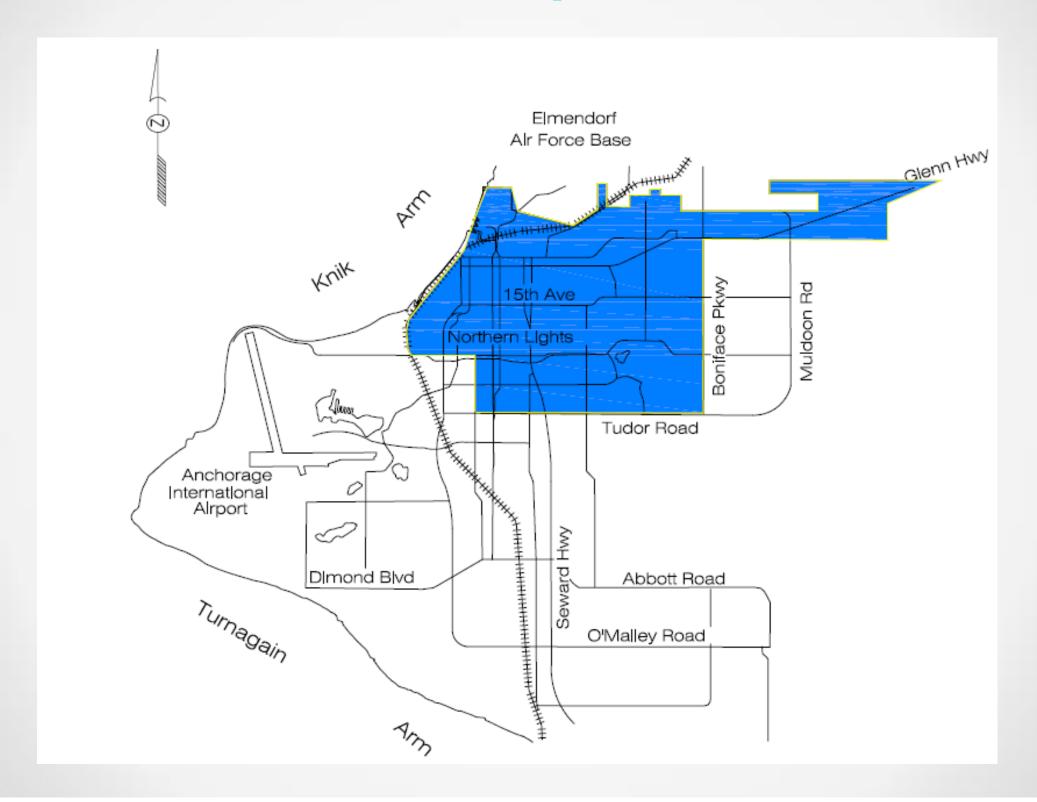
Stepping into the Future, Implementing AutoCAD Utility Design 2016

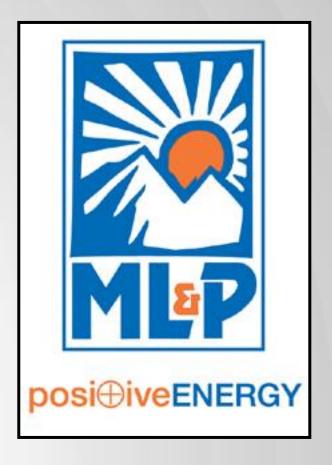
Everett Clary and Aaron Mason

GIS/Engineering Support Supervisor and Lead Drafter/CPR Engineer

Twitter: @MLandP Website: http://www.mlandp.com



Anchorage Municipal Light and Power (AML&P)


AML&P Service Area, ~20 square miles

About Anchorage Municipal Light and Power

- AML&P serves over 30,000 residential and commercial customers and 2 military bases
- Total Gen. Capacity, 379 MW
- Vertically aligned utility, own our gas
- 9c/KWH to 15c/KWH, lowest rates in Alaska
- 147 miles of overhead (Transmission and Distribution)
- 252 miles of underground
- Engineering: Line Design, Customer Engineering,
 Substation, Engineering Support

