

HOW DO YOU INTEGRATE SUSTAINABLE DESIGN AND BIM INTO A MULTIDISCIPLINARY DESIGN-BUILD CURRICULUM?

Dr. Matthew Trussoni, AIA, PE Assistant Professor

MILWAUKEE SCHOOL OF ENGINEERING ARCHITECTURAL ENGINEERING & CONSTRUCTION MANAGEMENT BIM & SUSTAINABILITY CURRICULUM OUTLINE

BIM in Academia

70% integrated BIM into their curriculum

97% will have an element of BIM in the future

35% teach model-based estimating

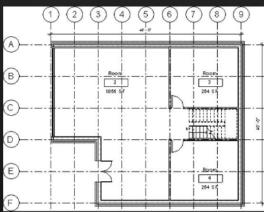
Source: Allan Chasey & Chris Pavelko, 2010, Journal of BIM, BuildingSMART Alliance

AU Autodesk University

Basic Elements for BIM Curricula

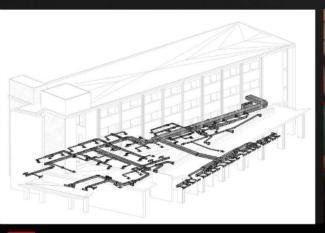
- Understanding of the lifecycle project development process
 - The role of owner, designer, builder, users & other parties associated with the project
- Learn the use of BIM-related software
- Incorporate multidisciplinary elements
 - Within academic units
 - With the Industry
- Teach & practice integrated team approach
 - Team members relationships & respect
 - Teamwork (trust, communication, share information)
 - Ethics
- Teach how to effectively deal with industry change

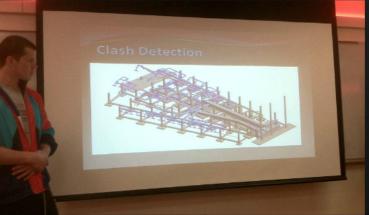

Autodesk University


8 2012 Autodesk

AE 1312 – Introduction to BIM

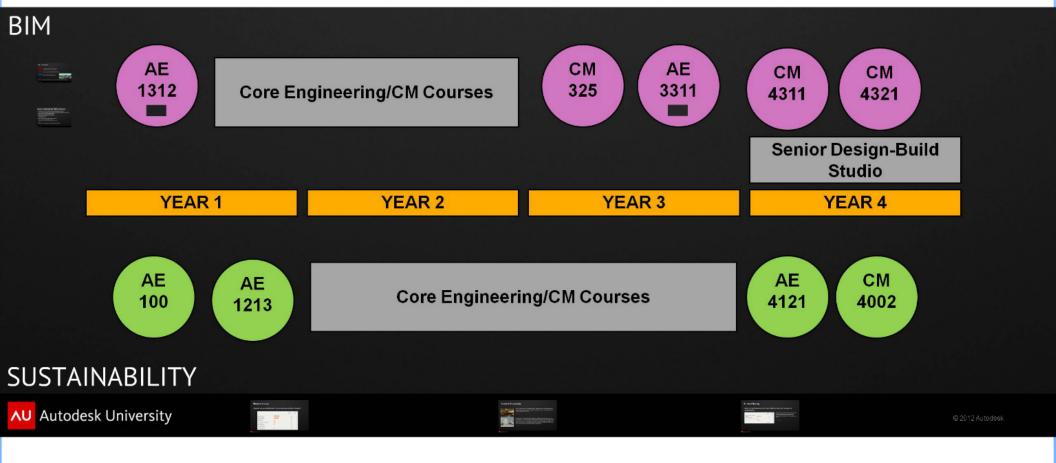
- Freshman course for both AutoCAD and Revit
- Learn model authoring skills with architectural components




Autodesk University

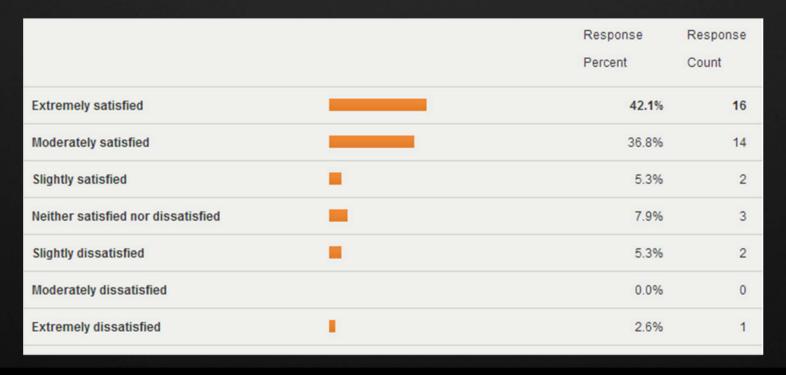
AE 3311 – Introduction to BIM II

- Junior class for Revit Architecture, Structure, and MEP
- Focus on model integration



AU Autodesk University

© 2012 Autodesk


MILWAUKEE SCHOOL OF ENGINEERING ARCHITECTURAL ENGINEERING & CONSTRUCTION MANAGEMENT BIM & SUSTAINABILITY CURRICULUM OUTLINE

Student Survey

Overall, are you satisfied with your experience at Senior Design?

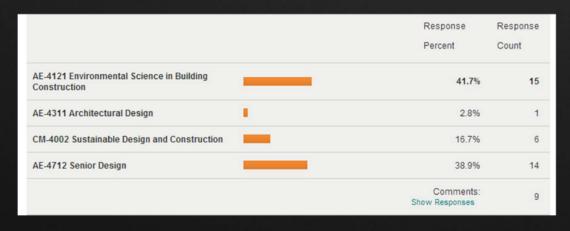
AU Autodesk University

Student Comments

It did a very good job of preparing me for the real world, if nothing more than learning how to work under a deadline, working in a team, and getting used to things changing last minute.

CM Student

I have to say, I am proud of the work that I have done and the time I put in to accomplish it. I know that all the presentations have made me grow as a person and feel much more comfortable in aspects of my daily career and talking with clients. The research involved made me learn a lot about different systems and current and growing sustainable designs in buildings.

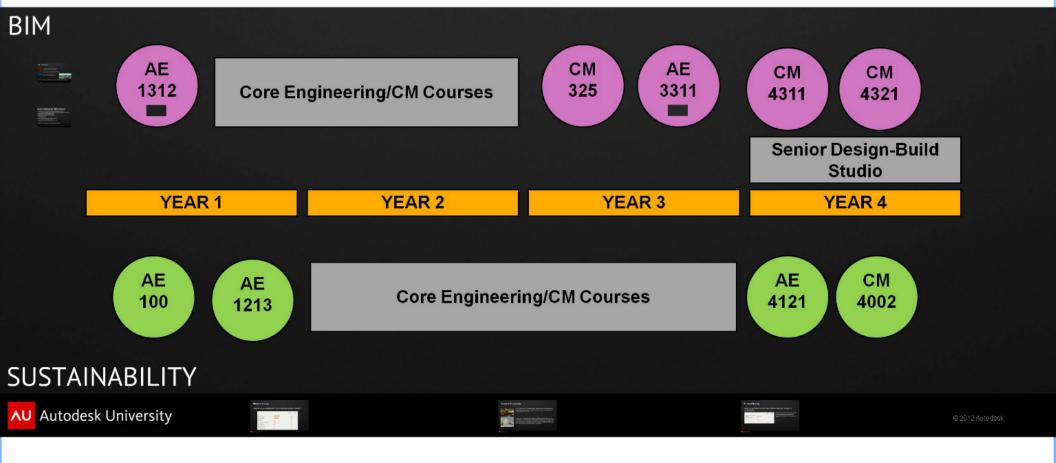

AE/CM Student

AU Autodesk University

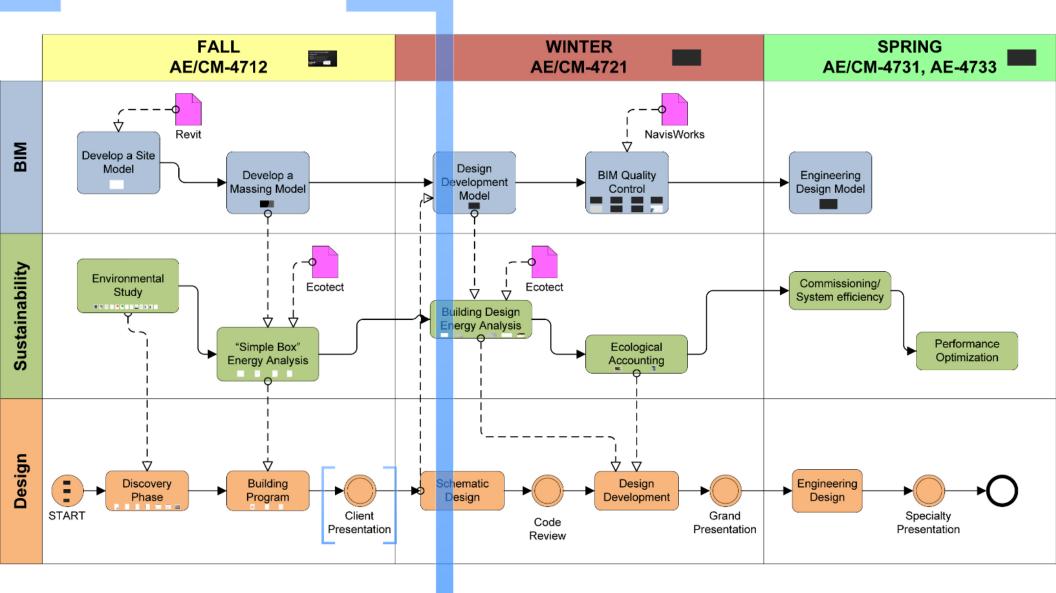
m 2015 du todoel

Student Survey

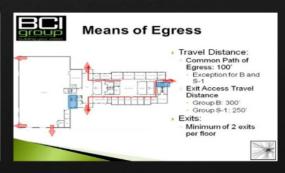
 Which of the following is the most helpful to learn the concepts of sustainability?


AE 4712 allowed for creativity with sustainable design and gave us the opportunity not just to apply our understanding with drawings but through written deliverables as well. It provided a way to apply what we learned.

