.
▪ Supports object-oriented, imperative and functional programing
▪ Dynamically typed (interpreted)
▪ Automatic memory management
▪ A large set of standard and third party libraries

Make a Block

Create a New Script

Initial Script

#Author-Patrick Rainsberry
#Description-Basic Script to create a block

import adsk.core, adsk.fusion, adsk.cam, traceback

def run(context):
 ui = None
 try:
 app = adsk.core.Application.get()
 ui = app.userInterface
 ui.messageBox('Hello script')

 except:
 if ui:
 ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Our Script - Reference design object

#Author-Patrick Rainsberry

#Description-Basic Script to create a block

import adsk.core, adsk.fusion, adsk.cam, traceback

def run(context):

 ui = None

 try:

 app = adsk.core.Application.get()

 ui = app.userInterface

 except:

 if ui:

 ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

All our code goes here

Document

Product: Design

Component1 Component2

Product: CAM

Root Component

Component1:
Occurrence 1
Component1:
Occurrence 2
Component2:
Occurrence 1

Component1:1
/RedFace (proxy)

Component1:2
/RedFace (proxy)

“Component1:1/RedFace”

● Document: Data panel item. ~Fusion File
● Product: Data type. Design, Tool-path, etc.
● Component: Unique part geometry
● Occurrence: Instance of a component
● Proxy: Reference to occurrence geometry

Fusion 360 Document Structure

Our Script - Reference design object

#Author-Patrick Rainsberry

#Description-Basic Script to create a block

import adsk.core, adsk.fusion, adsk.cam, traceback

def run(context):

 ui = None

 try:

 app = adsk.core.Application.get()

 ui = app.userInterface

 design = app.activeProduct

 except:

 if ui:

 ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Document

Product: Design

Component1 Component2

Product: Toolpath

● Collections provide access to a common set of objects.
● Sketch collection contains all sketches in a component
● Create a new sketch by adding an item to the collection
● Lines collection contains all lines within a sketch
● Circles collection contains all circles in the sketch, etc...
● To create a new line add to the Lines collection

Features and Collections

Component1:
Sketch Collection

Component1:
Extrudes Collection

Component1:Sketch1

Component1:Sketch1
Lines Collection

Component1:Sketch1:Line1

Component1:Extrude1

Get document components and create a sketch

 # Get reference to the root component

 rootComp = design.rootComponent

 #Get reference to the sketches and plane

 sketches = rootComp.sketches

 xyPlane = rootComp.xYConstructionPlane

 #Create a new sketch and get lines reference

 sketch = sketches.add(xyPlane)

 lines = sketch.sketchCurves.sketchLines

Create Points and Lines

 # Use autodesk methods to create input geometry

 point0 = adsk.core.Point3D.create(0, 0, 0)

 point1 = adsk.core.Point3D.create(0, 1, 0)

 point2 = adsk.core.Point3D.create(1, 1, 0)

 point3 = adsk.core.Point3D.create(1, 0, 0)

Create Points and Lines

 # Use autodesk methods to create input geometry

 point0 = adsk.core.Point3D.create(0, 0, 0)

 point1 = adsk.core.Point3D.create(0, 1, 0)

 point2 = adsk.core.Point3D.create(1, 1, 0)

 point3 = adsk.core.Point3D.create(1, 0, 0)

 # Create lines

 lines.addByTwoPoints(point0, point1)

 lines.addByTwoPoints(point1, point2)

 lines.addByTwoPoints(point2, point3)

 lines.addByTwoPoints(point3, point0)

Creating Features (Extrude)

Get Extrudes
collection

Create input object
•Define parameters for feature
•Define profile(s) for feature
•Define distance

Create extrusion

By adding a new extrude to the extrudes collection

Create Extrusion Input

 # Get the profile defined by the circle

 profile = sketch.profiles.item(0)

 # Create an extrusion input

 extrudes = rootComp.features.extrudeFeatures

 ext_input = extrudes.createInput(profile, adsk.fusion.FeatureOperations.NewBodyFeatureOperation)