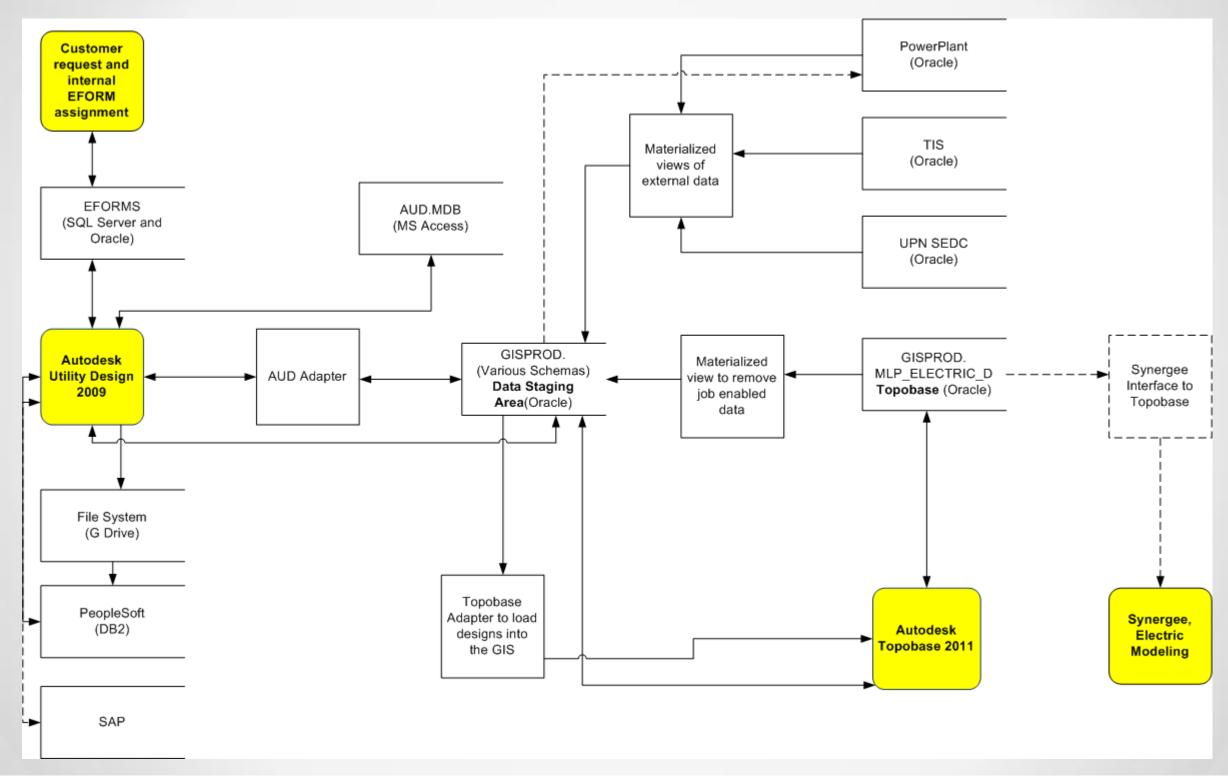
Key learning objectives

At the end of this class, you will be able to:

- Develop project goals for implementing AutoCAD Utility Design 2016
- Discover ML&P's proposed AutoCAD Utility Design 2016 integrated solution
- Discover the AutoCAD Utility Design 2016 Industry Model and how it drives engineering design and AutoCAD Map 3D (GIS)
- Discover the future of 3D design with AutoCAD Utility Design and ReCap