AE/CM Student


Autodesk University

MILWAUKEE SCHOOL OF ENGINEERING ARCHITECTURAL ENGINEERING & CONSTRUCTION MANAGEMENT BIM & SUSTAINABILITY CURRICULUM OUTLINE

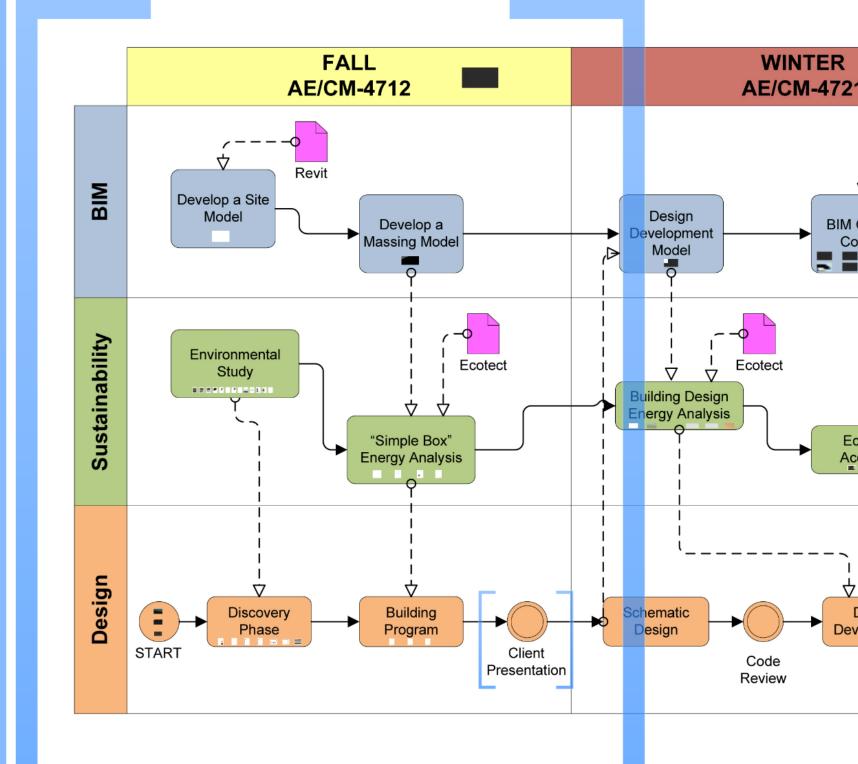


- Fall Quarter Activities
 - Client Meetings
 - Site Visits
 - Research (Building Codes, Zoning, Building types... etc.)
 - Deliverables
 - Building Program, Preliminary Budget and Schedule

AU Autodesk University

© 2012 Autodes

- Winter Quarter Activities
 - Architectural Schematic Design, Design Development, Final Architectural Design
 - Preliminary budget, milestone schedule, constructability
- Deliverables
 - Week 3 Preliminary Presentation to Client
 - Week 6 Design Development presentation to Plan Examiner
 - Week 9 Final Architectural Design Presentation to Jury of experts


© 2012 Autodes

- Spring Quarter Activities
 - AE Students Working Drawings and Engineering Calculations
 - CM Students Estimates, Schedules, Mobilization plans, Safety Plans, VE, and BIM QC
- Final Deliverables
 - Specialty Presentations in front of industry experts

Design-Build Studio at MSOE

- 4 sections of Senior Design
 - approx.25 students each section
 - Each section divided into (3) teams
 - (8-10) students per team
- Project spans entire year
- Real Projects for Real Clients

AU Autodesk University

Design-Build Faculty Members

- Typical Faculty Team
 - Architect
 - Construction Manager
 - Structural
 - Plumbing
 - HVAC
 - Fire Protection
 - Electrical

Autodesk University

- Typical Student Team
 - (2) Construction Management
 - (2-3) Structural
 - (2) Mechanical (Plumbing/Fire Protection/HVAC)
 - (1-2) Electrical

Autodesk University

BUILDING TYPE RESEARCH

In order to prepare for the design of the WMSE Media Center, The Frontier Design Team researched radio stations, media centers and green buildings. The following are some motifs were discovered in the assessment of all the buildings:

- A lot of power will be required for the radio station which will make energy conservation difficult.
- There will be very specific spatial requirements demanding large and oddly shaped rooms
- The WMSE Media Center will be a high profile building with a lot of public attention and use.
- Because of the location the WMSE Media Center, we should encourage public transportation and walking, especially because of live concerts and multiple public uses.

RADIO STATIONS: From radio rtations, we learned about how radio stations have been constructed in the past and the spatial arrangements required within them.

Interlochen Center for the Arts

Interlochen, Michigan

- 9,800 SF
- 5 studios and control rooms and 8 offices
- Piano recording studio
- Radio towers offsite

89.3 KPCC

Pasadena, California

106.3 Mix FM

São Paulo, Brasil

MEDIA CENTERS: From Media Centers, we learned about what defines the modern "Media Lab" building and the spatial requirements associated with them.

EMPAC Center at Rensselaer Polytechnic Institute Troy, New York

- Acoustic separation prevents conduction of noisy vibrations. Some parts of the building even sit on springs embedded in the foundation
- Concert hall, theater, studios and lobby
- Fiber optic and copper cable for digital transmission
- Light dimmers and projection screens
- 2,164 custom designed acoustic panel: 1,280 diffusive; 884 absorptive

LITERATURE RESEARCH

BOOKS:

Architectural Acoustics - William Cavanaugh

This book includes important information for architects, engineers, and all other who focus on unwanted sound throughout a building. The main topics in this book are the basic principles of architectural acoustics, various types of acoustical materials and methods, and building noise control application. This will be helpful when trying to control the sound in the auditorium and studios.

ASHRAE Green Guide, 3rd Edition

This manual is created to provide help to HVAC&R system designers in designing a green building. It contains need-to-know information on every aspect of the building process from planning to operation and maintenance of the facility. This will be useful on the WMSE project because of the intrinsic green nature of the project, and will help facilitate better results.

Green Buildings Pay - Brian Edwards

This guide examines, through case studies how different approaches to green design can produce more sustainable patterns of development. The studies are described by their designers and often also by the client, thereby ensuring that the buildings are seen in the context of market realities.

Energy Efficient Buildings: Architecture, Engineering, and Environment - Wayne Forster

An examination of how energy efficiency can be enhanced by integrating advances in architecture and engineering. Critical studies of outstanding recent building projects around the world reveal the many innovative ways designers can integrate architecture and engineering to produce buildings that are both attractive and energy efficient.

Solar Power in Building Design: The Engineer's Complete Design Resource - Peter Gevorkian

Solar Power in Building Design is a complete guide to designing, implementing, and auditing energyefficient, cost-effective solar power systems for residential, commercial, and industrial buildings. From basic theory through project planning, cost estimating, and manufacturing methods, this vital resource offers you everything needed for solar power design success.

Optimizing the Performance of a Photovoltaic Array by Evaluating Site-Specific Parameters - Adam McMillen

Master's thesis covering performance maximization measures for a variety of cases. Because the site is limited and PV will likely be an important aspect the Media Center project, this book will help optimize performance and get the most out of the PV space available.

Current use: Surface Parking

Size: 0.70 acres

Approximately 84% of the site can be developed (about 0.60 acres) and there are no landscaping requirements for the site.

Zoning: RED (redevelopment), currently being rezoned by the City of Milwaukee and the owner

- Permitted, limited, special, conditional, and prohibited uses for property in a redevelopment districtshall be as indicated in the redevelopment plan for that district (attached)

Environmental Conditions: prior use included fuel and coal business and gas station.

Maximum Height: 12 stories

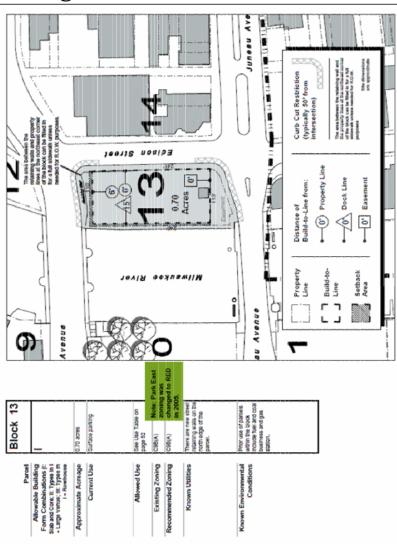
Minimum Height: 4 stories

Allowable form combination: Slab and Core.

Several streets within the district have significantly higher levels of pedestrian activity, these streets include Water street, Edison street, and portions of Knapp, Juneau, and Cherry. With these higher levels of activity the code requires that there must be 50-75% glazing on the ground floor.

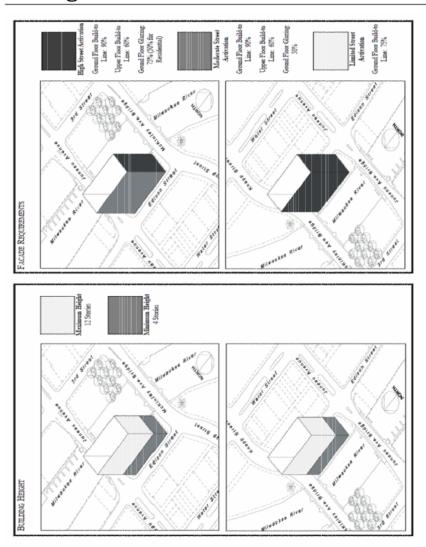
Setbacks:

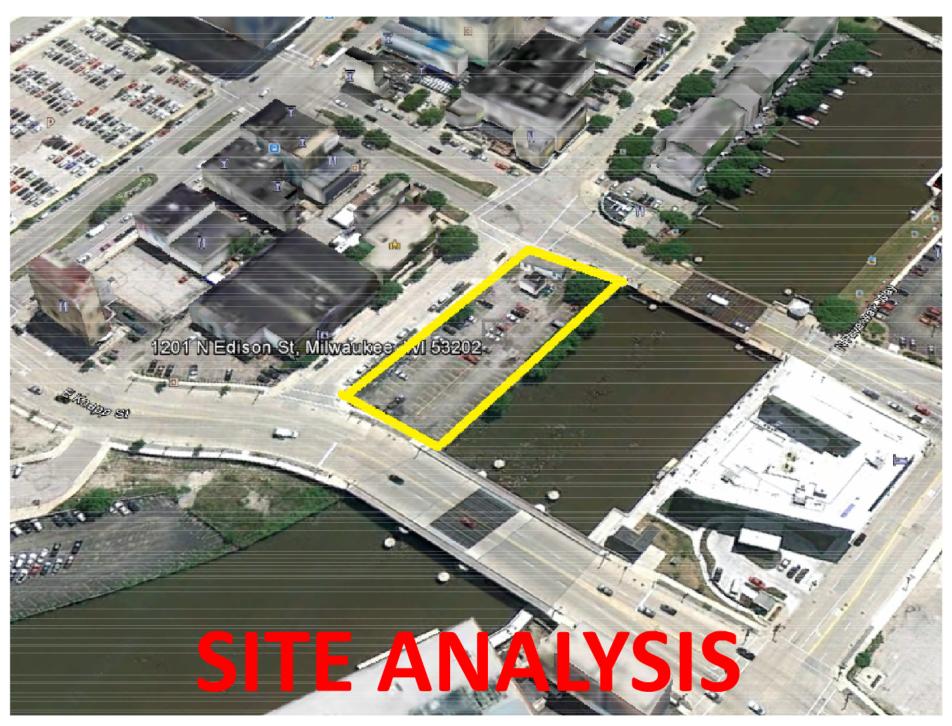
- 15' from dock line (west)
- 6' from property line (North)
- 0' from the property line (east)
- 0' easement from the property line (south)

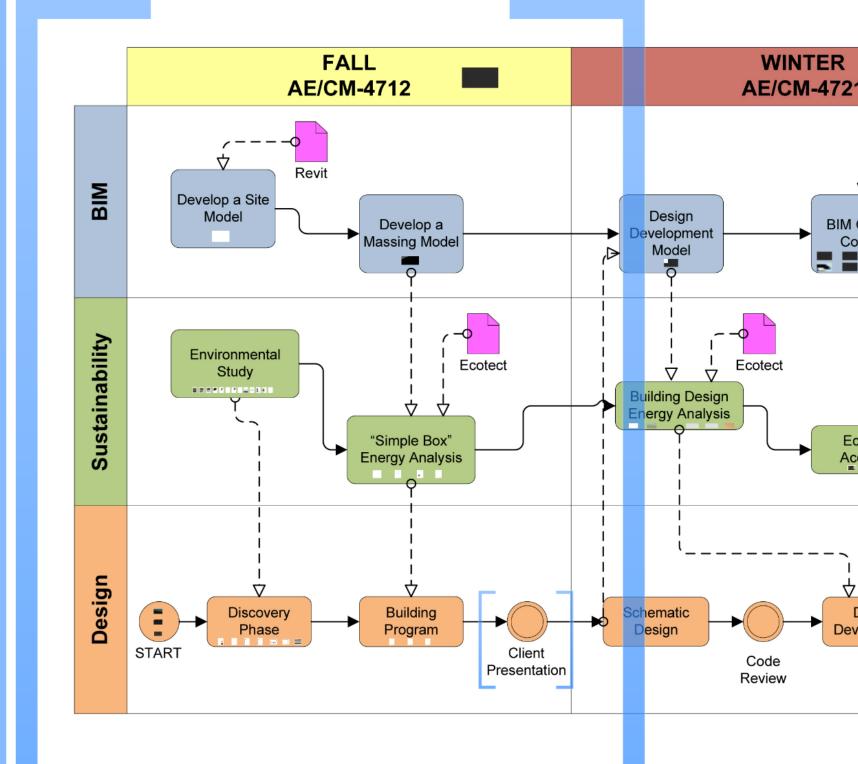


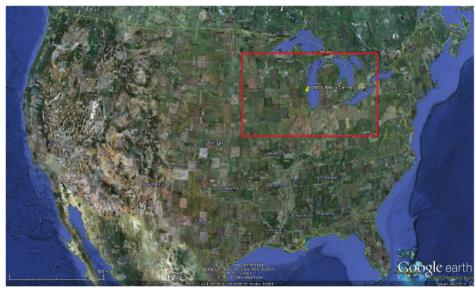
International Building Code

- <u>Classification</u>: Assembly A-1 (television and radio studios admitting an audience)
- · Allowed for mixed occupancy
- All exit doors must shall discharge directly to the exterior of the building.
- Interior Finishes: Class B materials (corridors & exit enclosures),
 Class C (rooms and enclosed spaces)
- Fire Sprinkler system Required if fire area exceeds 12,000 SF or occupational load of 300 or more.
- Light transmitting panels should not be used as wall panels on exterior walls.
- 2 hour or greater fire-resistance rating, smoke detectors in HVAC system, and also fire alarm system, standpipes also required.
- · Dead ends of 70 feet in sprinklered buildings.
- Mandatory safety scores: Fire Safety=16, Means of Egress = 27, General Safety = 27.