Units in Fusion 360

Fusion Default Model Units
cm (areas and volumes are cm2 and cm3)

radians

kg

Users can input any unit
3

3 in + 5 in

3 m ^ 2

3 in + 5 mm

Active units and feature definitions
Scripts must adapt to user changing units

Most features look for “Value Inputs” not raw values

var x = adsk.core.ValueInput.createByReal(23)

var x = adsk.core.ValueInput.createByString(“23 in”);

UnitsManager is a utility for values and units.
convert(1.5, "in", "ft") -> 0.125

evaluateExpression(“3 in * 5 in”, “in”) -> 38.1

formatInternalValue(2000, “ft*ft*ft“, true) -> "0.070629 ft^3"

standardizeExpression("1.5", "in") -> "1.5 in"

Set Options for Extrude

 # Define that the extent is a distance extent of 1 cm

 distance = adsk.core.ValueInput.createByReal(1)

 # Set the distance extent to be single direction

 ext_input.setDistanceExtent(False, distance)

 # Set the extrude to be a solid one

 ext_input.isSolid = True

 # Create the extrusion

 extrudes.add(ext_input)

Full Script

#Author-Patrick Rainsberry
#Description-Basic Script to create a block

import adsk.core, adsk.fusion, adsk.cam, traceback

def run(context):
 ui = None
 try:
 app = adsk.core.Application.get()
 ui = app.userInterface
 design = app.activeProduct

 # Get reference to the root component
 rootComp = design.rootComponent

 #Get reference to the sketchs and plane
 sketches = rootComp.sketches
 xyPlane = rootComp.xYConstructionPlane

 #Create a new sketch and get lines reference
 sketch = sketches.add(xyPlane)
 lines = sketch.sketchCurves.sketchLines

 # Use autodesk methods to create input geometry
 point0 = adsk.core.Point3D.create(0, 0, 0)
 point1 = adsk.core.Point3D.create(0, 1, 0)
 point2 = adsk.core.Point3D.create(1, 1, 0)
 point3 = adsk.core.Point3D.create(1, 0, 0)

 # Create lines
 lines.addByTwoPoints(point0, point1)
 lines.addByTwoPoints(point1, point2)
 lines.addByTwoPoints(point2, point3)
 lines.addByTwoPoints(point3, point0)

 # Get the profile defined by the square
 profile = sketch.profiles.item(0)

 # Create an extrusion input
 extrudes = rootComp.features.extrudeFeatures
 ext_input = extrudes.createInput(profile, adsk.fusion.FeatureOperations.NewBodyFeatureOperation)

 # Define that the extent is a distance extent of 1 cm
 distance = adsk.core.ValueInput.createByReal(1)

 # Set the distance extent to be single direction
 ext_input.setDistanceExtent(False, distance)

 # Set the extrude to be a solid one
 ext_input.isSolid = True

 # Create the extrusion
 extrudes.add(ext_input)

 except:
 if ui:
 ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Full Script

import adsk.core, adsk.fusion, adsk.cam, traceback
def run(context):
 ui = None
 try:
 app = adsk.core.Application.get()
 ui = app.userInterface
 design = app.activeProduct
 rootComp = design.rootComponent
 sketches = rootComp.sketches
 xyPlane = rootComp.xYConstructionPlane
 sketch = sketches.add(xyPlane)
 lines = sketch.sketchCurves.sketchLines
 point0 = adsk.core.Point3D.create(0, 0, 0)
 point1 = adsk.core.Point3D.create(0, 1, 0)
 point2 = adsk.core.Point3D.create(1, 1, 0)
 point3 = adsk.core.Point3D.create(1, 0, 0)
 lines.addByTwoPoints(point0, point1)
 lines.addByTwoPoints(point1, point2)
 lines.addByTwoPoints(point2, point3)
 lines.addByTwoPoints(point3, point0)
 profile = sketch.profiles.item(0)
 extrudes = rootComp.features.extrudeFeatures
 ext_input = extrudes.createInput(profile, adsk.fusion.FeatureOperations.NewBodyFeatureOperation)
 distance = adsk.core.ValueInput.createByReal(1)
 ext_input.setDistanceExtent(False, distance)
 ext_input.isSolid = True
 extrudes.add(ext_input)
 except:
 if ui:
 ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Control the block