Class Summary

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks


Chapter 1: Current AUD 2009 Solution

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

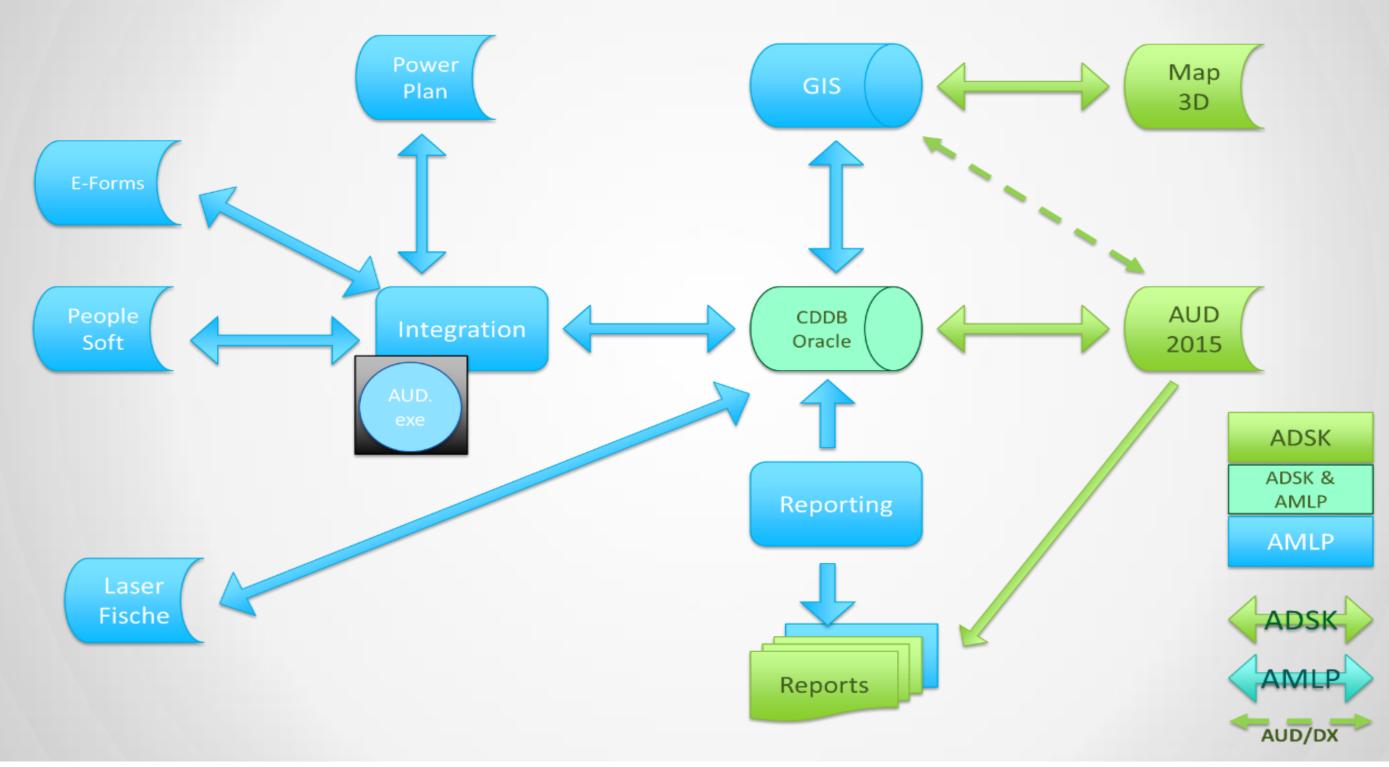
AUD 2009, Topobase 2011, Powerplant/PeopleSoft

Chapter 2: AUD 2016 Project Goals

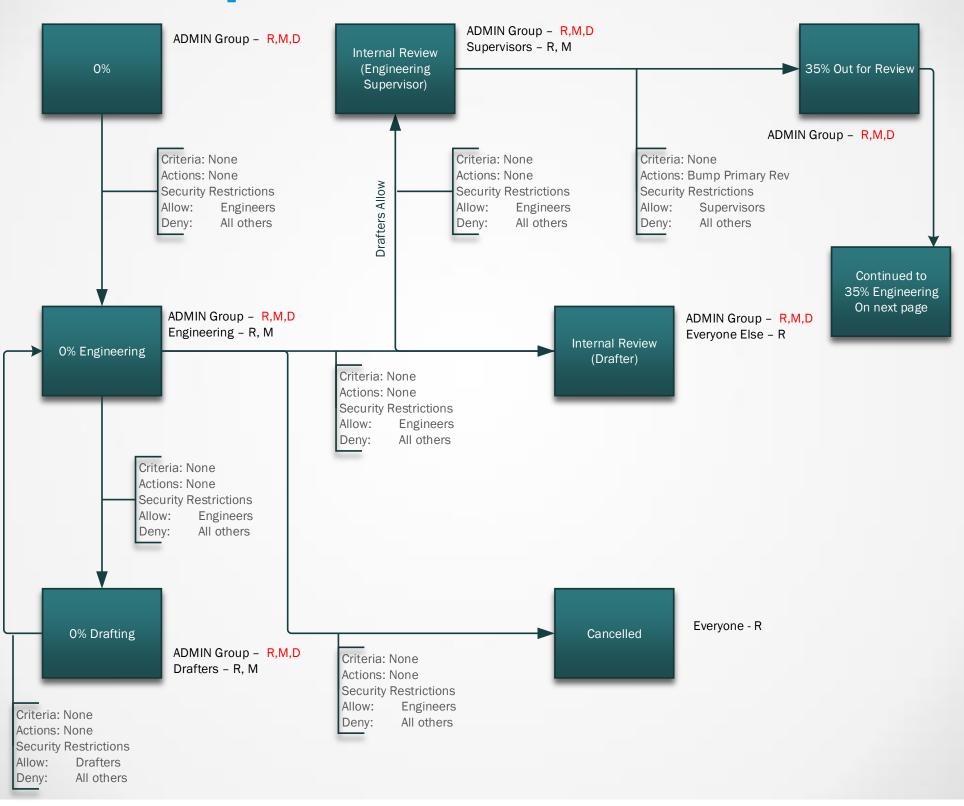
- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