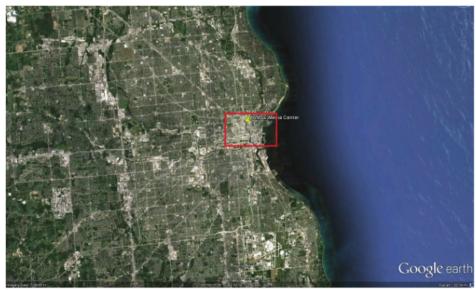






DISCOVERY PHASE & ENVIRONMENTAL STUDY

USA



Midwest

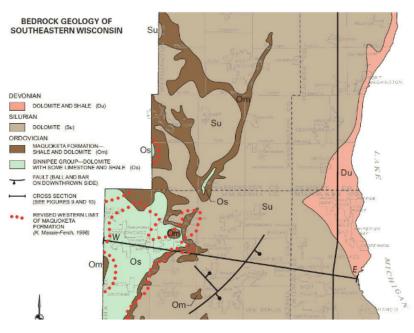
SITE LOCATION

Milwaukee

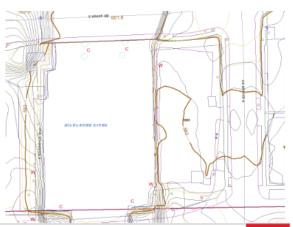
Downtown

SITE LOCATION

Park East



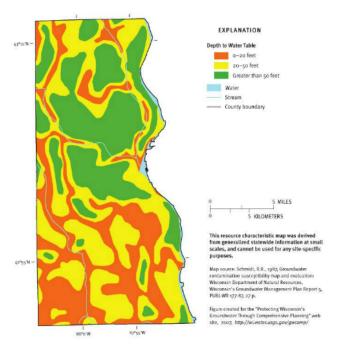
1201 N. Edison St.


MILWAUKEE GEOGRAPHY DATA

The Silurian section in Southeastern Wisconsin consists of up to 600 feet of dolomite, subdivided into five formations. These are, from the top, the Waubakee Formation, the Racine Formation, the Waukesha Formation, the Brandon Bridge beds, and the undifferentiated "lower Silurian beds". The Waubakee Formation consists of dense, laminated to thin-bedded, slightly shaly, gray dolomite and is

present only in Ozaukee and eastern Milwaukee County. It varies from 60 to 100 feet in thickness, and is unconformably overlain by the Devonian Thiensville Formation.

Locally, reefs developed in the underlying Racine Formation project through the Waubakee Formation and are overlain directly by the Thiensville Formation.



GROUNDWATER RESOURCES

The south eastern-most part of Wisconsin is on the border of the Lake Michigan water basin. This means that any water used in the area is returned to Lake Michigan. The area inside that border is not wide and excludes most of Waukesha, and parts of the New Berlin and Brookfield suburbs of Milwaukee. The Great Lakes Commission is currently collaborating to limit the about of water taken from Lake Michigan to supply areas outside of the Great Lakes Basin. Measures are expected to be passed in the next three years to protect the amount and quality of the world's greatest source of freshwater.

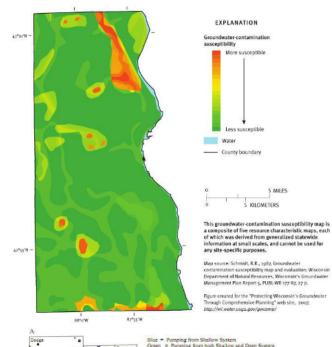
The depth of the water table is between 0' and 50' deep for most of Milwaukee. At the WMSE site the water table height is at the high water mark of the river next to it.

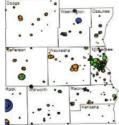
HUMAN ACTIVITIES THAT MAY CREATE GROUNDWATER QUALITY PROBLEMS IN SOUTHEASTERN WISCONSIN

Originating On the Land	Originating Below Land Surface				
Above-ground storage tanks (bulk fuel storage)	Above Water Table				
Accidental spills	Animal waste storage facilities				
Agricultural activities:	Landfills				
Animal feedlots	Leakage:				
Fertilizer and pesticide storage, mixing, and loading	Underground storage tanks				
Fertilizer and pesticide application	Underground pipelines				
Irrigation return flow	Sewers				
Silage and crop residue piles	On-site sewage disposal systems				
Dumps	Surface wastewater impoundments				
Highway de-icing, including material storage sites	Sumps, dry wells				
Waste spreading or spraying (sewage, sludge, septage, whey)	Waste disposal in dry excavations				
Stockpiles (chemicals and waste)	Below Water Table				
Infiltration of contaminated surface water or precipitation	Ground water development:				
Salvage yards	Improperly abandoned wells and holes				
Application of fertilizers and pesticides to urban lawns and gardens	Improper well construction				
Urban runoff	Overpumping				
	Drainage or disposal wells				
	Waste disposal in wet excavations				

GROUNDWATER RESOURCES

Milwaukee ground water was tested in 30 different private wells, 100% of the samples met the healthbased drinking water limit for nitrate-nitrogen. In 2002 a study was conducted that showed 21% of private drinking water wells in the region contained a detectable level of an herbicide. The city spent over \$213 million on cleaning up the ground water from petroleum that was caused from leaking underground storage tanks. The chart below illustrates that there is very little contamination to the ground water in the area.

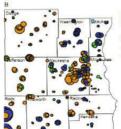

The maps to the right identify the public wells in Milwaukee. It illustrates the following about the pumping volume of wells:


Image A

Shallow wells = 10.2 mgd Wells open to shallow and deep aquifers = 12.0 mgd Deep wells = 14.4 mgd.

Image B

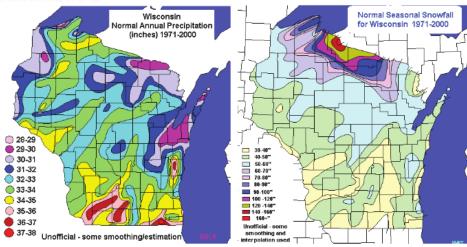
Shallow wells = 53.5 mgd Wells open to shallow and Deep aquifers = 5.2 mgd Deep wells = 54.1 mgd.

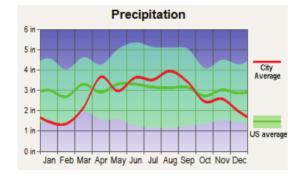


Blue = Pumping from Shallow System Green = Pumping from both Shallow and Deep System Orange = Pumping from Deep System

Circle diameter corresponds to magnitude of pumping Total pumping from shallow wells = 10.2 mgd
Total pumping from wells open to both shallow and de
aquifers = 12.0 mgd
Total pumping from deep wells = 14.4 mgd

Blue = Pumping from Shallow System Green = Pumping from both Shallow and Deep Syste Orange = Pumping from Deep System


Circle diameter corresponds to magnitude of pumping. Total pumping from shallow wells = 53.5 mgd. Total pumping from wells open to both shallow and de equifers = 5.2 mgd. Total pumping from deep wells = 54.1 mgd.



MILWAUKEE CLIMATE DATA

Month	Rainfall
January	1.85in
February	1.65 in
March	2.59 in
April	3.78 in
May	3.06 in
June	3.56 in.
July	3.58 in
August	4.03 in
September	3.30 in
October	2.49 in
November	2.70 in
December	2.22 in

Month	Snowfall
January	14 in
February	12 in
March	9 in
April	5 in
May	0.75 in
June	0 in
July	0 in
August	0 in
September	0 in
October	1 in
November	6 in
December	13 in

CLIMATE DATA

Milwaukee Temperature	Jan	Feb	Mar	Apr	May	Jun	Jul	Aua	Sep	Oct	Nov	Dec	Annual
Avg. Temperature	18.9	23.0	33.3	44.4		65.0	70.9	69.3	61.7	50.3	37.7	24.4	46.1
Avg. Max Temperature	26.1	30.1	40.4	52.9	64.3	74.9	79.9	77.8	70.6	58.7	44.7	31.2	54.3
Avg. Min Temperature	11.6	15.9	26.2	35.8	44.8	55.0	62.0	60.8	52.8	41.8	30.7	17.5	37.9
Days with Max Temp of 90 F or Higher	0.0	0.0	0.0	< 0.5	< 0.5	2.0	4.0	2.0	1.0	0.0	0.0	0.0	9.0
Days with Min Temp Below Freezing	29.0	26.0	23.0	9.0	1.0	0.0	0.0	0.0	< 0.5	4.0	18.0	27.0	137
Milwaukee Heating and Cooling	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Heating Degree Days	1429	1176	983	618	338	82.0	14.0	27.0	123	456	819	1259	7324
Cooling Degree Days	0.0	0.0	0.0	0.0	16.0	82.0	197	160	24.0	0.0	0.0	0.0	479
Milwaukee Precipitation	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Precipitation (inches)	1.6	1.4	2.7	3.5	2.8	3.2	3.5	3.5	3.4	2.4	2.5	2.3	32.9
Days with Precipitation 0.01 inch or More	11.0	10.0	12.0	12.0	12.0	11.0	10.0	9.0	9.0	9.0	10.0	11.0	125
Monthly Snowfall (inches)	13.7	9.6	8.3	1.8	0.1	< 0.05	< 0.05	< 0.05	< 0.05	0.2	3.2	10.2	47.1
Other Milwaukee Weather Indicators	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Wind Speed	12.6	12.3	12.8	12.8	11.5	10.4	9.7	9.5	10.4	11.4	12.5	12.2	11.5
Clear Days	7.0	6.0	6.0	6.0	7.0	8.0	10.0	10.0	9.0	9.0	5.0	6.0	90.0
Partly Cloudy Days	6.0	6.0	8.0	8.0	10.0	10.0	11.0	11.0	9.0	8.0	6.0	6.0	100.0
Cloudy Days	18.0	15.0	17.0	16.0	14.0	12.0	10.0	10.0	12.0	13.0	18.0	19.0	175
Percent of Possible Sunshine	44.0	47.0	50.0	53.0	60.0	65.0	69.0	66.0	59.0	54.0	39.0	38.0	54.0
Avg. Relative Humidity	57.0	73.0	73.0	71.5	69.5	69.5	71.5	74.0	75.0	72.5	71.5	73.5	75.5

Summary of Wisconsin's Climate Trends from 1950 to 2006

- Wisconsin statewide average temperature increased 1.5 F°.
- The greatest amount of warming is occurring in winter and spring, especially in northwest Wisconsin
- Nighttime lows are warming faster than daytime highs, especially in summer.
- There has been a decline in extremely cold winter nights, especially in northwest Wisconsin.
- Date of last spring freeze in Wisconsin is occurring 6 to 20 days earlier.
- Date of first fall freeze in Wisconsin is occurring 3 to 18 days later.
- The growing season in Wisconsin has increased up to 4 weeks.
- Statewide, annual average precipitation has increased 15% although parts of the north became drier.

