

Using Revit API Events to Manage Miracles
Don Rudder – CASE Design, Inc.

SD5399 Take a deep gander into various creative uses of the Revit API event functionality. Learn

ways to monitor model health, activity, and happiness all while not having to ask your users
to do anything to help you achieve it. If you don't write code, don't worry. There will be
plenty for everyone in this lecture including C# source code, explanations of scenarios, as
well as things to avoid and why you might want to avoid those things.

This class assumes that you already have a basic understanding of the .NET framework
as well as the Revit API.

Learning Objectives
At the end of this class, you will be able to:

 Understand what Revit API events are and their limitations

 Know how to subscribe and unsubscribe to events in Revit

 See several examples on creative Revit API event uses

 Bypass some of the Revit API event rule limitations with IUpdater

About the Speaker

Don Rudder focuses on the development and management of specialized software and add-ins for

various applications. 10+ of his 18 years of experience in the AEC industry has been served as an MEP

designer and has served roles varying from CAD/BIM Manager to software developer. Self-taught in

20 programming languages and well versed in .NET, web-based AEC tools and pretty much any kind

of Automation. He has also written the API chapters for a few volumes of the Autodesk Official Training

Guide Series, Mastering Autodesk Revit Architecture as well as a book entitled 'Instant Autodesk Revit

2013 Customization with .NET How-to'.

d.rudder@case-inc.com

@AYBABTM

mailto:d.rudder@case-inc.com

SD5399 - Using Revit API Events to Manage Miracles

2

What are Revit API Events?
Revit API events provide a means for a custom application to subscribe to and receive

notifications when something specific changes in the Revit environment. The custom application

can then autonomously react to these notifications without user intervention. As you can imagine,

Revit events can provide a quite powerful bit of functionality. With great power comes great

responsibility.

Be Kind
Before we go any further, I just want to remind you that just because you

can do something doesn’t always mean that you should. Events do

obviously consume system resources and depending on how intensely used

can result in a bad experience for your users. I recommend using events

sparingly and only for solving real business problems (LOL).

Revit API Events Defined
Revit API Events are obviously .NET events and .NET events are a form of delegate. In order

to properly understand events, it is important to first understand delegates.

 Delegates are smart containers that manage references to methods, as opposed to

containers that manage references to objects or properties.

 Delegates can hold reference to any number of methods, but not just any old method.

They can only contain methods with signatures matching their own signature. A signature

can be explained as the combination of inputs and outputs for a method.

 Think of a delegate as something that holds a collection of methods that will each get fired

off when the event is "raised."

Perhaps a simple analogical explanation for a delegate would be similar to a classroom. A

professor is explaining or teaching a subject and this information is being listened to by an

unknown number of people or devices. This common set of information is then used to react

to some kind of assignment. Nobody in the class knows about the assignment until the

professor announces it. This announcement could be thought of as the “raising” of the event

and then each student would react to it each in their own way. Some will pass, others will fail,

but they all are notified in the same way with the same rules.

Just Because
If you enjoy stories about events and delegates as much as a good fairy tell, then you should

read the extremely outdated but ever so entertaining: .NET Delegates: A C# Bedtime Story:

http://www.sellsbrothers.com/writing/delegates.htm

http://www.sellsbrothers.com/writing/delegates.htm

SD5399 - Using Revit API Events to Manage Miracles

3

How Revit Events Work
When an event fires off, or is “raised”, the delegate goes through the collection of registered

custom event handler methods for the specific event and executes them one by one using its

values as input parameters for the registered event handler methods. These methods all utilizing

the same input and output structures (signature) make it possible to deal with each of these

methods in a similar way between each subscription to that specific event.

Lifecycle
Events can persist throughout the life of a Revit session or can be started and stopped on

demand. As a general housekeeping rule, it is recommended that you always unsubscribe

from events when you are either done using them or at application shut down. For every

subscription, there should be an equal unsubscription and should fire off no later than session

shut down.

How Many Events Can I Subscribe to?
There is no documented limit to how many different events that you

can use in an application or a limit to how many times an event can be

subscribed to in the same Revit session. The same event can be

subscribed to more than once from the same add-in as well as from

numerous add-ins at the same time.

Known Limitations
The most important limitation to note about Revit API events is that it is generally not possible

to make model modifications (like committing a transaction) from within an event handler

method. The keyword “generally” should give away that there are exceptions to this limitation.

The Idling event is one that breaks this rule and fully supports model changes. We will

implement the Idling event in one of the code samples later in the class.

With the exception of the Idling event, there are a couple other means of getting around the

limitation regarding model changes. We will see another way around the model change

limitation when we talk about the IUpdater interface later in the class.