AutoCAD Utility Design 2016 Project Goals

- Improved Engineering Design Process with the Autodesk Industry Model
- Update and Streamline Utility Construction Standards
- Integrating AUD Design with Utility Asset Management
- Increase Data Quality and Reduce Costs


Chapter 3: Proposed AUD 2016 Architecture

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks


Proposed AUD 2016 Architecture, Tasking

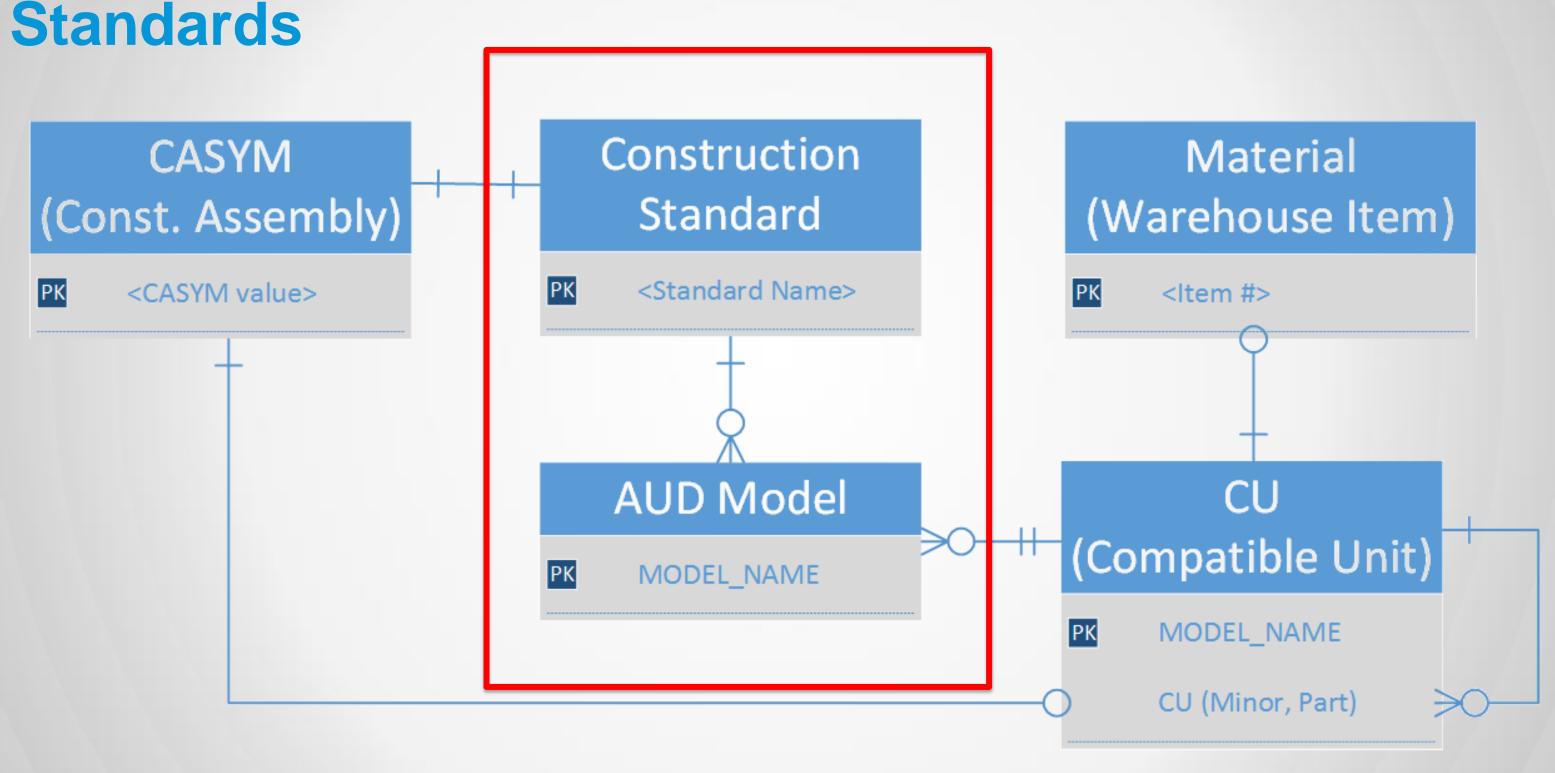
Proposed Vault Implementation with AUD 2016