Create Points

 # Use autodesk methods to create input geometry
 point0 = adsk.core.Point3D.create(0, 0, 0)
 point1 = adsk.core.Point3D.create(0, 1, 0)
 point2 = adsk.core.Point3D.create(1, 1, 0)
 point3 = adsk.core.Point3D.create(1, 0, 0)

Create Points with Variables

 length = 4
 width = 2
 height = 3

 # Use autodesk methods to create input geometry
 point0 = adsk.core.Point3D.create(0, 0, 0)
 point1 = adsk.core.Point3D.create(length, 0, 0)
 point2 = adsk.core.Point3D.create(length, width, 0)
 point3 = adsk.core.Point3D.create(0, width, 0)

Set Options for Extrude with Variable

 # Define that the extent is a distance extent of 1 cm height parameter

 distance = adsk.core.ValueInput.createByReal(1)

 distance = adsk.core.ValueInput.createByReal(height)

 # Set the distance extent to be single direction

 ext_input.setDistanceExtent(False, distance)

 # Set the extrude to be a solid one

 ext_input.isSolid = True

User Input

Basic User Input

 length = 4
 depth = 2
 height = 3

 # Prompt user for values (Note: zero error checking)
 length_input = ui.inputBox('Enter a length', 'Length', '3')
 depth_input = ui.inputBox('Enter a depth', 'Depth', '1')
 height_input = ui.inputBox('Enter a distance', 'Height', '2')

 # Convert string to number from returned value
 length = float(length_input[0])
 depth = float(depth_input[0])
 height = float(height_input[0])

Creating an Addin

Add-ins vs. Scripts

• Add-ins are always running (once started)

• They create a command in the UI (typically)

• When a user clicks the command it reacts:

o Typically would show a dialog box

o User inputs values / makes selections

o Add-in processes values and creates result

• All actions of command result in single “undo” step

o They may create many features in the timeline

Command

CommandInputs

DropDownInput SelectionInput

Events

● Commands are executed typically from a “control” in the UI
● When the command is created a dialog is typically displayed
● A user inputs values and/or selections
● Those inputs are used to create some actions in Fusion 360

Commands

ListItems

item

selection(0)

item

selection(1)

Created

Executed

ValueInput

Addin Skeleton

• Addin Skeleton is a wrapper to create basic Fusion 360 Addins

• The idea is to simplify the creation of add-ins for users

• Note this is a bit of a “pet project” and not really endorsed or maintained by anybody that actually

knows what they are doing…

• Two main elements:

o Addin definition: Fusion360AddinSkeleton.py
o Commands: Demo1Command.py

Using Add-in Skeleton

• Addin Skeleton is a wrapper to create basic Fusion 360 Addins

• The idea is to simplify the creation of add-ins for users

• Note this is a bit of a “pet project” and not really endorsed or maintained by anybody that actually

knows what they are doing…

• Two main elements:

o Addin definition: Fusion360AddinSkeleton.py
o Commands: Demo1Command.py

Using Add-in Skeleton

Use at your own risk
This sample is provided "As-is" with no guarantee of
performance, reliability or warranty.

Create a new addin

Get the template and create your add-in directory

- Download or clone this repo: https://github.com/tapnair/Fusion360AddinSkeleton

Move the folder into your add-ins directory. Look here for more information: https://tapnair.github.io/installation.html

Files in the Fusion360Utilities folder should not be modified.

Rename the following items to your desired addin name:

● The top level folder

● Fusion360AddinSkeleton.py

● Fusion360AddinSkeleton.manifest

Edit the manifest file and update the fields accordingly

https://github.com/tapnair/Fusion360AddinSkeleton
https://tapnair.github.io/installation.html

Addin Definition

Open the newly renamed python file

The current file will create two commands in the Fusion 360 UI in the Addins Drop Down

Change the names and description strings here to your desired naming conventions

You can define many commands here.

