
Unlock the Full Potential of Your
MEP Data: The Case for a Unified
Data Model

Will Reynolds

Principal Digital Applications Developer

About the speaker

WillReynolds@HoareLea.com

https://twitter.com/d2liYmxl

https://www.instagram.com/d2liymxl/

Will Reynolds

• 14 Years with the UK’s largest MEP Consultancy + Specialists

• Principal digital applications developer - Digital Innovation

group

• 6 years Revit app developer

• Background in electronics and digital systems

mailto:WillReynolds@HoareLea.com
https://twitter.com/d2liYmxl
https://www.instagram.com/d2liymxl/

Agenda
The problem

with MEP
data

The case for a
common data

model

THEN

Graph Data
Recap

THEN

What s
GraphQL?

EXPLAINS

What s
Neo4j?

EXPLAINS

Building
Graph API

THEN

Design as a
service

INTRODUCES

A journey
through the

API

THEN

Worked
examples

Caveats

EXPLAINS

Getting
started

THEN

INTRODUCES

GRAND
Stack Source

codePrerequists

EXPLAINS

EXPLAINS EXPLAINS

Questions

THEN

The problem
with MEP

data

The case for a
common data

model

THEN

Model

Model

Sustainability

Acoustics

Mechanical

Electrical

Piping

Revit

IES

Energy+

BIM360

Other sw

Excel

Amtech

ElectricalOM Excel

Excel

Excel

Revit

Model

Excel

Model

Model

Project leader

Excel

• Many teams

• With different applications

• Each with their own models

or view on data

• Often with different names

for the same parameters

The problem with MEP data

• Additional workload in exporting,

translating and importing data

• Data replicated in multiple places

• Inconsistencies across data siloes

• Reliance on Excel

• Knowledge, calcs, techniques

known by individuals, lost for other

teams

= connections

= connections

= connections

= connections

very data

much disparate

such inefficient

WOW

The problem with MEP data

The problem
with MEP

data

The case for a
common data

model

THEN

Graph Data
Recap

THEN

The data
schema

THEN

The case for a common data model G r a p h Q L

Common query language
and schema for
communicating data.

N e o 4 j

Revolutionary
database for
interrelated data.

Mech.
Calcs

Model
Checking

Excel

Electrical
Calcs

RhinoSketchup

IES

Revit

DISPARTE RING

File exchange between
applications. Currently, the
primary way to exchange
building geometry.

INTEROP RING
App-to-app data
exchange. Realtime
data exchange for
local iterative design.

DESIGN NUCLEUS
Cloud distributed single
source of truth for the
current and developing
MEP design.

Introducing: Design, or calcs, as a service (Daas?)

Mobile
Apps

FM

AI

Autodesk
Forge

AnalyticsIOT

BIM360

SERVICES RING

Direct access to building
data for other services and
APIs

Web
Portal

What is Neo4j

Neo4j NODES 2019 – Keynote

https://youtu.be/AfhJcyys108?t=529

• Graph native database

• Developer focused

• Plugin framework, graph

traversal, geometry + more

• Well supported and

documented

• Working to create GQL

query language standard

https://neo4j.com

https://neo4j.com/

Graph Data – quick recap and comparison with RDBS

NODE NODEEDGE

Labels
Property 1
Property 2

Property n

Labels
Property 1
Property 2

Property n

Type
Property 1
Property 2

Property n

MATCH p=()-[r:FOLLOWS]->() RETURN p

• In graph databases the
emphasis is on data
relationships

• Querying complex
relationships can be
complicated in SQL, and
other NoSQL DBs.

• Native query language of
Neo4j is Cypher
(equivalent to SQL, only
with more graph):

RDBSGraph

The relationships in data

are also: data

https://graphql.org/What is GraphQL?

• REST replacement; the
future of APIs?

• A single endpoint to
rule them all!

• Only returns the data
requested

• Built-in introspection
API

• The only good thing to
come out of Facebook?

https://electronjs.org/apps/graphiql

https://youtu.be/4wyAcorzbO0

https://youtu.be/4wyAcorzbO0

Sending GraphQL requests

• Usually a HTTP GET or POST request with JSON body, see:
https://graphql.org/learn/serving-over-http/

• Use Postman or GraphiQL to try it out
• Many GraphQL libraries are available for popular languages

The problem
with MEP

data

The case for a
common data

model

THEN

Graph Data
Recap

THEN

Building
Graph API

THEN

A journey
through the

API

THEN

https://grandstack.io

• WEB Stack : Apollo running in

Node.js and Express

• Create, Read, Update, Delete Auto

generation from the GraphQL

Schema

• Easy API : reduced need for boiler

plate code (e.g. no MVC pattern).