Summary of Wisconsin's Future Climate Projections

- Scientists project Wisconsin will warm by 4 to 9 °F by mid-21st Century.
- Warming will likely be most pronounced in the winter.
- Projections show there will be fewer extremely cold winter nights and more hot summer days.
- The probability of greater than 3-inch rainstorms will increase during spring and fall.

EXPECTED ENERGY USE

Below, the estimated energy use for the WMSE Media Center is tabulated. It is based on similar existing buildings and the owner's expectations of higher efficiency and lower usage than typical buildings. The buildings compared are assumed to be like those described in the Building Type Research (p. 7) These examples include media labs, radio stations and green buildings such as the Interlochen Center for the Arts, the EMPAC Center at the Rensselaer Polytechnic Institute and the Center for Urban Waters in Tacoma, Washington.

Energy	Design	Target	Average Building
Energy Performance Rating (1-100)	N/A	93	50
Energy Reduction (%)	N/A	60	0
Source Energy Use Intensity (kBtu/Sq. Ft./yr)	N/A	58	120
Site Energy Use Intensity (kBtu/Sq. Ft./yr)	N/A	29	55
Total Annual Source Energy (kBtu)	N/A	13,600,000	24,000,000
Total Annual Site Energy (kBtu)	N/A	5,800,000	11,000,000
Total Annual Energy Cost (\$)	N/A	\$ 118,965	\$ 225,625
Pollution Emissions			
CO2-eq Emissions (metric tons/year)	N/A	19	37
CO2-eq Emissions Reduction (%)	N/A	50%	0%

WMSE Media Lab/Radio Station 1296 N Edison St, Milwaukee, WI 53202

United States

Ratios of Energy Use:

2010 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu)												
		Natural	Fuel		Other	Renw.	Site	S	ite	Primary	Prin	nary
		Gas	Oil (1)	LPG	Fuel(2)	En.(3)	Electric	Total	Percent	Electric (4)	Total	Percent
Lighting							1.02	1.02	12.00%	3.2	3.2	17.40%
Space Heating		1.61	0.18		0.06	0.11	0.18	2.14	25.10%	0.55	2.52	13.70%
Space Cooling		0.04					0.58	0.62	7.30%	1.82	1.86	10.10%
Ventilation							0.51	0.51	6.00%	1.6	1.6	8.70%
Refrigeration							0.39	0.39	4.60%	1.23	1.23	6.70%
Electronics							0.26	0.26	3.10%	0.82	0.82	4.50%
Water Heating		0.46	0.02			0.03	0.09	0.59	6.90%	0.29	0.79	4.30%
Computers							0.21	0.21	2.50%	0.66	0.66	3.60%
Cooking		0.18					0.02	0.2	2.40%	0.07	0.25	1.40%
Other (5)		0.3	0.01	0.15	0.04	0	0.65	1.15	13.50%	2.03	2.53	13.80%
Adjust to SEDS (6)		0.58	0.15				0.69	1.42	16.70%	2.15	2.89	15.70%
Total		3.11	0.36	0.15	0.11	0.14	4.6	8.54	100%	14.42	18.35	100%

WATER TREATMENT

Milwaukee uses Lake Michigan to supply its potable water. This water is treated at two plants, passing the water through multiple treatment process barriers that keep illness-causing microorganisms from our drinking water. The primary form of disinfection in the city plants is ozone gas which is bubbled through the lake water after it enters the treatment plants. This highly reactive gas destroys illness-causing microorganisms, controls taste and odor, and reduces chlorinated disinfection byproducts. Following inactivation of microorganisms, the processes of coagulation, settling, and biological filtration remove additional particles.

This site's waters will be treated at Jones Island Wastewater Treatment about three miles away. Other options to treat water for the site compost toilets, wetland purification or bioswales.

Substance	Ideal Goals (MCLG)	Highest Level Allowed (MCL)	Median Value	Highest Level Detected	Source(s) of Contaminant
Aluminum	0.2 mg/L	NR	0.045 mg/L	0.309 mg/L	Water treatment additive; Natural deposits
Barium	2 mg/L	2 mg/L	0.021 mg/L	0.021 mg/L	Natural deposits
Bromate	10 μg/L	10 μg/L (RAA)	4 μg/L (RAA)	NR	Byproduct of drinking water disinfection
Chlorine, total	4 mg/L	4 mg/L	1.40 mg/L	1.95 mg/L	Residual of drinking water disinfection
Chromium	100 μg/L	100 µg/L	< 2 µg/L	2 μg/L	Natural deposits
Copper (2008)	1.3 mg/L	1.3 mg/L (AL)	0.056 mg/L (AL)	NR	Corrosion of household plumbing systems
Fluoride	4 mg/L	4 mg/L	0.77 mg/L	2.06 mg/L	Water treatment additive; Natural deposits
Haloacetic Acids, total	NA	60 μg/L	1.2 µg/L	9.4 µg/L	Byproduct of drinking water disinfection
Lead (2008)	Zero	15 μg/L (AL)	5.3 µg/L (AL)	NR	Corrosion of household plumbing systems
Organic Carbon, total	Π	π	1.3 mg/L	2.6 mg/L	Natural deposits
Potassium	NR	NR	1.4 mg/L	1.6 mg/L	Natural deposits
Radium, combined (2008)	Zero	5 pCi/L	0.99 pCi/L	1.1 pCi/L	Natural deposits
Sodium	NR	NR	9.3 mg/L	17.3 mg/L	Natural deposits
Sulfate	500 mg/L	NR	28 mg/L	32 mg/L	Natural deposits
Trihalomethanes, total	NA	80 µg/L	3.6 µg/L	10.4 µg/L	Byproduct of drinking water disinfection
Turbidity	NA	<0.3 NTU 95% of the time	0.04 NTU 95% of the time	0.08 NTU 1-day max	Natural deposits
Uranium, total (2008)	Zero	20 pCI/L	0.14 pCl/L	0.18 pCi/L	Natural deposits

Milwaukee is globally recognized as a leader in Water Treatment and Quality Monitoring. The Jones Island Water Reclamation Facility is at the front of the industry when it comes to quality and efficiency. The Milwaukee Metropolitan Sewage District provides research and water treatment developments to many national and worldwide organizations, companies and governments. The Jones Island Water Reclamation Facility is approximately two miles from the WMSE Media Center site.

MATERIALS

One aspect of sustainable design is the use of local, recycled and renewable materials. To this end, there are several materials that stand out for reasons of location, style and performance.

Glass Cladding:

Technology improvements have made glass performance incredible in regards to thermal resistance, light control and strength.

Glulam Beams:

A versatile material that allows many different design and engineering options, glulam beams can be manufactured using different woods. Glulam can be made in many different styles and is looked on by the public more favorable than more structural materials.

MATERIALS

Cream City Brick:

A local material, cream city brick defined Milwaukee's history. There are a number of recycled brick suppliers in the area. Cream City Brick is aesthetically attractive and performance proven.

Limestone:

Milwaukee and the surrounding area have rich deposits of limestone. Tons of it was removed during the deep tunnel project and because of its strength and pleasing look, it is an appealing material in this project.

Green Roof Systems:

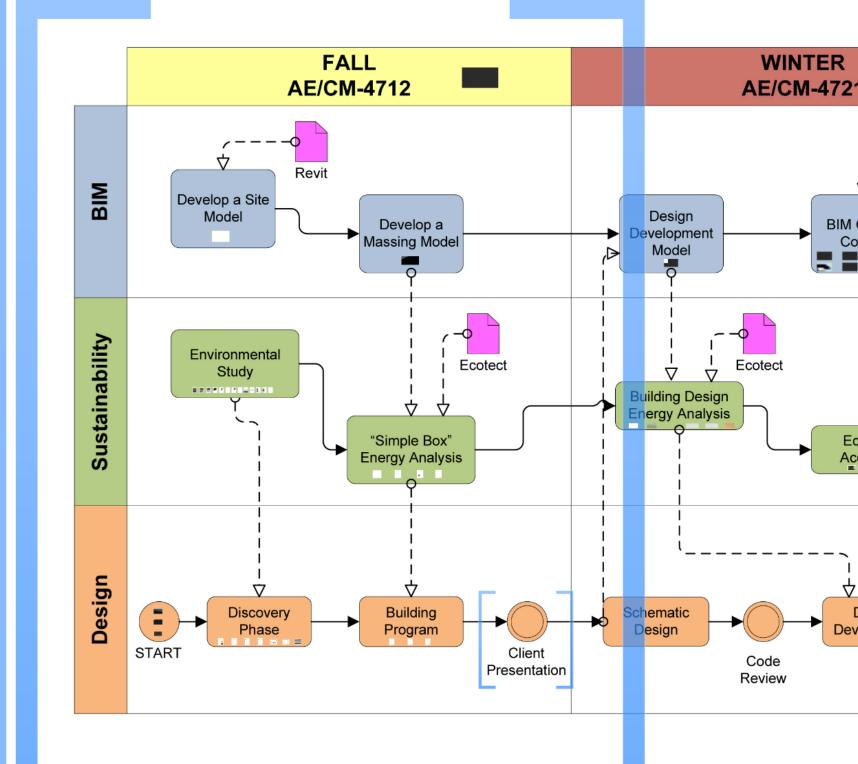
The Urban Environment is taking huge steps forward in regard to ecology. Living roof systems increase thermal capacity of roof assemblies, provide oxygen recycling and support human quality of life opportunities.

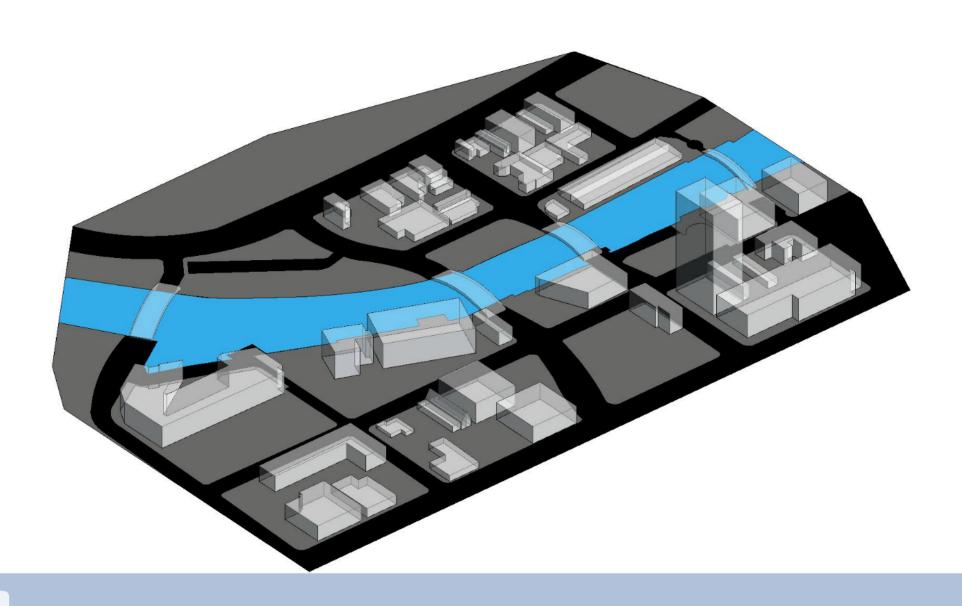
MATERIALS

In addition to specific materials, Frontier Design & Construction has identified a number of local suppliers of materials pertinent to this project. The following list includes suppliers that have sustainable design materials and practices, are within a 500 mile radius of Milwaukee and have a reputation of quality.

