Autodesk[®] Sim 360TM Moldflow [®]: The Ultimate Analyst Toolkit

Richard Lilly

Director, Research and Development

Articulinx[®]

richardlilly@sbcglobal.net

Articulinx

- Start-up medical device company
- Implant to alleviate pain associated with osteoarthritis
- Applicable to the extremities

Articulinx® ICC

- Intercarpometacarpal Cushion ICC
- Permanent implant
- Polymer-based
- Design requires insert molding

Injection Molding is a Key Process

Knowing our Device is Critical

Why Do We Simulate?

Build Better Products Faster

Build Better Products Faster

Build-Test Build paradigm is Status Quo

Design-Build-Test-Build Paradigm

- Dependent on the experience and skill of the Designer
- Limited analysis
- Relies on "Rules of Thumb"

Experienced and Talented Design Team

- Good: 10 iterations
- Better: 5 iterations
- Best: 3 iterations

How Does Simulation Improve This?

- Iterate virtually
- Reduce time and cost
- Investigate test results sooner

What Do You Need to do This?

Software

- Accurate
- Easy to use
- Easy to Understand
- Complete

Autodesk® Sim 360TM Moldflow®

- Cloud based
- Complete software solution
- World class security

Autodesk[®] Sim 360TM Moldflow[®] Advantages

- Flexible Access
- Frees up computer resources
- Lower cost to own

Parallel Based Computations

- DOE with 16 runs
- 1 hour in the cloud = over 30 on the desktop
- Focus on data and results

What else Do You Need to do This?

- Right people
- Committed management team
- Willingness to change

Why Do We Simulate?

Build Better Products Faster

Allows for More Creativity

- Unique designs
- Revolution vs. evolution
- Allows the "goofball" design a fighting chance

Design Evolution vs. Revolution

- Good companies create evolutionary designs
- Great companies create revolutionary designs
- Autodesk[®] Sim 360TM Moldflow[®] gives enables us

New Industrial Revolution

- Additive Manufacturing
- Optimization
- Aesthetics back to design

Autodesk[®] Sim 360TM Moldflow [®]: The Ultimate Analyst Toolkit

- Complete set of tools
- Parallel computing, anywhere access, lower cost to own
- Build Better Products Faster

Articulinx® Sizing Trial

- Example of how we use the toolkit in the product development process
- Sizing Trial project
- Compressed timeline

Project Overview

- Accessory to our main product
- Necessitate by product expansion
- Very short development timeline

Design Inputs

- Define the inputs for the design early
- Adjust as more information becomes available
- Inputs drive our simulation efforts

Handle Design

- Several designs considered
- Rapid prototyping
- Assessment of Feel

Project Miller

- Can my part be printed?
- How can we improve it?
- Visualize the part before you make it

Insert Mold of the Stem to the Trial Device

- Moldflow
- Optimize stem
- Optimize mold parameters

Mold works first shot!

Autodesk® Sim 360TM Mechanical Stem Design

- Buckling analysis performed on the stem
- Optimize cross section and end bends
- These results are inputted back into Moldflow

Autodesk® Sim 360TM Mechanical Snap Fit Analysis

Von Misses Stress

Test Fixture Development

- Make custom text fixtures using 3D printing technology!
- FEA assures that the parts will function

Beyond Autodesk® Sim 360TM Moldflow®

- Autodesk® Showcase®
- Autodesk® Fusion 360TM
- Autodesk® ForceEffectTM

Autodesk® Showcase®

- Marketing material
- Instruction for use
- User facing materials

Figure 3: ICMC Sizing Trial

Figure 1: ICMC
(InterCarpoMetacarpal Cushion)