• Seamless integration with Neo4j,

and many other databases,

authentication services, and

middleware.

ApolloReact Neo4jGraphQL

Building Graph API is based on:

https://grandstack.io/

• Azure Ubuntu VM with

docker installed

• Apollo + Neo4j running in

containers

• Azure Function acts as

secure endpoint

• Neo4j Data stored outside

of container

• NGNIX used to route traffic

to containers

Building Graph
API Architecture

 Neo4j

API

 Apollo

 Microsoft
Azure

 NGNIX Certbot

BOLT HTTP

Revit

Dynamo

IES

https://github.com/willhl/BuildingGraph-Server

It all starts from the GraphQL
schema

• Defined in .graphql files
• Object types – the entities or classes,

such as Ducts, Spaces, or Models
• Fields – the property names and data

types available on each type
• Scalar Types – The primitive (int,

string, etc.) or custom data type
• Arguments – Additional data which

can be passed to a field
• Queries – Predefined queries
• Mutations - Functions which change

the data, such as create a Duct, Space
or model entity

https://graphql.org/learn/schema/

Building Graph schema WIP https://github.com/willhl/BuildingGraph-Server

BaseElement

AbstractElement

Model

ElementType

ModelElement

Space

Level

Project

Building

System

Duct

...

ElectricalLoad

Collection of .graphql in the reop:
Type hierarchy

• Each file can augment types in other files
• Maintains separation of concerns

Support for specific data units

Apollo + GraphQL allows for custom scalars

A custom resolver takes care of unit conversion

Neo4j Specific GraphQL Schema Directives

• @Relation – Specifies which child elements, or parent elements, of a type are supported

• @Cypher – Specifies a Cypher statement for a query, mutation or field

https://grandstack.io/docs/neo4j-graphql-js.html

Schema: Project, Buildings, Levels and Spaces

Space

IS_IN

Building

Level

IS_ON

IS_IN

ProjectINCLUDES
<Abstract>

IS_ON

IS_IN_SPACE

Schema: Abstract Vs Model Elements

• In this case, the existence of a
space is related to many other
models

• Applicable to any other abstract
element, such as Levels, Zones,
Ducts, Outlets, etc.

• Updates on the abstract node can
be brought straight into other
models

• Models affected by changes can
be easily identified

Model
Element

Revit Mech

Revit Elec

REALIZED_BY

IS_IN

Rhino

IES

Model
Element

Model
Element

Model
Element

Space

REALIZED_BY

REALIZED_BY

REALIZED_BY

IS_IN

IS_IN

IS_IN

Schema: Abstract Vs Model Elements continued..

• Abstract Elements can exist before
a 3D model is developed

• Elements can exist in multiple
models

• Changes can be tracked across
model versions

Abstract
Element

Model
Element

Model

REALIZED_BY

IS_IN

Element
Type

IS_OF

Model
Element

REALIZED_BY

IS_IN

Model
Element

Model V1IS_IN

Model
Element

IS_IN Model V2

Space

REALIZED_BY

REALIZED_BY

SUPERSEDED_BY

Schema: Abstract Elements… yet more

• Design information is not
constrained by what is possible
within the models

• Any relationships, such as Air flow,
can cross between models

• Other relationships are possible,
such as putting circuits or wires on
cable trays

Duct

Model
Element

REALIZED_BY

IS_IN
Revit

Mech 2

Model
Element

IS_IN
Revit

Mech 1

REALIZED_BYDuct

AIR_FLOW

Duct

AIR_FLOW

Duct

AIR_FLOW

Schema: Elec, Mech and Geometry

Panel

Load

Load

Load

Load

Load

Load

Load

Circuit

Panel

Circuit

Circuit

Circuit

ELECTRICAL_FLOW

Terminal

Terminal

Duct

Duct
Accssory

Duct
Fitting

Duct

Duct

Duct

Duct
Fitting

Duct
Accssory

Duct

Duct
Transition

Duct
Duct

Transition
Duct

Duct
Transition

Duct

Space

AIR_FLOW

SpaceWall Door

Space

Space

Surface

ExternalWall

BOUNDED_BY

Surface

Surface

Surface

MechanicalMechanicalElectricalElectrical

Geometric FeaturesGeometric Features

DistributionDistribution

Schema: High level systems

• Represents higher level system
relationships

• No need to have a 3D model

• Can be used by other services to
perform calculations

Space Space Space

System
(Heating)