You can also pass other values as necessary into the commands.

Command Definitions

The Fusion360CommandBase class wraps the common tasks used when creating a Fusion 360 addin.

● Edit Demo1Command.py and add functionality to the desired methods.

● onCreate: Build your UI components here

● onExecute: Will be executed when user selects OK in command dialog.

● DemoCommand1 creates a very basic UI and then accesses the input parameters.

On Create

When the user clicks the command icon in the Fusion ui (The command control) this function will be executed

By referencing the inputs object you can easily add dialog box elements to your command

Sometimes you may want to read some data or analyze the model BEFORE creating the dialog box

On Input Changed

When a user changes anything in the command dialog this method is executed.

Typically used for making changes to the command dialog itself.

For example if a user selects STL as an export type, you can then display an option to show a refinement option

On Preview / On Destroy

On preview will also execute on any changes to the command inputs

- Code in this function will cause the graphics to refresh.

- Note if your addin is complex it may be useful to only preview a subset of the full operations

On Destroy executes after the command has run

- You can use this to do any clean up that may otherwise be difficult until after the command has completed

- Like firing a second command for example

On Execute

Extra Capabilities: input_values

In the on_execute, on_preview, on_input_changed methods there is a parameter called "input_values"

This parameter is a dictionary containing the relevant values for all of the user inputs.

● The key is the name of the input.

● The value is dependant on the type input:

○ Value type inputs will have their actual value stored (string or number depending)

○ List type inputs (drop downs, etc) will have the name of the selected item as the value (string)

○ Selection inputs are returned as an array of the selected objects (even if 1 item is selected)

Note: you can still access the raw command inputs object with the "inputs" variable. This would behave similar to any of the

examples in the API documentation.

Extra Capabilities: AppObjects

This is a helper class that can be used to easily access of many useful fusion 360 objects.

It contains many properties:

● app - Application Object

● document - Active Document

● product - Active Product

● design - Design Product (if it exists)

● cam - CAM Product (if it exists)

● ui - User Interface

● import_manager - Application Import Manager

● export_manager - Export Manager (if the active product is Design)

● units_manager - Fusion Units Manager (if the active product is design) or Units Manager

● root_comp - Root Component (if the active product is design)

● time_line - (if the active product is design and the type os Parametric Design Type)

Refactoring the Block

● Follow previous steps to create a new add-in

● Take block code and move into a new function in

BlockCommand.py

● Create UI elements to capture user input

Refactoring the Block

AU2018_BlockMaker.py BlockMakerCommand.py

Function containing previous
block creation code

Automation Examples

Holes in a Plate - Reading a CSV file

User Input
- Plate Size (X, Y, Z)
- CSV File Name

Create Plate
- Create sketch
- Create solid extrude

Read CSV File

Sketch Circle

Make Holes
- Get all circle profiles
- Create cut Extrude

For each row in
the csv file

Holes in a Plate - Reading a CSV file

Automating Geometry Changes and Outputs

User Input
- input file
- output location
- options

Read CSV File

Update Model
Parameters

For each row in
the csv file

Export gcode
- Switch to CAM
- Update toolpaths
- Post nc file

Export 3D Model
- export each file type

Add-in to create multiple variations of a design
- Export 3D files (Step, IGES, SAT, f3d)
- Output g-code for an existing setup or operation

Infill Example - Geometry Pattern

User Input
- Cell Size
- Shape Type

Create Core Body
- Shell Input Body
- Offset internal surfaces
- Boundary fill interior

Cut Out Shapes
- Create tool shapes
- Create Pattern
- Boolean Cut

Combine With
Original Body

Add-in to create a “solid in-fill” cut out in a solid part
- Lots of calculations to determine position and spacing
- Analyze the input body to get inputs to calculations

Other Examples

Google Sheets Integration

Use Google Sheets to drive model:
● Parameters
● Feature Suppression
● BOM Data

Change Sizes
Generate Fusion models for all sizes
Generate CAM (nc) for all sizes

