

AN APPROACH TO STUDY AND AVOID FAILURE OF PLASTIC ASSEMBLED PARTS USING MOLDLFOW

Nitin D. Hadpe

TATA Technologies, Pune, India nitin.hadpe@tatatechnologies.com

Class summary

- Moldflow's excellent capability to evaluate "What if" scenarios before cutting tool
- Moldflow's capability to do failure analysis of parts failing during testing / actual usage
- Better approach to interpret results as individual part and its importance in assembly
- Moldflow's ability to assist project team for first time right part / molds

Key learning objectives

At the end of this class, you will be able to:

- Explain how part design changes influence part deflections
- Explain benefits of Moldflow, in early part design phase is beneficial
- Understand how best we can apply Moldflow to evaluate problems
- Explain one of the better approach of controlling the assembly failure of plastic parts.

Agenda

- TATA Technologies Brief Overview
- Types of work we do!
- Use of Autodesk Moldflow
- Case study
 - Problem definition
 - Objective and deliverable
 - Other important information and key constraints
 - Our approach to tackle this problem
 - Work details on parts
 - Welding types
- Conclusion
- Q & A session

TATA Technologies- An overview

Overview

- TATA Technologies is the largest Indian pure play Engineering Services Outsourcing (ESO) provider*
- Its 7,600+ professionals represent the largest technical workforce dedicated to the offshoring of engineering services in the Automotive, Aerospace an Industrial machinery industry
- Tata Technologies essential value proposition is to be a technology partner to manufacturers globally, through process optimization, outsourcing of product development and application of Product Lifecycle Management (PLM) services

Business

Services

Engineering and Design services
Product and information lifecycle management
Enterprise solutions & process automation tools
Value Added Reselling of Products

Footprint

- India, USA, UK, Canada, Germany, France, Japan, Mexico, Singapore, Korea and Thailand
- ISO & AS9100 certified delivery centers in Pune, Bangalore and Thailand

Customers

Key Metrics

- \$400 Million in Revenue (FY'13)
- Over 7,600 employees helping 2000 clients
- Operations in 15 Countries
- Works with all the top ten aerospace OEMs
- Works with all the top ten automotive OEMs

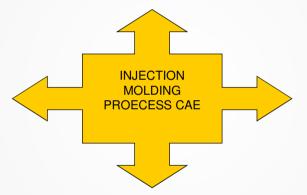
* As per Booz & Company Study

TATA Technologies - Global Delivery Centers

- -Operations in 15 Countries
- TATA Technologies and Cambric's combined capacity puts us ahead of every other service provider in the market
- Expanded global footprint matching our Customer footprint
- Complementary Capabilities & Operations

Types of work we do!

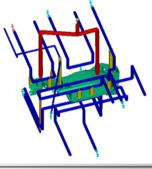
Flow Analysis It Gives: - Uniformity of fill - Gate dimension and location - Weld line locations - Gas / Air entrapments - Pressure and temperature optimization


Thermal with STRESS Analysis (STUDY PART as advanced CAE)

- Mechanical property, finite element mesh, and residual stress data

can be easily transferred from Moldflow to Abacus, ANSYS.

LSDYNA, NASTRAN

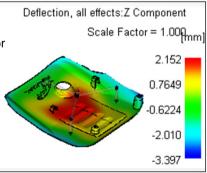

- The inclusion of residual processing stresses in an Abacus - analysis allows for more accurate simulation of the injection molded product.

COOL Analysis

It Gives: -

- Time to reach ejection temperature
- Hot spot locations
- Coolant efficiency
- Circuit coolant temperature difference
- Time to freeze feed system
- Hot spot locations
- Coolant efficiency

WARP Analysis


It Gives:

- Deflection in terms of magnitude and behavior

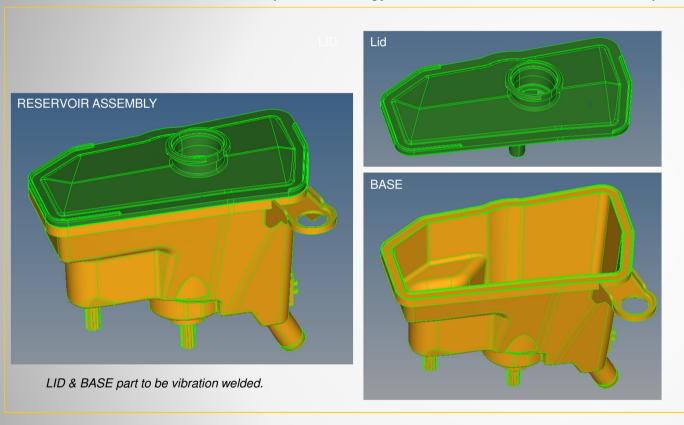
- Filling Sequence of nozzles - Mold / part balancing

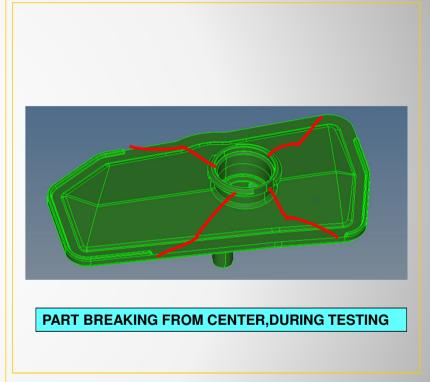
- Deflection directions
- Deflection due to shrinkage
- Deflection due to orientation
- Deflection due to corner effect

Deflection due to differential cooling

Use / Benefits of carrying out Moldlfow analysis

Our Case-study, in this presentation is about to study the failure analysis of one of our project.





CASE STUDY : Problem definition

Objective of Moldflow study:

Identification of issues and develop methodology to troubleshoot failure of welded plastic assemblies

Deliverables:

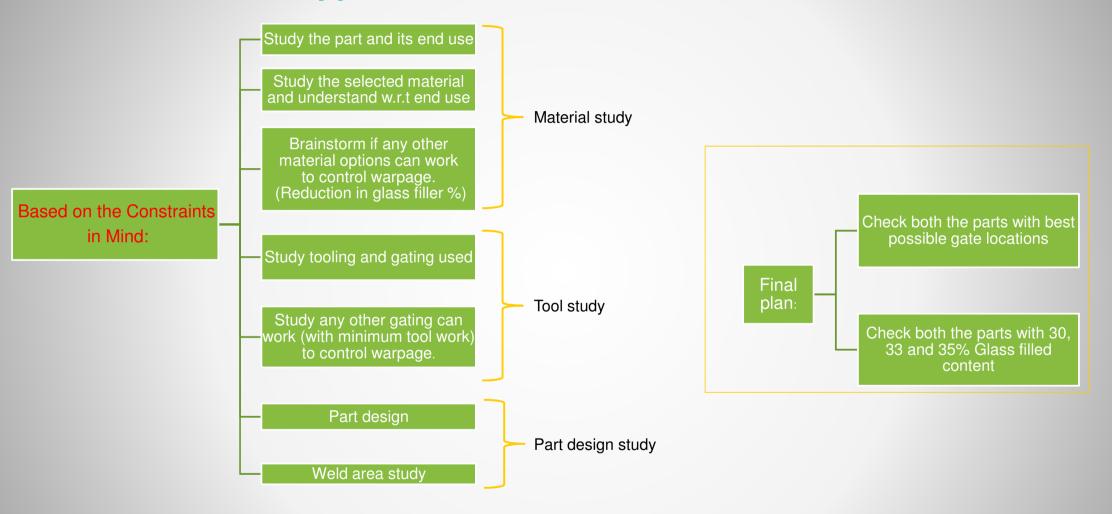
- Suggest solutions in current scenario
- Develop methodology to control failure of welded assemblies

CASE STUDY : Key information

Other important information about part:

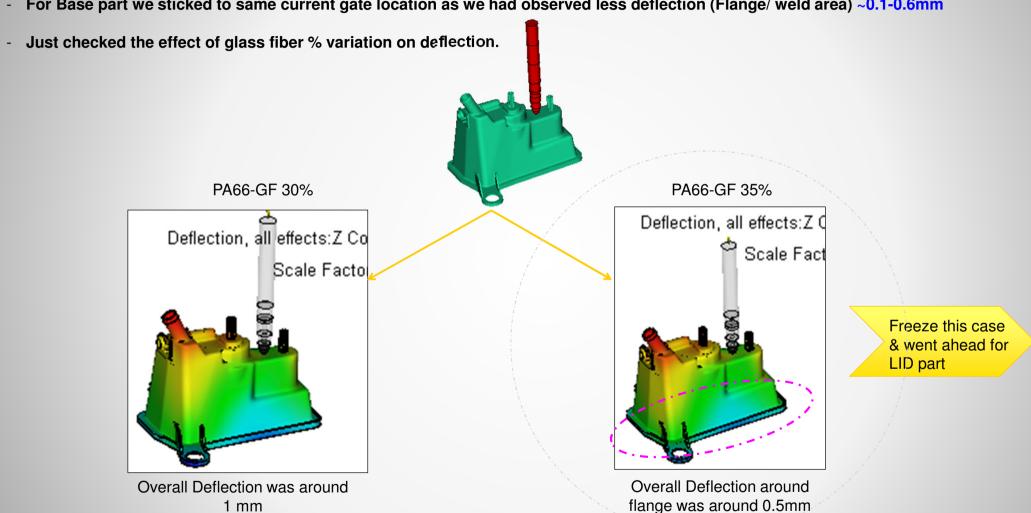
Material of Lid and Base:

- Polyamide 66
- Heat stabilized
- 35% glass filled
- Injection molding grade
- This grade is commonly used in the automotive industry for engine components, such as: inlet manifolds, air ducts, engine cover and various housings and liquid containers


Key Points & Constraints: ⊕ / ⊗

- Lid part was breaking in 2-4 pieces during testing.
- Injection molds for both the parts were ready; very little scope for major tool modifications.
- Suggestion of tool modification should be simple and easy to accommodate in current tool.
- Need to maintain the FALTNESS to ease welding
- No change in material permitted due to shrinkage factor considered while cutting the tool.

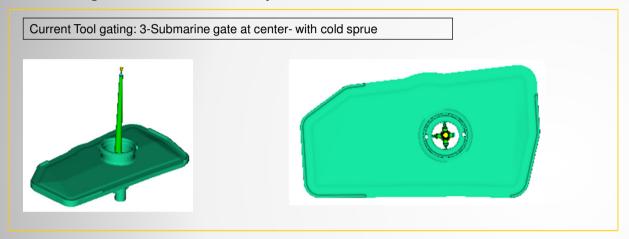
(Only option thought to play with % of glass fillers (30,33,35%) from same material supplier to check the effect).



CASE STUDY : Approach

CASE STUDY: Base Part

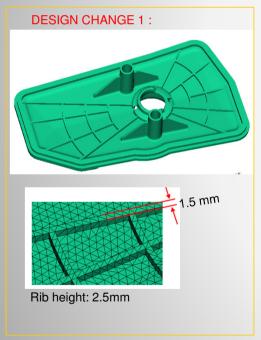
For Base part we sticked to same current gate location as we had observed less deflection (Flange/ weld area) ~0.1-0.6mm

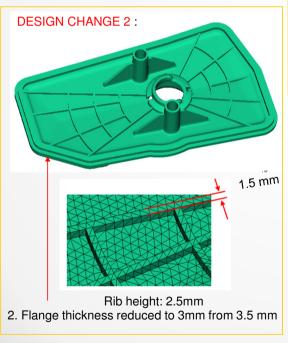


CASE STUDY : Lid Part

More deflection in physical part (~ 2-3 mm); Key task for us to study and reduce the deflection.