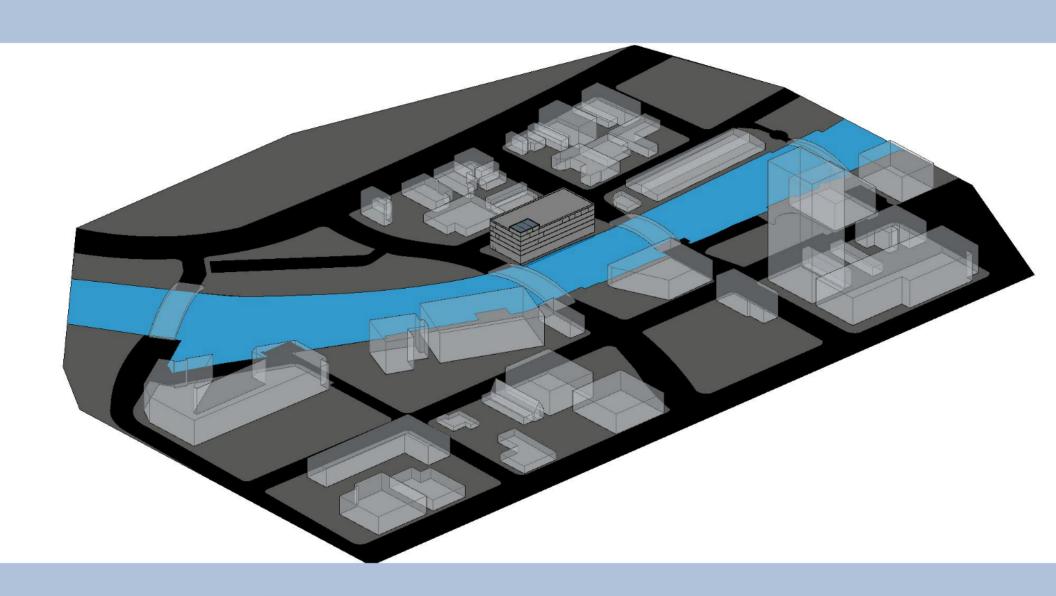
LIFE-CYCLE INVENTORY DATA

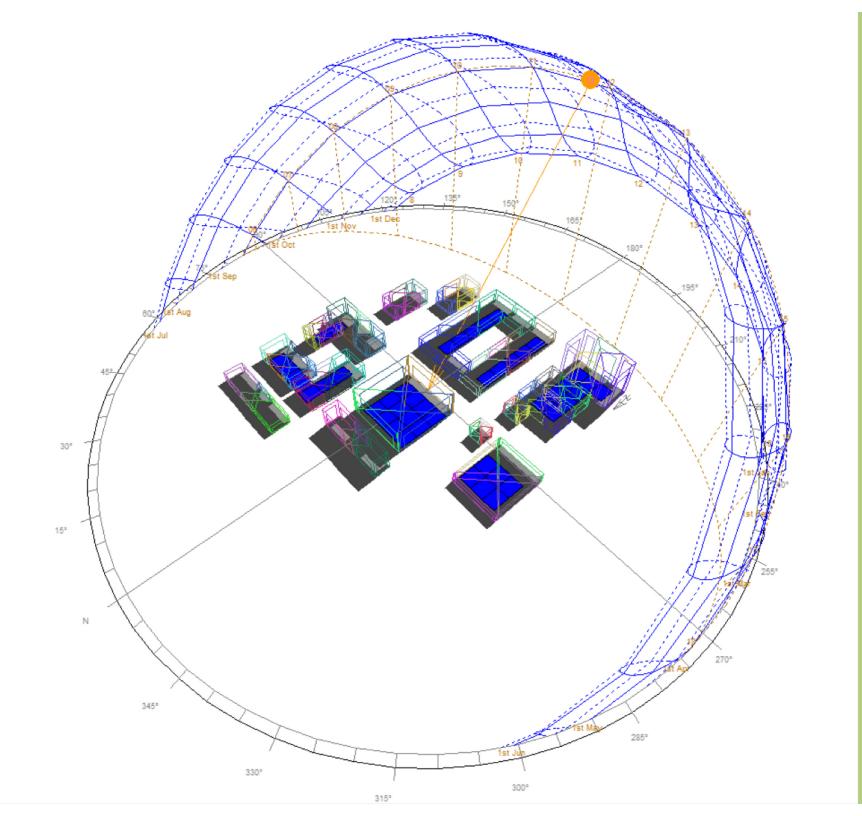
- <u>National Renewable Energy Laboratory</u> Need to register to have access to the database, Free to use: http://www.nrel.gov/lci/
- Building Ecology Life Cycle Assessment Software, Tools and Databases Extensive listing of resources for doing research on life-cycle assessments: http://www.buildingecology.com/sustainability/life-cycle-assessment/life-cycle-assessment-software


ALTERNATIVE BUILDING MATERIALS / TECHNIQUES:


- Cream City Brick Traditional building material found in historic Milwaukee buildings
- High Density Resin Panels Found on Discovery World at Pier Wisconsin, High recycled content, consistent look, minimal maintenance, good examples: http://www.3-form.com/solutions.php & http://www.3-form.com/materials.php
- 3-Form Material Solutions Recycled glass and plastic / resin material supplier: http://www.3-form.com/
- Architectural Systems, Inc http://www.archsystems.com/
- Johnson Controls A leading provider of equipment, controls and services for heating, ventilating, air-conditioning, refrigeration and security systems that increase energy efficiency and lower operating costs in buildings: http://www.johnsoncontrols.com
- Green Roofs Helps decrease heat island effects and manage water on the building: http://greenroofs.com
- Orion Energy Systems A leading innovator in power technology, specializing in high-efficiency lighting, headquartered in Manitowoc, WI.: http://www.oesx.com

C&D RECYCLING:


- <u>WasteCap Resource Solutions, Inc.</u> WasteCap Resource Solutions, Inc. is a nonprofit, industry supported 501(c)(3) organization that provides waste reduction and recycling assistance to businesses. WasteCap assists and encourages companies to effectively drive costs out of their operations through improved solid waste management practices: www.wastecap.org
- Veolia Environmental Services Veolia Environmental Services (VES) provides a complete range of industrial, regulated waste and waste-to-energy services for our customers. They will handle collection, transportation, disposal, and recycling of waste and industrial materials: http://veoliaes-sw.com



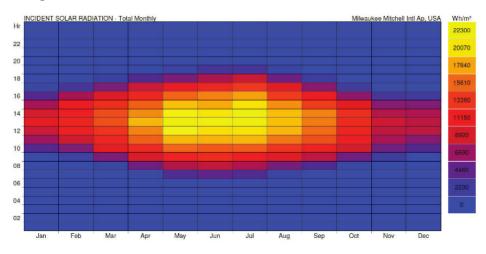
SOLAR ANALYSIS

A Solar Ecotect Analysis is able to take assumptions such as location, size, orientation and building usage to compile energy usage predictions. The following figures illustrate some of those findings.

Predicted monthly heating and cooling loads

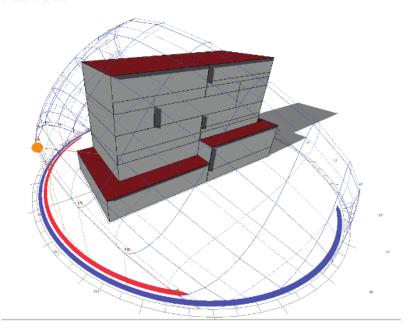
	Heating	Cooling	Total		
Month	(Btu)	(Btu)	(Btu)		
January	2,780,079,872	-	2,780,079,872		
February	2,226,612,992	-	2,226,612,992		
March	1,577,648,896	962,844	1,578,611,712		
April	892,334,272	23,941,346	916,275,648		
May	475,820,800	163,824,640	639,645,440		
June	63,462,240	284,753,152	348,215,424		
July	-	484,044,384	484,044,384		
August	4,801,223	374,559,840	379,361,056		
September	66,151,648	140,385,408	206,537,056		
October	690,808,704	8,653,201	699,461,888		
November	1,419,175,552	-	1,419,175,552		
December	2,441,618,944	-	2,441,618,944		
Total	12,638,514,176	1,481,124,864	14,119,639,040		
per square meter	1,051,371	123,212	1,174,583		
per square foot	11,316,863	1,326,243	12,643,106		
A II A # - * II- I - TI 1 T			-+ OF OO F+ -		

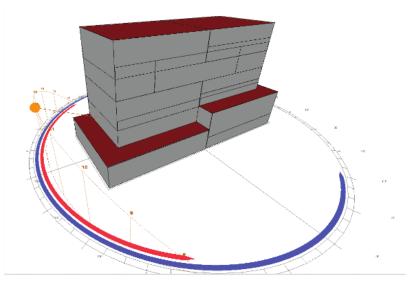
All Visible Thermal Zones Max Heating: 6894514.5 Btu/hr at 05:00 on 5th January Comfort: Zonal Bands Max Cooling: 4176363.0 Btu/hr at 13:00 on 7th July



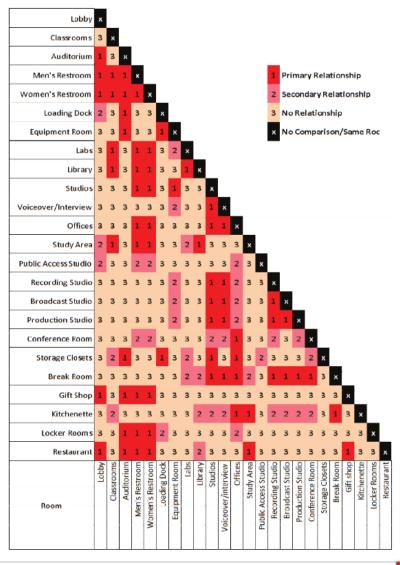
SOLAR POTENTIAL

The solar potential for the site has a yearly total availability of $18,90,642 \text{ Wh/m}^2$. The total incident yearly radiation to the site is $1,322,520 \text{ Wh/m}^2$. The total amount of absorbed solar Wh by the mass model of the proposed building is 4,075,434. This number is due to the lack of reflective material on the building's mass model.