Chapter 4: Core AUD 2016 and Map3D Integration

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

Topobase 2011 vs. AUD 2016 Industry Model

- Data differences, unit records in the GIS
- Engineered design requirements significantly upgraded
 - Junctions and dummy conductors
 - Elbows, ducts, cross sections, etc.
 - Paper/print ready vs. data/GIS ready


Chapter 5: AUD 2016 Industry Model Issues

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

AUD 2016 Industry Model and Old Construction

Case Study 1: Pads (Const. Std.)

BASE	WIDTH (INCHES)	LENGTH (INCHES)	DEPTH (INCHES)	BACKFILL— (YARDS³)*					
UBMC15-CMP	44	40	24	2.9					
UBMC15-1	48	48	24	3.4					
UBMC15-2	72	72	24	5.8					
UBMC15-3	94	80	24	7.5					
UBMC17-1	84	60	36	6.7					
UBMC17-2	96	72	36	8.3					
UBMU19	71	63	36	6.3					
UBPMX-3	140	72	36	11.0					
UPBMX-4	180	72	36	13.5					
UPBMX-5	220	72	36	16.0					
*MINIMUM (EXCLUDES CONDUIT VOLUMES)									

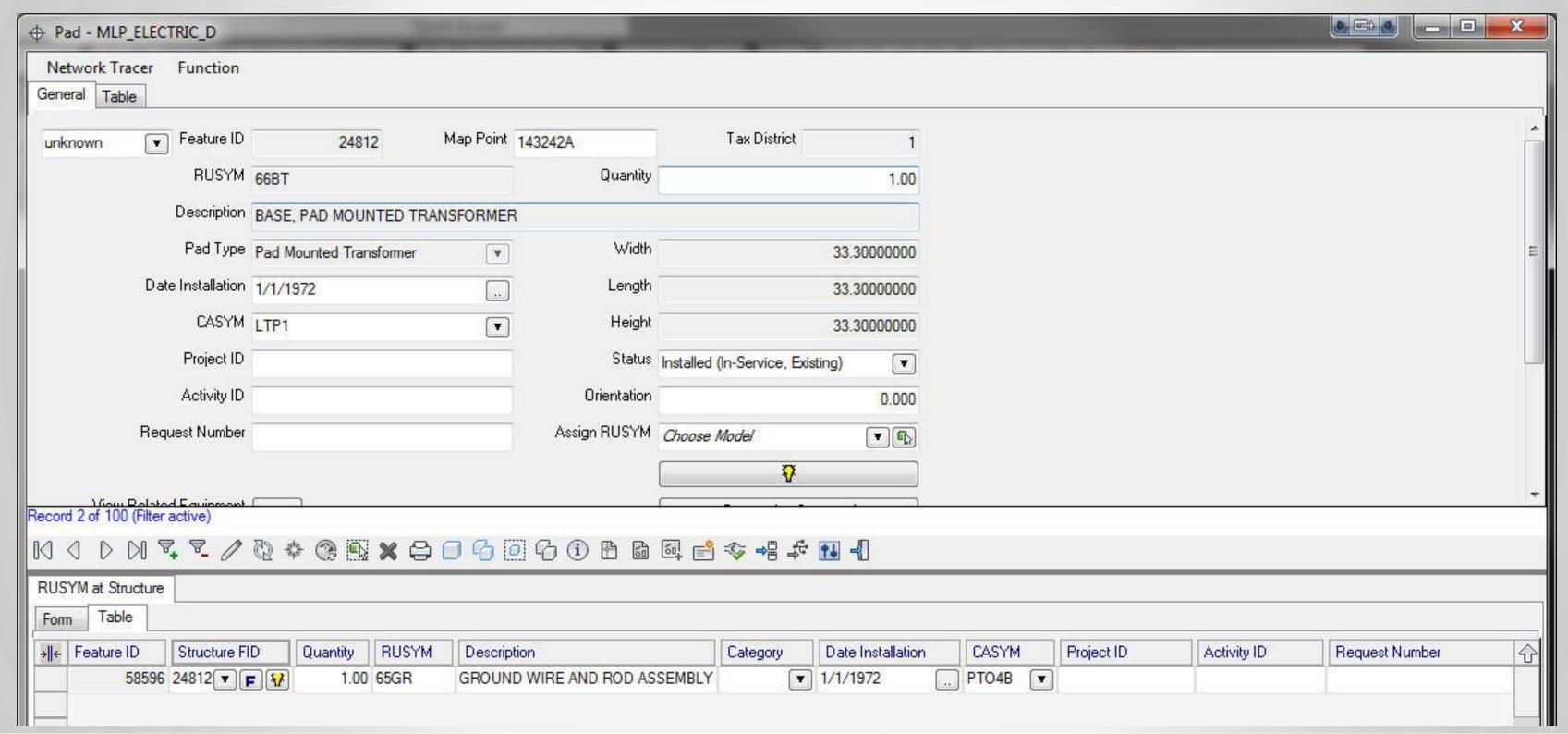
MINIMON (EXCLODES CONDUIT VOLUMES)