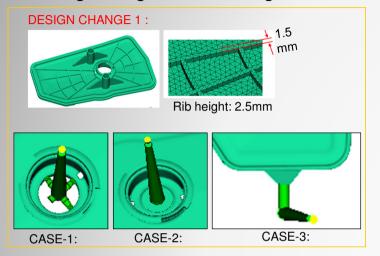
- Checked various gate locations
- Various part design modifications
- Varied glass filler % material options

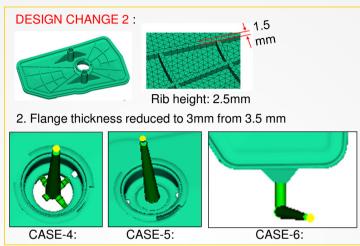


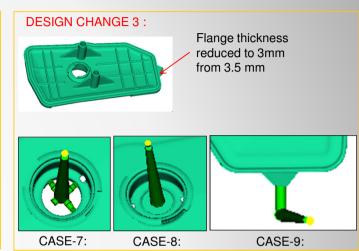


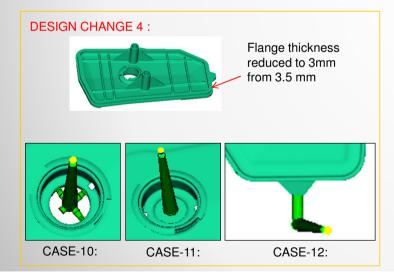
LID PART:

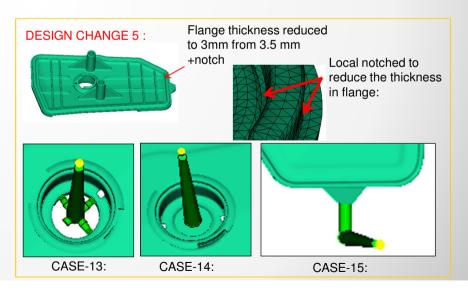
- Needed more satisfactory results : Next plan was to work on part modifications








LID PART:


- Design changes with various gate locations:

Imp result summary of last 15 Cases

CASE	STUDY	CASE-1 Edge Gate	CASE-2 Diaphrag m Gate	CASE-3 Fan Gate	CASE-4 Edge Gate	CASE-5 Diaphrag m Gate	CASE-6 Fan Gate
FT (Sec)	1.324	1.329	1.588	1.438	1.423	1.691
V/P P (MPa)		51.78	44.18	53.93	49.54	42.85	54.62
	Х	0.64 to -0.6	0.59 to -0.63	0.68 to -0.73	0.64 to -0.64	0.65 to -0.63	0.69 to -0.73
DFL (MM)	Y	0.66 to -0.62	0.66 to -0.64	0.61 to -0.62	0.66 to -0.61	0.69 to -0.69	0.62 to - 0.68
	Z	1.3 to -0.65	1.32 to -0.70	1.54 to -0.81	1.34 to -0.70	1.30 to -0.71	1.43 to -0.84

CASE STUDY		CASE-7 Edge Gate	CASE-8 Diaphrag m Gate	CASE-9 Fan gate	CASE-10 Edge Gate	CASE-11 Diaphrag m Gate	CASE-12 Fan Gate
FT ((Sec)	1.446	1.424	1.696	1.339	1.419	1.695
V/P P (MPa)		49.58	43.01	53.29	51.13	43.38	52.57
	х	0.64 to -0.65	0.68 to -0.62	0.69 to -0.74	0.63 to -0.68	0.65 to -0.62	0.69 to -0.76
DFL (MM)	Υ	0.66 to -0.62	0.74 to -0.69	0.61 to -0.66	0.63 to -0.57	0.66 to -0.66	0.6 to -0.61
	Z	1.38 to -0.69	1.42 to -0.83	1.38 to -0.80	1.26 to -0.66	1.22 to -0.68	1.37 to -0.81

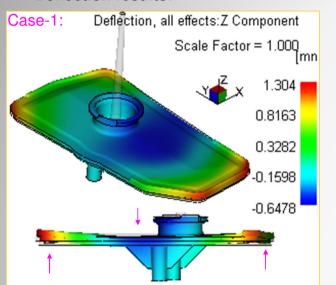
CASE STUDY		CASE-13 Edge gate	CASE-14 Diaphragm Gate	CASE-15 Fan Gate	
FT (Sec)		1.438	1.426	1.691	
V/I	P P (MPa)	49.60	43.40	52.32	
	X	0.64 to -0.68	0.72 to -0.66	0.69 to -0.77	
DFL (MM)	Υ	0.64 to -0.58	0.71 to -0.71	0.59 to -0.59	
	Z	1.08 to -0.66	1.27 to -0.77	1.25 to -0.77	