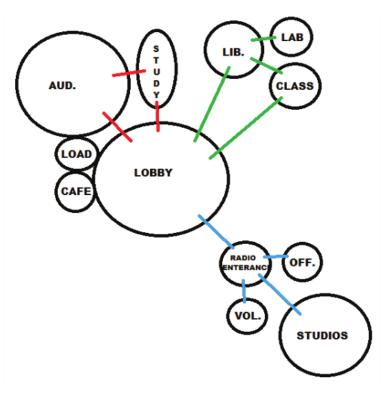

TOTAL MONTHLY SOLAR EXPOSURE									
Milwaukee Mitchell Intl Ap, USA									
	AVAIL.	AVG	REFLECT	INCIDENT	ABSORBED	TRANSMITTED			
MONTH	Wh/m2	SHADE	Wh/m2	Wh/m2	TOT.Wh	Wh/m2	TOT.Wh	Wh/m2	TOT.Wh
Jan	104362	0%	0	51986	160200	51986	160200	0	0
Feb	113895	0%	0	70657	217734	70657	217734	0	0
Mar	150446	0%	0	100398	309384	100398	309384	0	0
Apr	187480	0%	0	138058	425434	138058	425434	0	0
May	219545	0%	0	171217	527616	171217	527616	0	0
Jun	221878	0%	0	176066	542560	176066	542560	0	0
Jul	233582	0%	0	183137	564350	183137	564350	0	0
Aug	195702	0%	0	147348	454063	147348	454063	0	0
Sep	177903	0%	0	118001	363628	118001	363628	0	0
Oct	128172	0%	0	79645	245430	79645	245430	0	0
Nov	80969	0%	0	45764	141026	45764	141026	0	0
Dec	76708	0%	0	40242	124008	40242	124008	0	0
TOTALS	1890642		0	1322520	4075434	1322520	4075434	0	0

DAYLIGHT EVALUATION

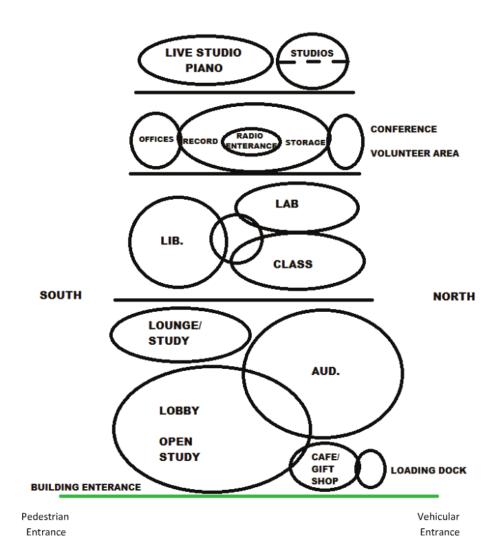


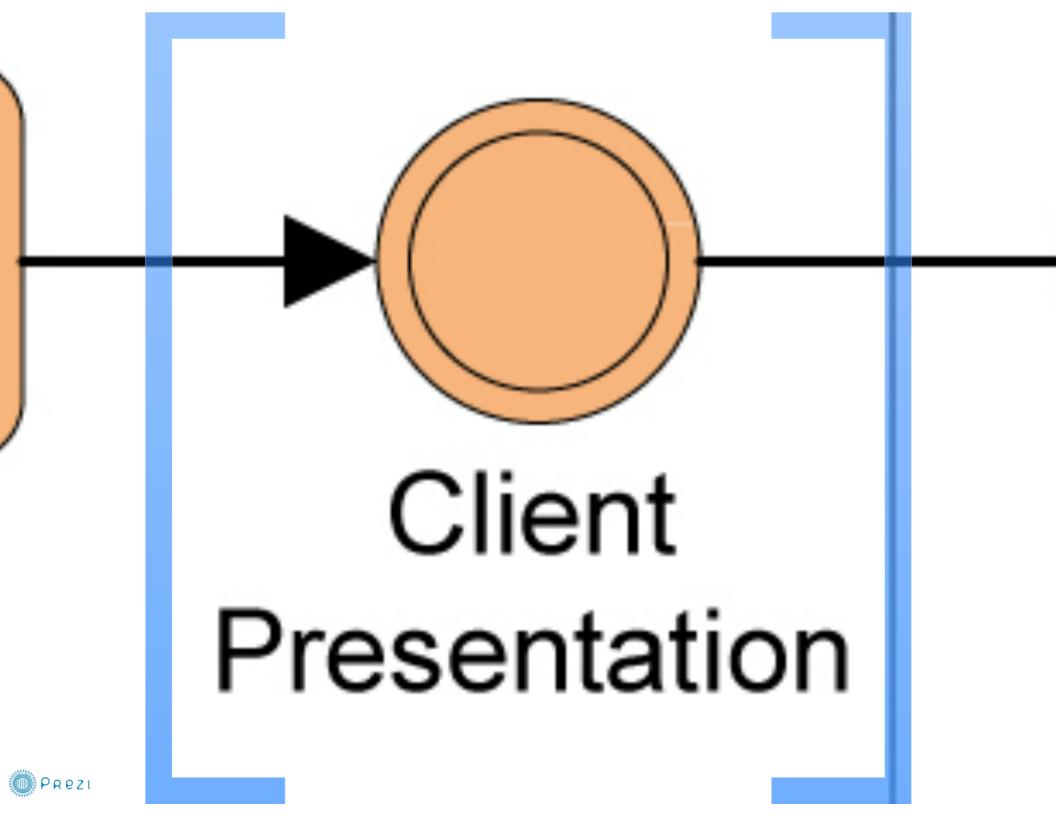
MATRIX OF SPACE RELATIONSHIPS

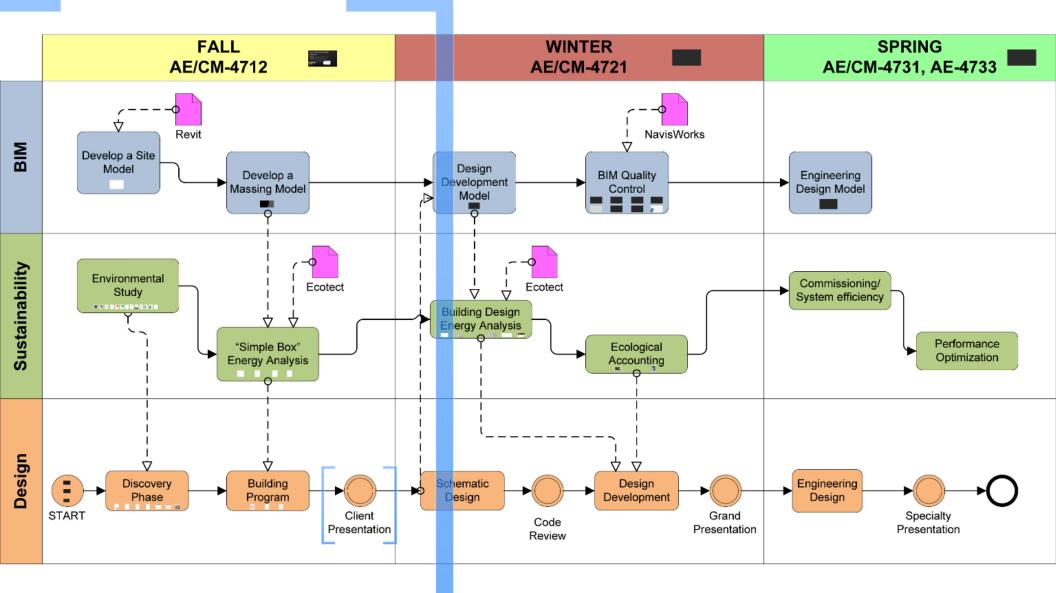
This matrix illustrates the importance of spaces' proximity to other spaces. For example, the Study Area has a close relationship to the Classrooms and Library but should not need to be near the Equipment Room, Auditorium or Gift Shop.



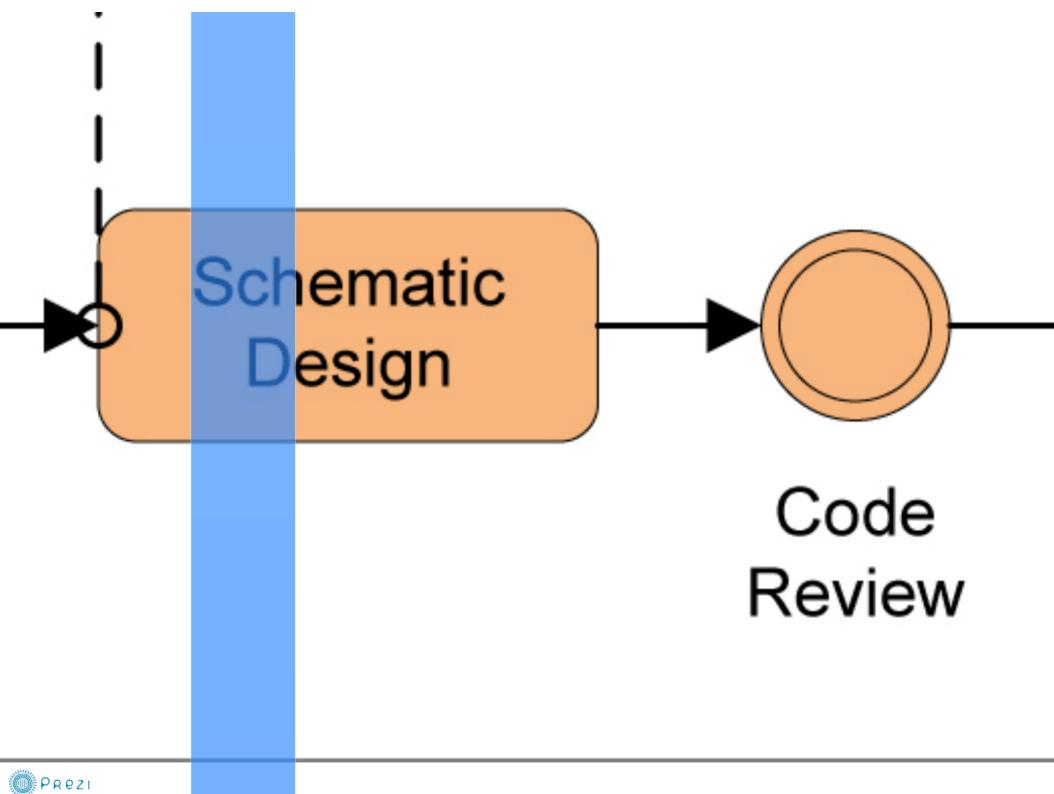
GRAPHIC SPACE DIAGRAMS


This is a further illustration of the matrix above.