Fusion Bolter

Hardware Sizes stored in Google Sheets

Analyze model to find holes

Place hardware and apply correct size

Overnight Composites - Design to Cart

Designers insert models directly from Overnight
Composites web store

Fusion integration allows for cost calculation

Direct to cart button populates BOM in shopify
shopping cart for purchase

Octoprint Integration

Exports model and pushes to Machine controller

Leverages cloud slicing (g code generation)

Basic machine control within app

Machine configurations read on demand

Starts print from Fusion 360

Same principles could apply to more
sophisticated controllers

Overview:
 Automate vent creation

 Take user inputs and create vent shapes

https://github.com/tapnair/ventMaker

Vent Maker

https://github.com/tapnair/ventMaker

Getting Help

Useful Information and troubleshooting an add-in

The best place to get help is the Fusion 360 forum. Otherwise I find an infinite resource in places like stack exchange. Most of the
challenges I come across are really python questions more than anything.

Useful Links:

Forum to ask questions:
https://forums.autodesk.com/t5/api-and-scripts/bd-p/22

For more detailed information about editing and debugging your scripts and add-ins see the language specific topics (Python or C++)
because the process is different depending on which programming language you're using.

Python Specific Issues

C++ Specific Issues

Samples:
My main page for these projects: https://tapnair.github.io/index.html

https://forums.autodesk.com/t5/api-and-scripts/bd-p/22
https://help.autodesk.com/view/fusion360/ENU/?guid=GUID-743C88FB-CA3F-44B0-B0B9-FCC378D0D782
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/CPPSpecific_UM.htm
https://tapnair.github.io/index.html

http://www.autodesk.com/creativecommons

Appendix

Samples

My main page for these projects: https://tapnair.github.io/index.html
ventMaker - Create custom vent features in Fusion 360. Circular, Slot and rectangular vents.
HelixGenerator - Generate Helical Curves in Fusion 360
Dogbone - Create dog-bone fillets. Can create individual or automatically for entire assembly.
ParamEdit - Quick editor to make changes to user parameters with real time update.
stateSaver - Save the current state of: hide/show, suppress/unsuppress, and user parameter values.
ShowHidden - Display utilities for Fusion 360. Show hidden or all: bodies, components and planes.
Project-Archiver - Automate the export of all designs in a project to a local archive directory.
copyPaste - Copy and paste bodies between documents in Fusion 360, explicitly breaking references
NESTER - Semi automated nesting of sheet/flat parts in Fusion 360.
OctoFusion - Automate the process of exporting a file and sending it to Octoprint.
UGS_Fusion - Automate the process of posting a file and opening it in Universal G-code Sender

https://tapnair.github.io/index.html
https://github.com/tapnair/ventMaker
https://github.com/tapnair/HelixGenerator
https://github.com/tapnair/Dogbone
https://github.com/tapnair/ParamEdit
https://github.com/tapnair/stateSaver
https://github.com/tapnair/ShowHidden
https://github.com/tapnair/Project-Archiver
https://github.com/tapnair/copyPaste
https://github.com/tapnair/NESTER
https://github.com/tapnair/OctoFusion
https://github.com/tapnair/UGS_Fusion

Command Inputs Samples

Create a few inputs in the UI
inputs.addValueInput('value_input', '*Sample* Value Input', ao.units_manager.defaultLengthUnits,

default_value)

inputs.addBoolValueInput('bool_input', '*Sample* Check Box', True)
inputs.addStringValueInput('string_input', '*Sample* String Value', 'Some Default Value')
inputs.addSelectionInput('selection_input', '*Sample* Selection', 'Select Something')

Create a Dropdown
drop_down_input = inputs.addDropDownCommandInput('drop_down_id', 'MY Dropdown',

adsk.core.DropDownStyles.TextListDropDownStyle);
drop_down_items = dropdownInput4.listItems
drop_down_items.add('VARIABLE_1, True, '')
drop_down_items.add(VARIABLE_2 False, '')

Remove a specific item
for drop_item in drop_down_items:
 if drop_item.name = VARIABLE_1:
 drop_item.deleteMe()

Remove all items:
drop_down_items.clear()