Available Revit API Events
You probably guessed by now that you won’t be deciding how events work within the Revit API,

and will generally have to work with the events provided by Autodesk. The good news is that there

are quite a few to choose from and with a little creativity can probably accomplish just about

anything you would ever need.

Where Are They?
There are a few objects within the Revit API that provide events. Detailing out each and every

event and how they all work is a bit beyond the scope of this class, but we will definitely get

to see a few examples in the provided source examples to get a taste for what is available

SD5399 - Using Revit API Events to Manage Miracles

4

and how to use them. We’ll focus this class specifically on a few of the events available in the

Application and Document objects.

A more complete list of each event and their accompanying documentation can be found in

the main Revit SDK Documentation (chm file). A partial listing for the Application events as

well as a complete listing for the Document events are shown below.

Subscribing and Unsubscribing to

Revit API Events
Subscribing to an event is where you make a request for Revit to add one of your custom methods

to the notification queue, or delegate, for a specific event available from within the Revit API. Your

custom method would then get called when the event gets fired off, or “raised.” You can handle

one event type per custom event method. There are two basic parts to event subscription in Revit.

Custom Event Methods
Any custom method that you request to register as an event handler must match the signature

for the specific event that you are subscribing to. This basically means that you cannot get

creative with the input arguments for your event handler method. An example of this would be

if you are subscribing to the ViewActivated event, you will be required to build your custom

method with the input arguments for handling that exact event.

Custom Event
Method

Event Method
Subscription

SD5399 - Using Revit API Events to Manage Miracles

5

Once you’ve chosen an event that you want to implement, you’ll need to identify the matching

event argument from the Revit API to use in your custom method handler. The slower and

more frustrating way to do this would be to research the Revit API SDK and manually type

this all into your custom event method. The easier way is to use a Visual Studio extension

such as Resharper (https://www.jetbrains.com/resharper) to do this for you. Resharper is an

extremely common extension and can be purchased for under $250.

Resharper can really save you time and frustration when it comes to building event based

applications. Resharper provides a feature that allows you to automatically build your custom

event handler methods implementing all required input parameters with a single click as you

are subscribing to an event. The illustrations below demonstrate two ways to subscribe to the

ViewActivated event.

Subscribing to an Event with Resharper Installed

Subscribing to an Event (no custom Visual Studio extensions)

As you can see from the illustration, this way isn’t as magical.

SD5399 - Using Revit API Events to Manage Miracles

6

Sample Custom Event Handler Method for ViewActivated

The method name can be whatever you want, but the input argument types have to be of

object and then ViewActivatedEventArgs as illustrated below. The names of the fields can

also be whatever you want them to (sender and e). The available members for the

ViewActivatedEventArgs object is also shown below via intellisense. This should look pretty

familiar if you’ve ever implemented a button in a windows form click event.

Enable or Disable an Event
The code snippet below illustrates how you would enable or subscribe to the ViewActivated

event and your custom event handler method named OnViewActivated.

You would then unsubscribe or disable the same event with the following line of code.

The only difference between turning an event on or off is the plus (+) sign to turn it on and the

minus (-) sign to turn it off.

SD5399 - Using Revit API Events to Manage Miracles

7

Examples
I promised I would provide a few creative examples capable in solving real-world problems. Refer

to the Visual Studio solution for the full source code.

Log Time Spent in and Export an Image on View Change
Have you ever been curious as to how much time you spent in each view in Revit and wished

you had a log to look through when filling out your time sheet? One of the more useful tricks

that you can do with events is track exactly what view you were in and for how long.

The two sample methods below are event handler methods for the ViewActivating and

ViewActivated events.

SD5399 - Using Revit API Events to Manage Miracles

8

Log Level, Door, & Wall Deletions (Who, When, etc.)
One of the most common workshared Revit

model mysteries has probably got be the loss

of tags and previously input parameter values

as a result of host families being deleted and

redrawn/modeled rather than edited. It is all

too easy for a beginner user to fall into this

trap. Something as simple as it can be to

delete and then remodel a ceiling or complex

wall system (or a level! - OUCH) can result in

a lot of lost work. The OnDocumentChanged

sample will demonstrate how to log each of

these elements (walls, doors, and levels) as

they get deleted and who deleted them.

Add Missing Sheets from External File (no User Interaction)
The Idling event is definitely one of the most useful. The OnIdling event sample demonstrates

how to break the model changes rules and should obviously be used with extreme care. Be

very mindful when implementing this event if your implementation results in a model change.

SD5399 - Using Revit API Events to Manage Miracles

9

Using IUpdater to Get Around Some of the Revit API Event Limitations
Perhaps one of the most powerful and often overlooked features in the Revit API is the IUpdater.

IUpdater is a Revit API interface that provides a means to focus on specific changes that you are

interested in and then react to these changes either in read-only mode or in a mode that changes

the model.