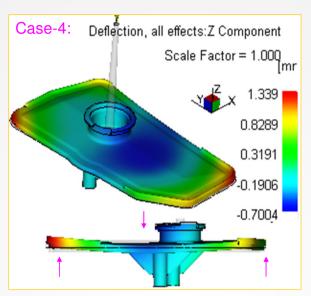
Imp result summary of last 15 Cases

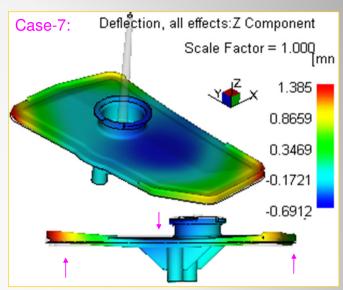
CASE	STUDY	CASE-1 Edge Gate	CASE-2 Diaphrag m Gate	CASE-3 Fan Gate	CASE-4 Edge Gate	CASE-5 Diaphrag m Gate	CASE-6 Fan Gate
FT (Sec)	1.324	1.329	1.588	1.438	1.423	1.691
V/P P (MPa)		51.78	44.18	53.93	49.54	42.85	54.62
DFL (MM)	X	0.64 to -0.6	0.59 to -0.63	0.68 to -0.73	0.64 to -0.64	0.65 to -0.63	0.69 to -0.73
	Υ	0.66 to -0.62	0.66 to -0.64	0.61 to -0.62	0.66 to -0.61	0.69 to -0.69	0.62 to - 0.68
	Z	1.3 to -0.65	1.32 to -0.70	1.54 to -0.81	1.34 to -0.70	1.30 to -0.71	1.43 to -0.84

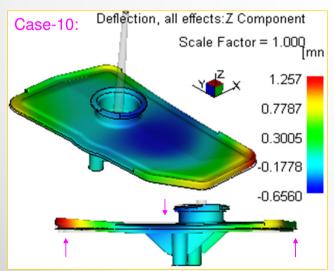
CASE STUDY		CASE-7 Edge Gate	CASE-8 Diaphrag m Gate	CASE-9 Fan gate	CASE-10 Edge Gate	CASE-11 Diaphrag m Gate	CASE-12 Fan Gate
FT ((Sec)	1.446	1.424	1.696	1.339	1.419	1.695
V/P P (MPa)		49.58	43.01	53.29	51.13	43.38	52.57
	х	0.64 to -0.65	0.68 to -0.62	0.69 to -0.74	0.63 to -0.68	0.65 to -0.62	0.69 to -0.76
DFL (MM)	Υ	0.66 to -0.62	0.74 to -0.69	0.61 to -0.66	0.63 to -0.57	0.66 to -0.66	0.6 to -0.61
	Z	1.38 to -0.69	1.42 to -0.83	1.38 to -0.80	1.26 to -0.66	1.22 to -0.68	1.37 to -0.81

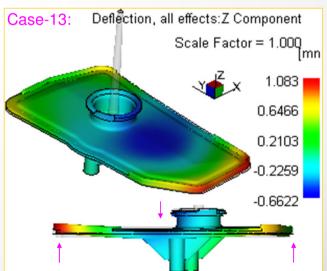
	· · · · · · · · · · · · · · · · · · ·				
CASE STUDY		CASE-13 Edge gate	CASE-14 Diaphragm Gate	CASE-15 Fan Gate	
FT (Sec)		1.438	1.426	1.691	
V/I	P P (MPa)	49.60	43.40	52.32	
	Х	0.64 to -0.68	0.72 to -0.66	0.69 to -0.77	
DFL (MM)	Υ	0.64 to -0.58	0.71 to -0.71	0.59 to -0.59	
	Z	1.08 to -0.66	1.27 to -0.77	1.25 to -0.77	