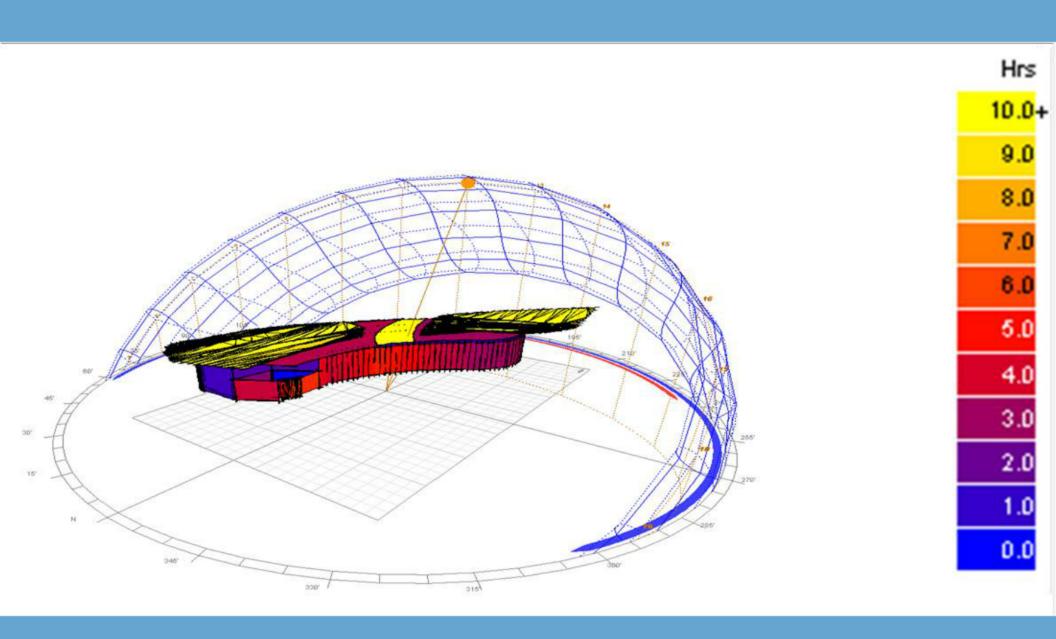


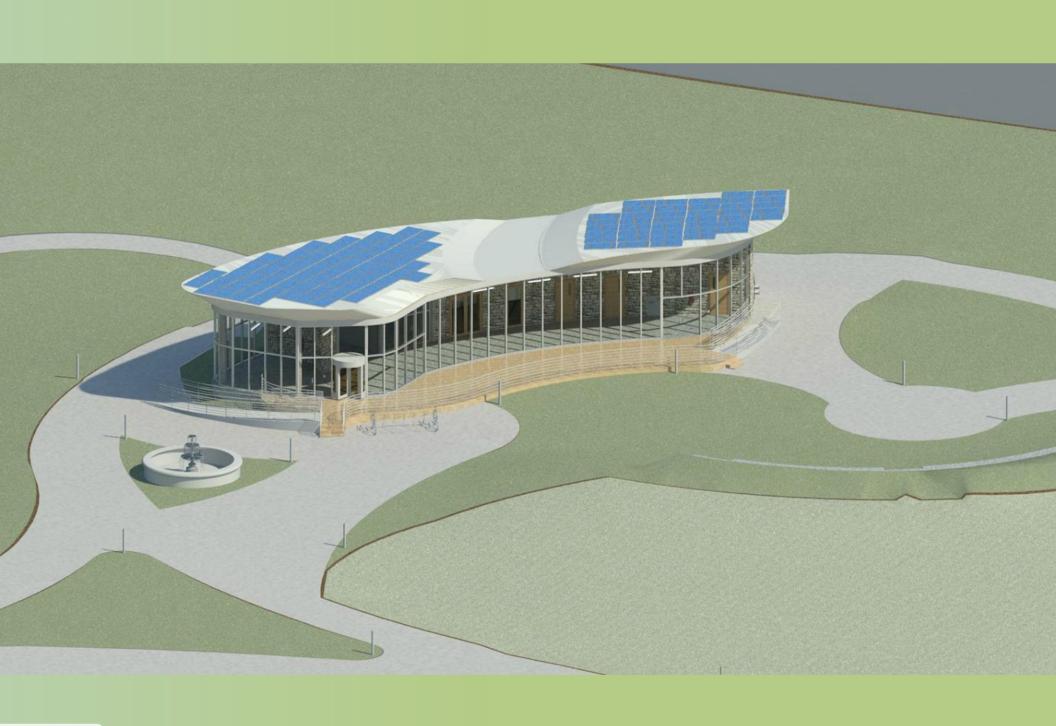
GRAPHIC SPACE DIAGRAMS



Design Development Model

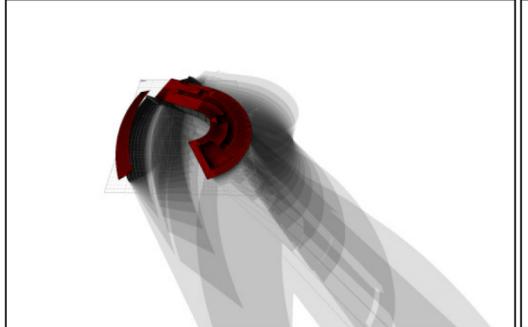
- Virtual building models including architectural components
- Use Central File approach for collaborative design processes



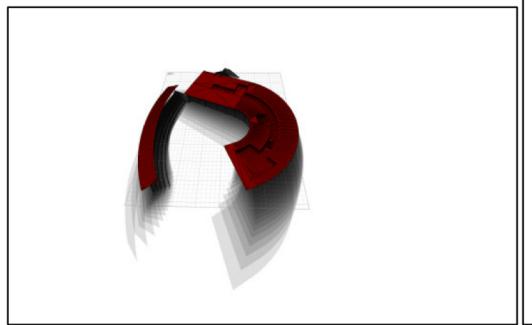


AU Autodesk University

m 2012 du todoel



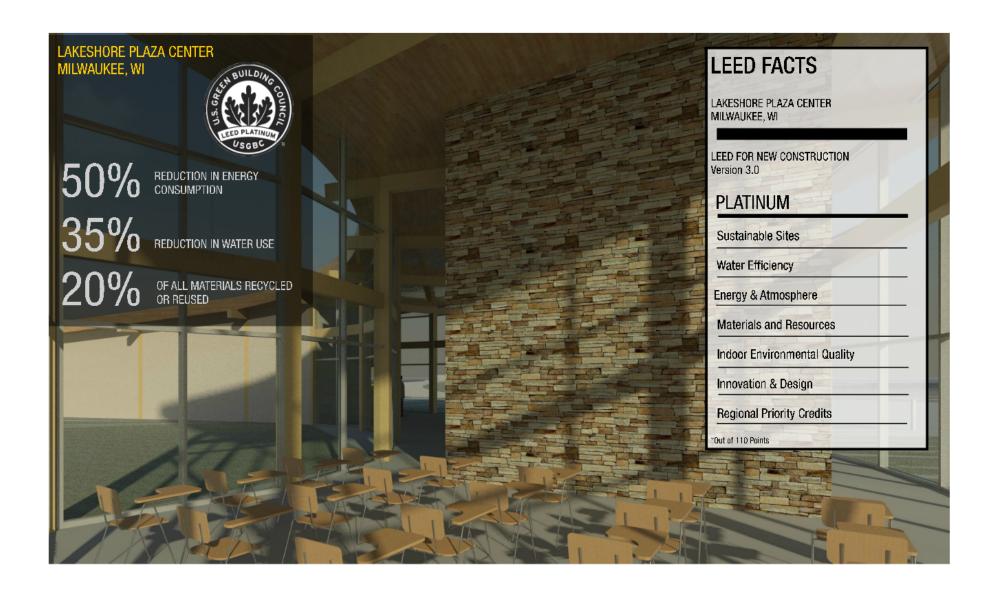
Winter Solstice

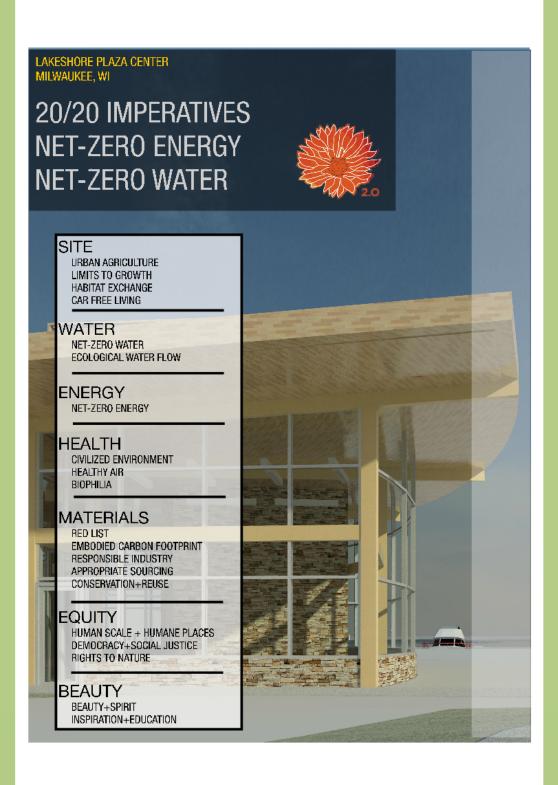


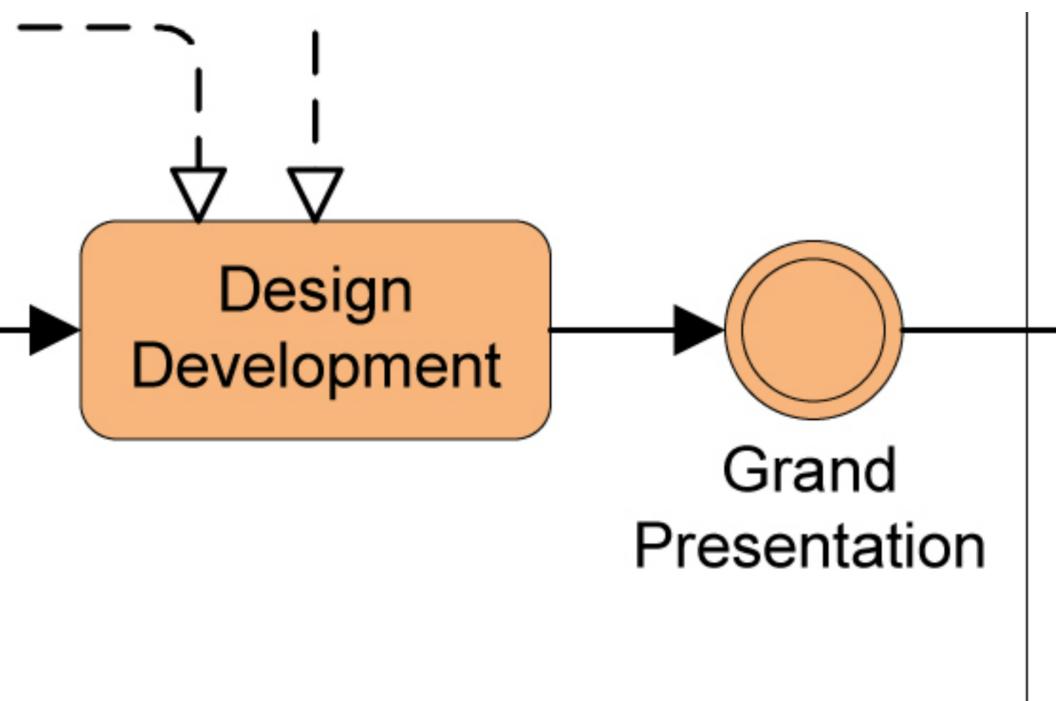
Spring Equinox



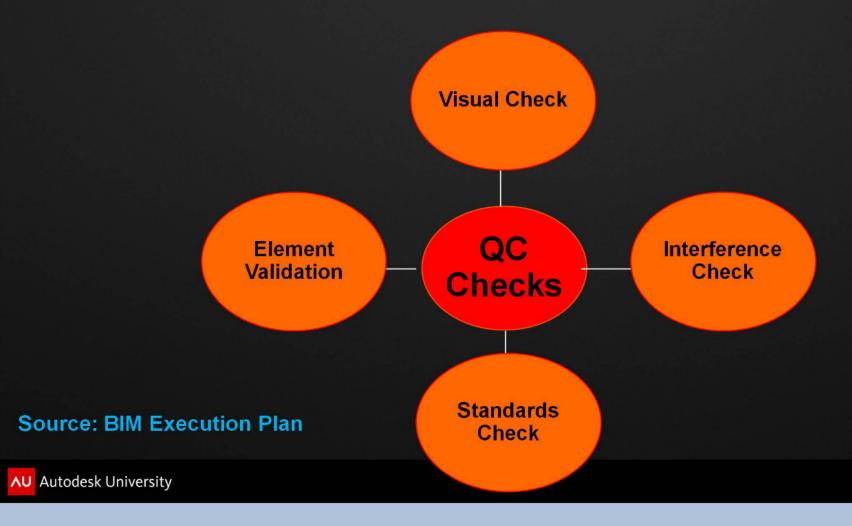
Summer Solstice


Fall Equinox





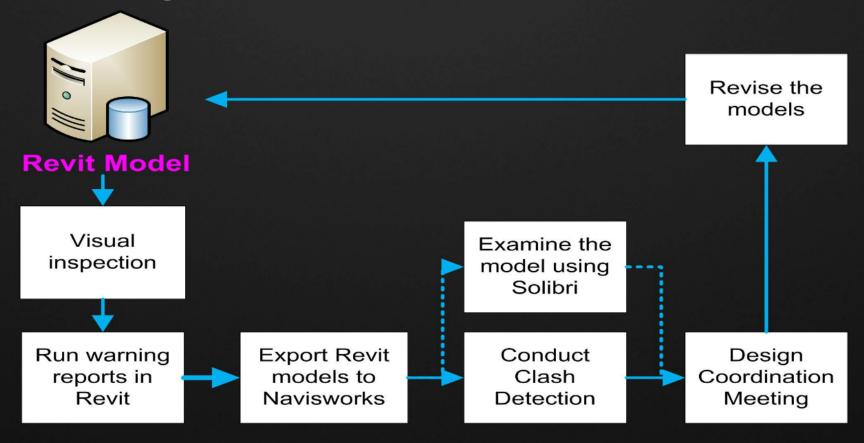
BIM Quality Control



Model Quality Control

Use of BIM at Design-Build Studio

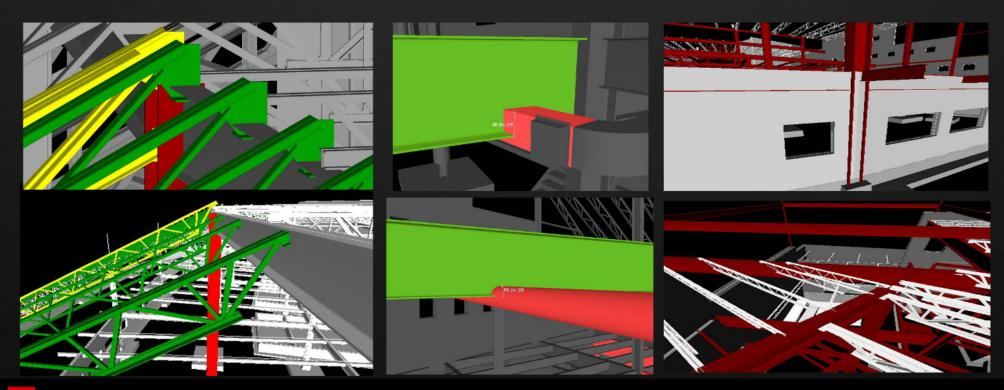
- Use BIM for design-build purposes
 - Architectural design
 - Preconstruction
 - CM proposal development
 - Use sketch-up for interior design
- CM students act as BIM managers



