Optimization of Injection Molding Process Settings using Iliad and Moldflow

Shubhamkar Kulkarni

Research and Development Engineer| @linkedin.com/shubhamkar-kulkarni

Learning Objectives

- Introduction to design exploration, multi-disciplinary optimization software Iliad
- Demonstrate the application of numerical optimization to injection molding simulation
- Use of meta-modelling to identify optimal injection molding settings

Outline

Introduction to

Who we are and what we do

OmniQuest

State of the Art

Summary of design exploration capabilities in Moldflow

25

Instructional Demo

A step-by-step walkthrough to Iliad-Moldflow optimization

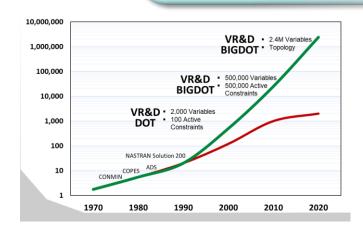
Conclusion

Summary

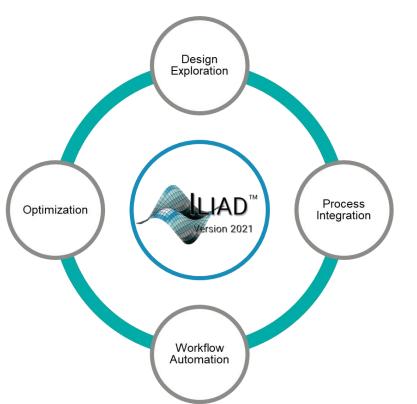
Who we are

OmniQuest™

Beyond Human Intuition

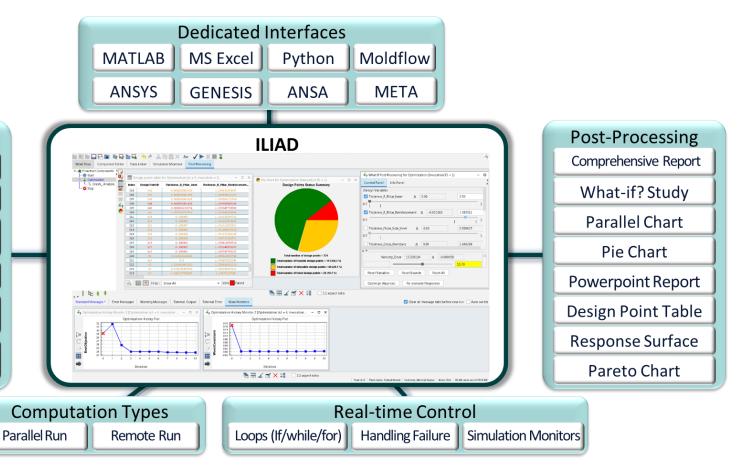

Optimization Unbound.

Creating optimal technology and software making Design Optimization commonplace.



Dr. Garret N. Vanderplaats Chairman & Founder

Iliad™ – Design Exploration \$ Automation Studio


Automation in Design

Iliad fulfills the following roles:

- Exploration of Design Space
- Integrating component analyses on to a single platform
- Optimizing design and process solutions
- Automatically improving the design solutions

Iliad Capabilities

Study Types

Optimization

Sensitivity Analysis

Design of Experiments

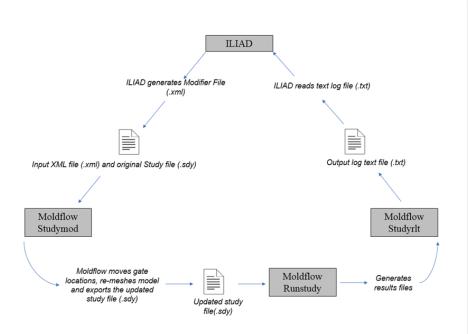
Meta Modeling

Response Surface Approximation

Probabilistic Analysis

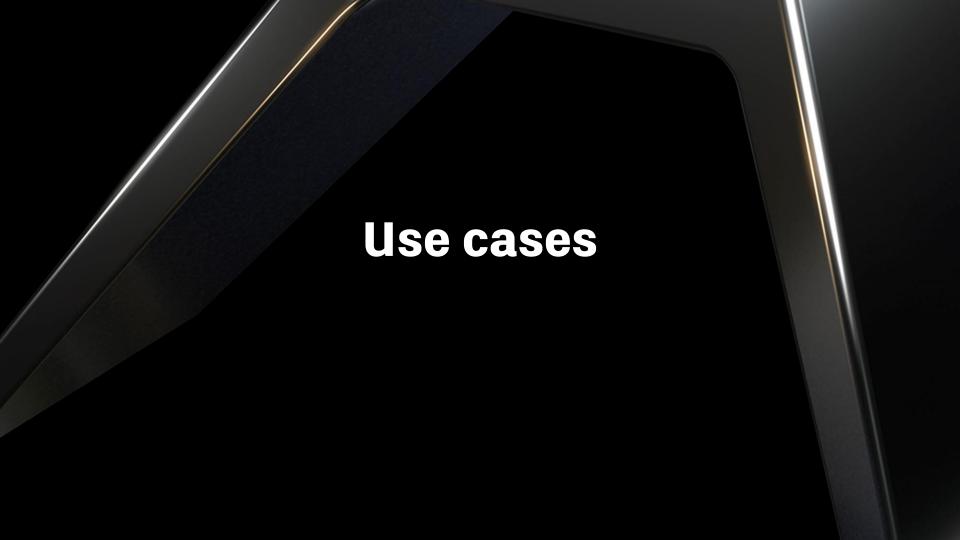
Optimization with Iliad and Moldflow

Optimization in Injection Molding

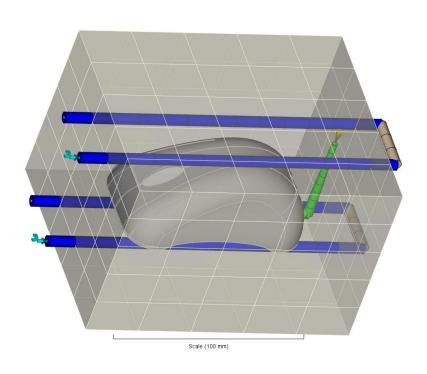

- Injection Molding process settings are optimized based on heuristic approaches.
- Challenges for design exploration:
 - High cost of tooling and equipment modification
 - High computational times for simulation
- Autodesk Moldflow Insight has solution exploration utilities