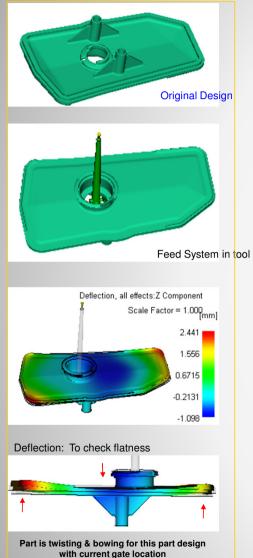

Conclusion at this stage:

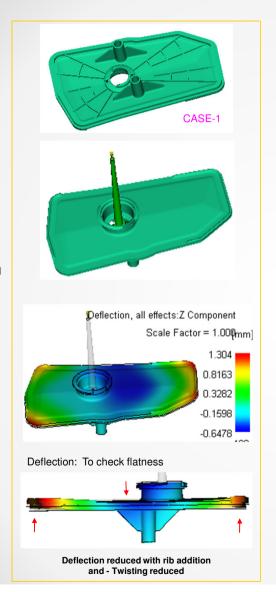

Here we have understood some trend and we shortlisted 5 CASES based on our initial constraints (being tool was made)

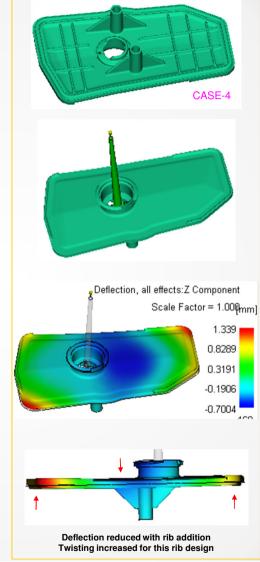


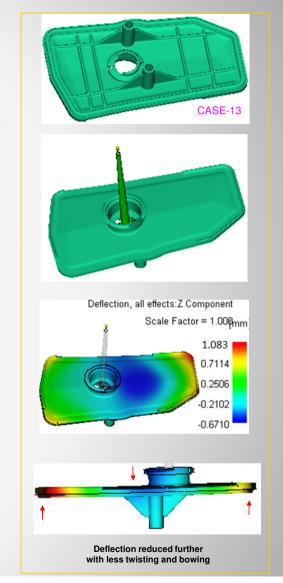



- Deflection results:

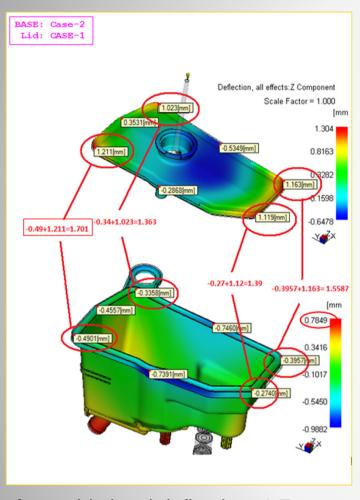








- Coming to the conclusion:


 Now we knew how both the parts were behaving for various materials and gate design and types.

 Most interesting part is the next step: To study the assembly level deflection for the shortlisted case i.e. to study the FLATNESS for ease of welding!

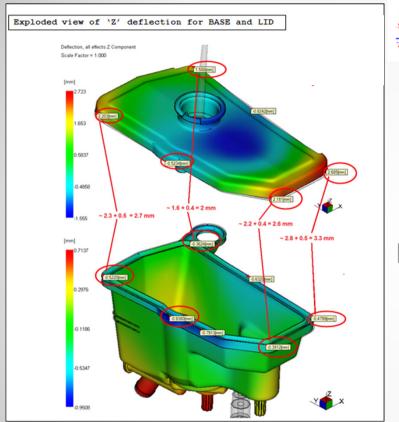
- Assembly level deflection study of both the parts