There are three parts to consider when implementing an IUpdater solution. The interface itself

must first be implemented. The second part is to register the updater and the last of course being

the unregistration to terminate it. The diagram below shows these three concepts as columns with

each major feature listed beneath.

Custom Class Implementing the IUpdater Interface
As you can see in the image above, the first column has quite a few items listed beneath it.

Each of these must be addressed in your custom updater implementation. Creating a new

custom class and implementing the IUpdater interface will generate these items for you.

<Record video>

Execute()

This method is the most important and where you provide the functionality that you want

to execute for your updater. A method argument type of UpdaterData gets applied as an

input and can be used to gain access to the changes in the model. The key methods made

available from this method argument are:

o GetAddedElementIds() returns a full list of element ids for new elements.

Custom class implementing IUpdater

Execute(UpdaterData data)

GetAdditionalInformation()

GetChangePriority()

GetUpdaterId()

GetUpdaterName()

Registration

Register custom class

Implement trigger(s)

Unregistration

Unregister custom class

SD5399 - Using Revit API Events to Manage Miracles

10

o GetDeletedElementIds() returns a list of element ids for what was deleted. It should

be noted that an element id that points to an element that no longer exists in the

model cannot be used to gain access to any information about the element. You

will have to utilize some other reference to those elements other than

Document.GetElement().

o GetModifiedElementIds() provides access to the ids for elements that have

changed.

GetAdditionalinformation()

This is used to describe what the updater is intended to do when it is not loaded.

GetChangePriority()

This property allows you to set the priority for your updater so that it provides the

functionality that you require. The available options are illustrated below (from the SDK).

GetUpdaterId()

Returns the GUID that is used to address the updater.

GetUpdaterName()

Returns the name of your updater.

Registering IUpdater and Setting Triggers
An IUpdater (we’ll just refer to these as updaters now) must be registered similar to an event,

but there are a few differences. Updaters require that you supply a few extra items of

information regarding what you are wanting them to notify on. Do you want to react to a

parameter change? Maybe you want to react to a geometric change of a wall, or the insertion

SD5399 - Using Revit API Events to Manage Miracles

11

of a specific type of door on a specific kind of wall. As you can see, you have a lot more

options as to what you can ask Revit to notify you about with updaters than you do with

traditional events.

The first thing that you will typically do when registering the updater is first instantiate a

reference to one of your custom updater class objects. The code below shows a reference or

m_updX being set to our UpdaterXyz class.

It should be noted that not all triggers are fired off during an undo or redo and most will not

fire off for deleted or new element additions into the model. If you want to react to new or

deleted elements, you will need to use specific triggers for those changes. You can still use

the same updater class to handle these triggers, but you will just need to add these triggers

separately so that your application is notified when elements get added or deleted.

SD5399 - Using Revit API Events to Manage Miracles

12

Model Transactions
One of the things that IUpdater does not require in

order to make changes to the model is a

transaction. This might sound contradictory, but the

explanation is simple. The changes that your

updater makes is piggy-backed on top of the model

change that triggered the change to start with. In

our XYZ coordinate updater sample, a change to a

family instance is necessary in order to fire off our

updater reaction. The same model transaction that

was used to move the element is used to update

the comments parameter.

Unregistering an IUpdater
The process of unregistering an IUpdater can be done in a couple of different ways. If you

have a reference to the updater, you can just use that and be done with it. There may,

however, be situations where you want to disable an IUpdater that you did not create but

believe is running inside your Revit session. The sample code provided for unregistration can

be used in situations where you might not have an existing reference to the updater.

You can get the list of all registered updaters by calling GetRegisteredUpdaterInfos() from the

UpdaterRegistry object. You can then iterate over the results looking for the one that you want

to turn off.

	Learning Objectives
	About the Speaker
	What are Revit API Events?
	Be Kind
	Revit API Events Defined
	Just Because

	How Revit Events Work
	Lifecycle
	How Many Events Can I Subscribe to?
	Known Limitations

	Available Revit API Events
	Where Are They?

	Subscribing and Unsubscribing to Revit API Events
	Custom Event Methods
	Subscribing to an Event with Resharper Installed
	Subscribing to an Event (no custom Visual Studio extensions)

	Sample Custom Event Handler Method for ViewActivated
	Enable or Disable an Event

	Examples
	Log Time Spent in and Export an Image on View Change
	Log Level, Door, & Wall Deletions (Who, When, etc.)
	Add Missing Sheets from External File (no User Interaction)

	Using IUpdater to Get Around Some of the Revit API Event Limitations
	Custom Class Implementing the IUpdater Interface
	Execute()
	GetAdditionalinformation()
	GetChangePriority()
	GetUpdaterId()
	GetUpdaterName()

	Registering IUpdater and Setting Triggers
	Model Transactions
	Unregistering an IUpdater