What Iliad Adds

Moldflow Capability	Feature	Applicable to	What Iliad Adds	
Optimization	Design of Experiments	 Mold/melt temperature, Injection/packing time, Thickness Multiplier, Injection/packing profile multiplier Flow front temperature, shear stress, injection pressure, clamp force, volumetric shrinkage, sink mark depth, part weight, cycle time 	 In addition, to the interactive response surfaces created by Moldflow, Iliad can automatically run the analysis using optimal settings Additional DOE designs with more control over the model order. Equations displayed to the user Dynamically evolving Response Surface model available 	
	Parametric Studies	•Geometry modification •Process settings	•Reduces the number of evaluations X Currently geometry modification is not supported	
Process Optimization	Ram speed and packing pressure profile	•Ram speed profile •Packing pressure profile	X Currently not supported	
Gate Location	Gate Region Locator Algorithm	 Gate location using geometry and molding feasibility 	 Automatically modifies gate location based on analysis run results, reducing the need for manual intervention Gates placed using optimization algorithms which read user given responses 	
	Advanced Gate Locator Algorithm	•Gate locations with none present. Uses flow resistance		



Iliad - Moldflow Interface



The interface uses:

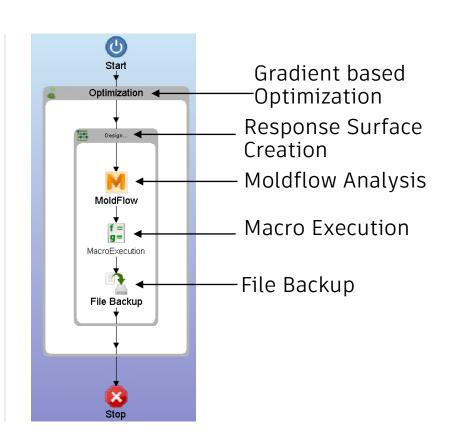
- Studymod for modifying the study file
- Runstudy for running the updated study
- Studyrlt for exporting the result

Case 1: Response Surface Driven Optimization

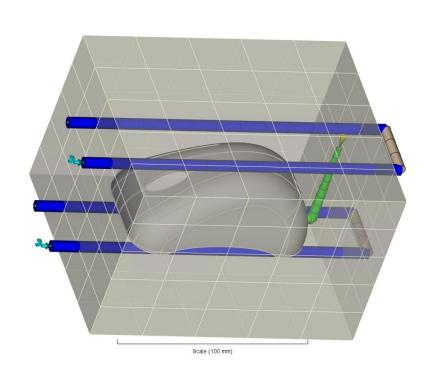
- The case study involves a cool+fill+pack+warp analysis
- The problem is solved using a response surface model
- Static response surface is used

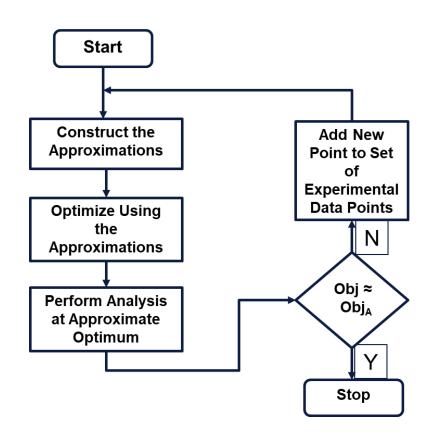
Problem Formulation

Objective		Minimize differential Warpage		
		Lower Bound	Upper Bound	
Decise Variables	Coolant inlet temperature	293.15 K	333.13 K	
Design Variables	Cooling inlet flow rate	5E-5 m ³ /s	5E-4 m ³ /s	


Files required:

- 1. The study file (.sdy) for the analysis.
- 2. The ASCII design file (.udm) for reading the inputs.
- 3. The ASCII log file generated using studymod.


Workflow


Procedure:

- 1. Create the Workflow for:
 - i. Automatic execution of Moldflow analysis.
 - ii. Execution of Macro for plot extraction
 - iii. Backing up analysis files
 - iv. Creating a response surface
 - v. Optimization
- 2. Validation and Execution
- 3. Post-processing

Case 2: Dynamic Response Surface Driven Optimization

Case 3: Gate Location Optimization

Objective		Minimize volumetric shrinkage	
		Lower Bound	Upper Bound
Constraints	Total mass after packing [kg]	0.012	
	Maximum Clamp force [N]		4E5
	Melt Temperature [K]	500	550
	Injection Packing + Cooling time [s]	25	35
Design	Cooling time [s]	0.05	2
Variables	Mold surface temperature [K]	350	375
	Gate_1 Y coordinate [m]	-0.05	0.05
	Gate_1 X coordinate [m]	-0.05	0.06

Conclusion

Summary

- Iliad enhances the design exploration capabilities inside Moldflow.
- Enables the application of numerical optimization through gradient and non-gradient algorithms.
- Supports the integration of Macros and other analysis.
- Enables quicker optimization by formulating and solving response surface models.