BASE: Case-2 Lid: CASE-4 Deflection, all effects: Z Component Scale Factor = 1.000 1.339 0.8289 -0.49+1.34 = 1.833.1906 -0.7004 -0.34+0.82 = 1.16-0.27+0.94 = 1.21[mm] 0.7849 0.3416 -0.5450

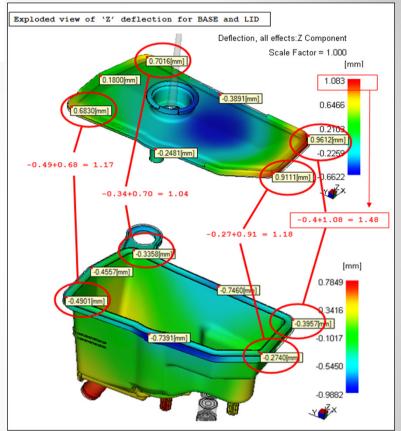
Lid: CASE-13 Deflection, all effects: Z Component Scale Factor = 1.000 1.083 0.6466 -0.2481[mm] -0.49+0.68 = 1.17-0.34+0.70 = 1.04-0.4+1.08 = 1.48-0.27+0.91 = 1.18 0.7849 -0.5450 -0.9882 LEAST DEFLECTION IN ASSEMBLY AMONG ALL THE CASES!

Assembly level deflection=1.7mm

Assembly level deflection=1.83mm


Assembly level deflection=1.48mm

- Final Conclusion:


Original design of base, Lid and Feed as per tool

Total Dimension

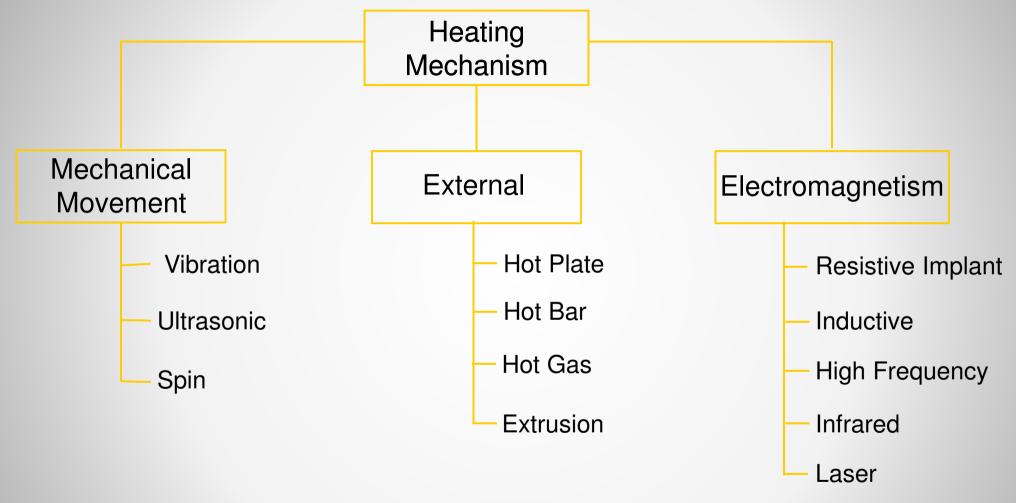
After series of part, gate modification

Overall Maximum Z deflection (very critical for FLATNESS) of assembly is 3.5 mm

Overall Maximum Z deflection (very critical for FLATNESS) of assembly is 1.4 mm

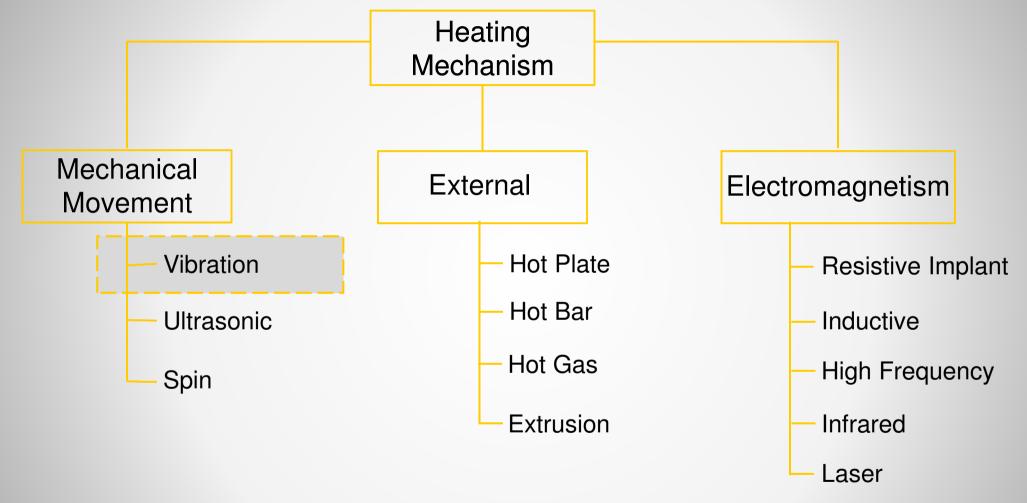
3.5 mm

1.4 mm



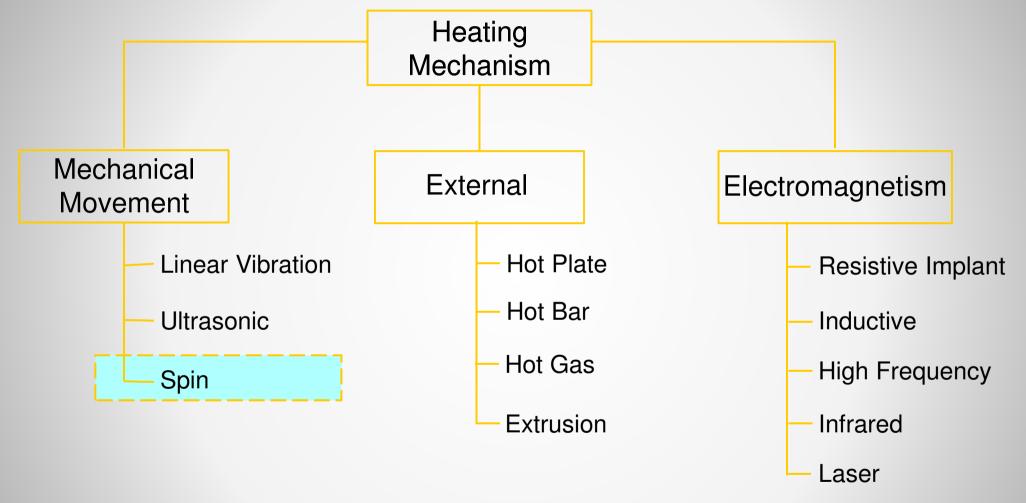
5. Conclusion:

- Part design changes helped to reduce the deflection making assembly more stable for welding.
- We understood the effect of in-mold stress in original cases & that learning we had captured by developing this methodology.
- Analysis on individual parts yields satisfactory results but assembly level study is helpful to avoid surprises in later stages.
- We have observed better results after following this approach for other welded assemblies & also got better correlation.



Plastic Welding techniques:

Plastic Welding techniques:



Key note of this slide: This approach is more relevant to vibration welding technique.

Plastic Welding techniques:

Key note of this slide: Work is in progress to develop methodology to study weld area for this technique.

6. Project Team:

Jaguar & Land Rover:

Mr. Mahantesh Khot (Team Lead, Advanced CAE- Plastic Simulation)

Dr. Tayeb Zeguer (Tech Specialist, MDO)

Tata Technologies:

Mr. Ajay Virmalwar (Sr. Project Manager, CAE)

Many thanks to team for their continuous support in all our endeavors & for providing data relevant to this presentation and inputs on correlation.

7. Q & A:

Thanks a lot for your valuable time! Any Questions?

Session Feedback

Via the Survey Stations, email or mobile device

AU 2015 passes given out each day!

Best to do it right after the session

Instructors see results in real-time

Students, educators, and schools now have

FREE access to Autodesk design software & apps.

Download at www.autodesk.com/education

Earn your professional Autodesk Certification at AU

Visit the AU Certification Lab