ENERGY ENERGY ENERGY

System
(Cooling)

ENERGY ENERGY ENERGY

System
(Power)

ENERGY ENERGY ENERGY

Schema: IoT Sensors

• Doesn’t store the data from
each sensor

• Each sensor has its ID or URI
pointing to where to get its
data

• Full context data is available to
derive features for machine
learning or analytics.

IoTIoT

Space

SENSING

Door
Angle

Space

SurfaceIS_OF

BOUNDED_BY

BOUNDED_BY

AHU

AIR_FLOW

AIR_FLOW

Sensor

Sensor

Sensor

Sensor

Sensor

SENSING

SENSING

SENSING

SENSING

Supply
Air

SYSTEM

Name
Metric
Units
ID
API URI
Etc.

IS_IN

Building

Level

IS_ON

Socket
230V
Single

IS_OF

IS_IN

Sensor

SENSING

Extract
Air

SYSTEM

AIR_FLOW

AIR_FLOW

O2 IS_OF

Sensor SENSINGCO2 IS_OF

Current IS_OF

SensorLum IS_OF SENSING

Sensor
Fine
Dust

IS_OF

SENSING

IS_IN

Door

IS_OF

But wait… we already have IFC, gbXML, BIM360
and others, isn’t this just another standard?

https://xkcd.com/license.html

• It’s primarily a communication schema

• Application agnostic; All you need is a
HTTP Client

• Can store abstract elements and non-
building elements, before a 3D model is
developed

• Can adopt types and parameter naming
from any other standard

• Existing apps can still use any standard
they choose

https://xkcd.com/license.html

Graph Data
Recap

Building
Graph API

THEN

A journey
through the

API

THEN

Getting
started

THEN

Questions

THEN

A journey through the API

Rhino
(Grasshopper)

Dynamo
(Revit)

C# Code

Dynamo
(SandBox)

1

2

3

4

1. Create a project, building and levels

2. Create spaces and add to building, calculate
volumes, area and other basic calcs

3. Add data to space for circuits, electrical
outlets and DB Panels

4. Update spaces in Revit and add terminals,
sockets and panels

A journey through the API

Rhino
(Grasshopper)

Dynamo
(Revit)

C# Code

Dynamo
(SandBox)

1

2

3

4

1. Create a project, building and levels

2. Create spaces and add to building, calculate
volumes, area and other basic calcs

https://youtu.be/z70Vx91STZY

https://youtu.be/4igLeNkMWHo

A journey through the API

Rhino
(Grasshopper)

Dynamo
(Revit)

C# Code

Dynamo
(SandBox)

1

2

3

4

3. Add data to space for circuits, electrical
outlets and DB Panels

https://youtu.be/PyqtlbQc6U4

A journey through the API

Rhino
(Grasshopper)

Dynamo
(Revit)

C# Code

Dynamo
(SandBox)

1

2

3

4

4. Update spaces in Revit

https://youtu.be/2bya1c1Djak

Where might you use this??

• Coordinate space data between simulation software and Revit,
and show it on treatment plan views in Revit

• Update level names or other info across all models

• Connect multiple buildings together for a more holistic design

• Model setup; select levels and/or other elements and bring them
in to a new model, together with any required linked models.

• Surface up data to PowerBI for a more intuitive interface than
schedules

• Many more…

• Paving the way for engineers skilled in Dynamo, Python and
other languages.