Autodesk University

© 2012 Autodesk

Model Quality Control Process


AU Autodesk University

m 2012 di todos

Model Quality Control

Improve BIM model quality for accurate BIM-based estimating

AU Autodesk University

m 2012 du todoek

Model Quality Control – Clash Report

Clash Discrepancy Report

Model Name	Canal Street Data Center 2011
Checker	Austin Meier & Justin Cosgrove
Organization	Helix
Date	10/28/2011 8:57

Batch Type: Floor Framing vs. HVAC Ducts

Taken Types Trees									
Number	ID	Location	Design Drawing	3D Architectural Model	Issue Comment	Proposed Resolution			
4	4	In plenum space between all data suites	N/A		Steel framing passes through firewalls.	Create beam penetrations from framing and make sure to seal with fireproofing.			

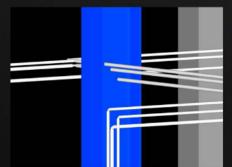
AU Autodesk University

m 2017 du todoek

BIM assignment examples

BIM Management Plan

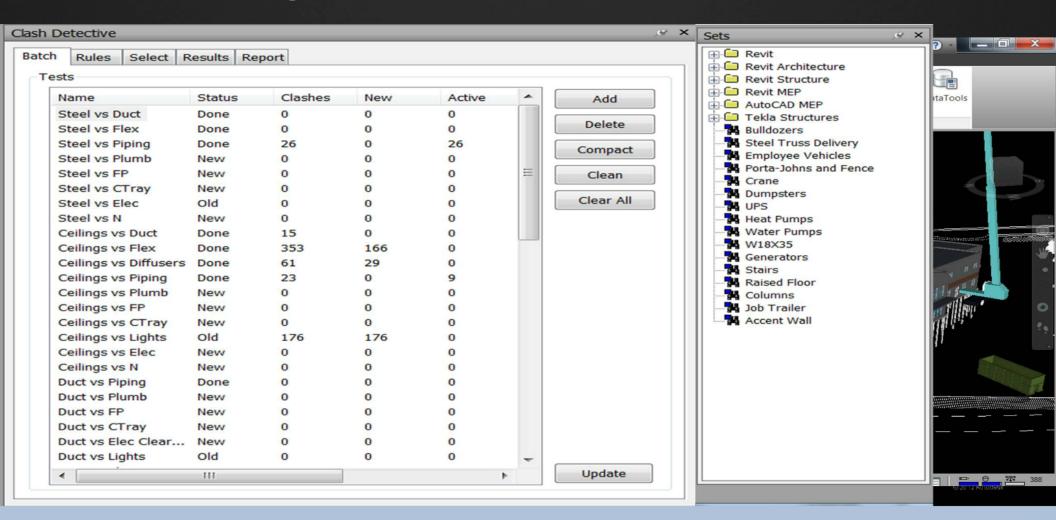
"You need to devise a strategy that shows how you plan on controlling and monitoring the design process using Revit on an in-house basis. Analyze and define what you think the key problems will be and how you plan to monitor and inspect to make sure there are not any design errors in the model. You may want to break this down into key dates or key intervals on how often you will be reviewing the model and your methodologies for checking it. You should also list your plan of action in a step-by-step program on how you will go about fixing clashes once you have detected them."

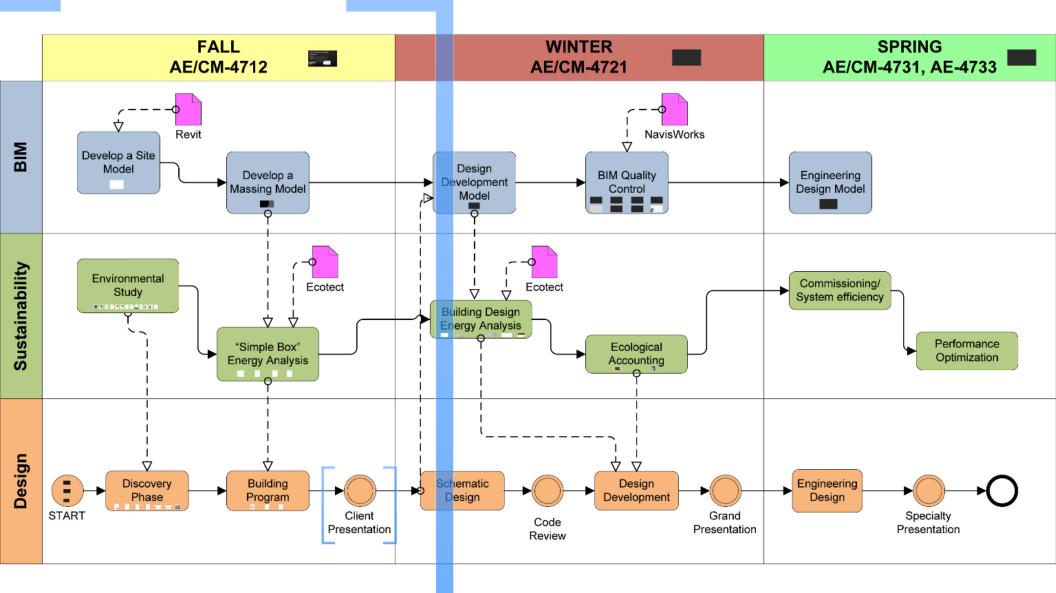

AU Autodesk University

BIM Assignment Example

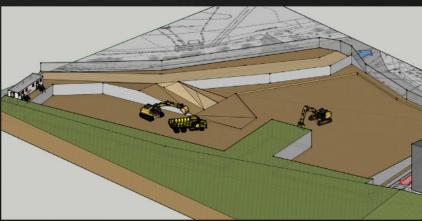
Crash Detection Analysis

for their design process, now you will see if the model is accurate or not. Generate a clash report for the model at this point in time (if your specialty teammates have not gotten that far yet, you may wait to run this report until the beginning of week 9). The primary issue will be is that you need to show the detections and then a report showing that you fixed them, so waiting until the last minute will be incredibly stressful for all involved. BE SURE TO MANAGE YOUR ENGINEERS SO THEY ARE KEEPING UP ON THIS!!!!



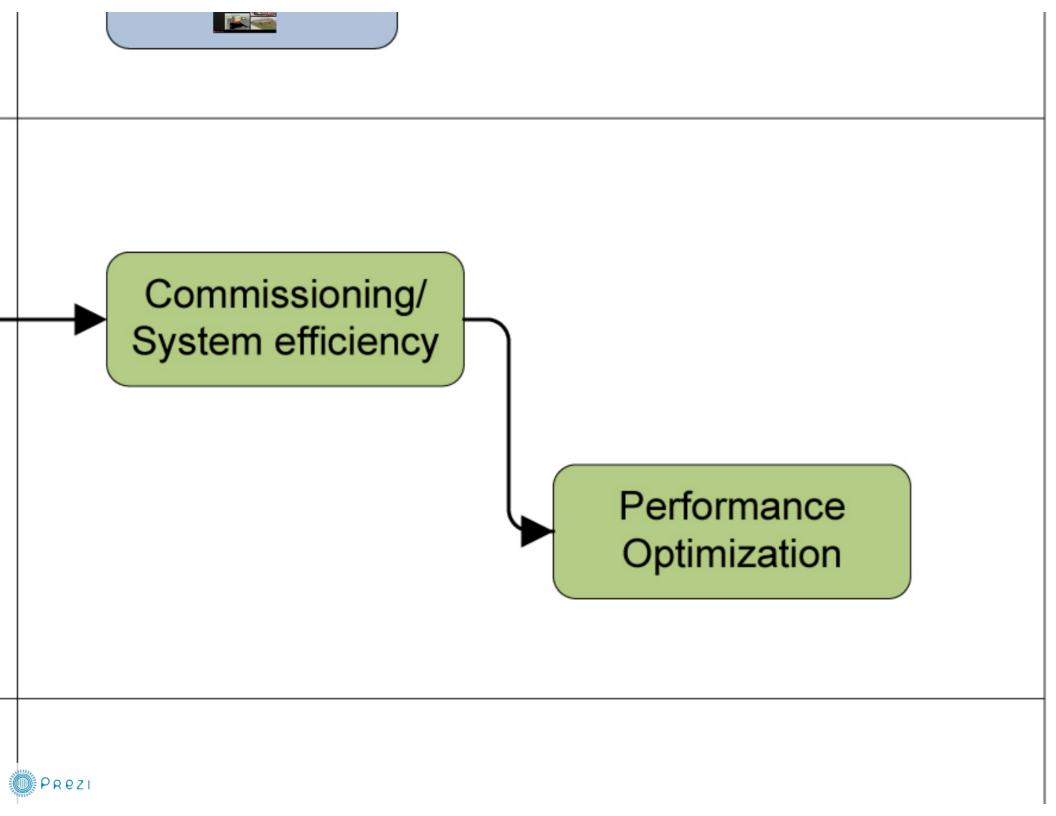

AU Autodesk University

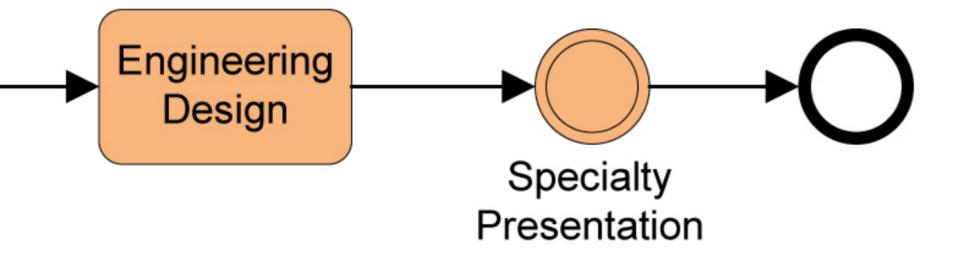
Model Quality Control – Clash Detection



Develop Site Logistics Plans

- Analyze construction processes
- Use SketchUp and Revit models





AU Autodesk University

© 2012 Autodes

HOW DO YOU INTEGRATE SUSTAINABLE DESIGN AND BIM INTO A MULTIDISCIPLINARY DESIGN-BUILD CURRICULUM?

Dr. Matthew Trussoni, AIA, PE Assistant Professor