Other Building Graph example integrations

https://youtu.be/hsbBHZTMWtM https://youtu.be/VXadWvZcSZ0

Operational data : Integration with Forge Operational data : Integration with NodeRED

https://youtu.be/hsbBHZTMWtM
https://youtu.be/VXadWvZcSZ0

Graph Data
Recap

Building
Graph API

THEN

A journey
through the

API

THEN

Getting
started

THEN

Questions

THEN

Getting Started

To get started, use these commands in your favorite terminal:

$ git clone https://github.com/willhl/BuildingGraph-Server.git
$ cd BuildingGraph-Server
$ docker-compose up

• GIT
• Docker, including Docker Compose
• Optional: Node.js and Express
• Optional: Azure/Amazon/Google/other cloud

Knowledge required to create a Building graph server:

• Downloads all the code and files required

• Compiles the building graph server

• Brings up a local building graph server container instance

• Brings up a local Neo4j Database container instance.

• Mounts essential directories outside of the container

• HTTP POST/GET
• GraphQL and JSON
• Dynamo/Grasshopper/NodeRED
• Python/C#/JavaScript/Or any other language

Knowledge required to build integrations:

https://github.com/willhl/BuildingGraph-Server.git

What’s in the repositories:

• Handles GraphQL HTTP requests and

introspection

• Automatic generating of mutation requests

• Client mapping framework to translates parameter

names to schema parameter names

• GRANDstack implementation + schema files
Revit Integration (C#)

• Publishes full Revit models to Neo4j.

BOLT only, GraphQL WIP

• Writes change requests to Revit

model from Neo4j

• Unit and parameter translation from

Revit to GraphQL.

• Wrappers around Building Graph Client

Dynamo ZeroTouch and Grasshopper nodes (C#)

Building Graph Client (C#)

Building Graph Server (JavaScript)

/BuildingGraph-Server

API Journey scripts:

/BuildingGraph-Client-Examples

/BuildingGraph-Client-Revit

https://github.com/willhl/BuildingGraph-Client-Examples

https://github.com/willhl/BuildingGraph-Client-Revit

https://github.com/willhl/BuildingGraph-Server

Dynamo and Grasshopper:

• Wrappers around Building Graph Client

• Add to Dynamo via Import

• Other packages required: JsonData

Dynamo ZeroTouch and Grasshopper nodes (C#)

Caveats and Limitations

Multiple projects

• As of Neo4j 3.5: One docker container instance per project, routing via NGNIX or equivalent
• Coming soon Neo4j 4: Multiple databases in a single instance and cross database queries
• Just released: Neo4j Aura DBaaS https://neo4j.com/aura/

Authentication and Authorisation

• Must use secured http endpoints when exposed to the internet, by proxy, VPN, etc.
• ToDo: Add to Passport.js middleware to Building Graph Server

https://jkettmann.com/authentication-and-authorization-with-graphql-and-passport/

• GRANDstack can support fine grained trust levels. Defined by directives in the GraphQL schema
https://grandstack.io/docs/neo4j-graphql-js-middleware-authorization.html

Neo4j Database Backup

• Community edition: Possible with offline backups (with data mounted outside of container)
• Enterprise edition: Possible with online backups

Where next

The Building Graph API is only just getting started, still lots to do:

Further Develop Schema

More Dynamo NodesRevit-Graph Sync

Authorisation Authentication

Auditing

Where
next?

More Integrations Change Control

Event Messaging Geometry Exchange

Conclusion

• An engineer, looking to use this concept internally, but not necessarily linked

• Feel free to build your own integrations
• Develop the schema for your own use
• Contributions welcome

Inevitably though, the Building Graph schema does need to be standardized for this
to work across separate organizations… so where to go from here??

Hopefully, at least, this presentation has conveyed the virtues of using GraphQL and
Neo4j.

WillReynolds@HoareLea.com

https://twitter.com/d2liYmxl

https://www.instagram.com/d2liymxl/

This class was aimed at presenting the case, the final solution may be a little way off..
But I think the Building Graph API has huge potential:

https://github.com/willhl/BuildingGraph-Client-Examples

https://github.com/willhl/BuildingGraph-Client-Revit

https://github.com/willhl/BuildingGraph-Server

mailto:WillReynolds@HoareLea.com
https://twitter.com/d2liYmxl
https://www.instagram.com/d2liymxl/

Graph Data
Recap

Building
Graph API

THEN

A journey
through the

API

THEN

Getting
started

THEN

Questions

THEN

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or

trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for

typographical or graphical errors that may appear in this document.

© 2019 Autodesk. All rights reserved.

http://www.autodesk.com/creativecommons