MUNICIPALITY OF ANCHORAGE, ALASKA

DIMENSIONS & NOTES FOR **EQUIPMENT BASES**

MUNICIPAL LIGHT & POWER

Sheet 4 OF 4 CONSTRUCTION STANDARD **UBASE**


Case Study 1: Pads (AUD Industry Models)

Models Attribut	tes Styles Details Callouts												
ad data:	tes Styles Details Callouts												
Model Name	Description	Model Group	Pad Type	Structu	ıre Type Ad	ld Length (ft)							
UBMC15-1	48"x48"x24" EQUIPMENT BASE, MC-15 TYPE I	Concrete	concrete	above	ground 16								
UBMC15-2	72"x72"x24" EQUIPMENT BASE, MC-15 TYPE II	Concrete	concrete	above	ground 24								
UBMC15-3	94"x80"x24" EQUIPMENT BASE, MC-15 TYPE III	Concrete	concrete	above	ground 29								
UBMC17-1	84"x60"x36" EQUIPMENT BASE, MC-17 TYPE I	Concrete	concrete	above	ground 24								
UBMC17-2	96"x72"x36" EQUIPMENT BASE, MC-17 TYPE II	Concrete	concrete	above	ground 28								
JBMU19	71"x63"x36" EQUIPMENT BASE, MU-19	Concrete	concrete	above	ground 22.	.33333333							
IBPMX-3	140"x72"x24" EQUIPMENT BASE, PMX, 3 MODULE	Concrete	concrete	above	ground 35.	.33333334							
JBPMX-4	180"x72"x24" EQUIPMENT BASE, PMX, 4 MODULE	Concrete	concrete	above	ground 42								
JBPMX-5	220"x72"x24" EQUIPMENT BASE, PMX, 5 MODULE	Concrete	concrete	Dimension 1 (ft)	Dimension	2 (ft) Dimension 3	3 (ft) Manufacturer	Material FI	D CU	RUSYM	Do Not Order	CASYM	Hyperlin
JBMC15-CMP	44"x40"x24" EQUIPMENT BASE, COMPOSITE	Non-Concrete	unknown	4	4	2			8 UBMC15-1			<null></null>	
				6	6	2		concrete 39	9 UBMC15-2	66UBMC15_2	<null></null>	<null></null>	<null></null>
				7.833333333	6.6666666	57 2		concrete 40	0 UBMC15-3	66UBMC15_3	<null></null>	<null></null>	<null></null>
				7	5	3		concrete 40	1 UBMC17-1	66UBMC17_1	<null></null>	<null></null>	<null></null>
				8	6	3		concrete 40	2 UBMC17-2	66UBMC17_2	<null></null>	<null></null>	<null></null>
				5.916666667	5.25	3		concrete 40	3 UBMU19	66UBMU19	<null></null>	<null></null>	<null></null>
				11.66666667	6	2		concrete 40	4 UBPMX-3	66UBPMX3	<null></null>	<null></null>	<null></null>
				15	6	2		concrete 40	5 UBPMX-4	66UBPMX4	<null></null>	<null></null>	<null></null>
				18.3333333	6	2		concrete 40	6 UBPMX-5	66UBPMX5	<null></null>	<null></null>	<null></null>
				3.33333333	4	2		Composolite 40	7 UBMC15-CMP	66UBMC15_CMP	<null></null>	<null></null>	<null></null>

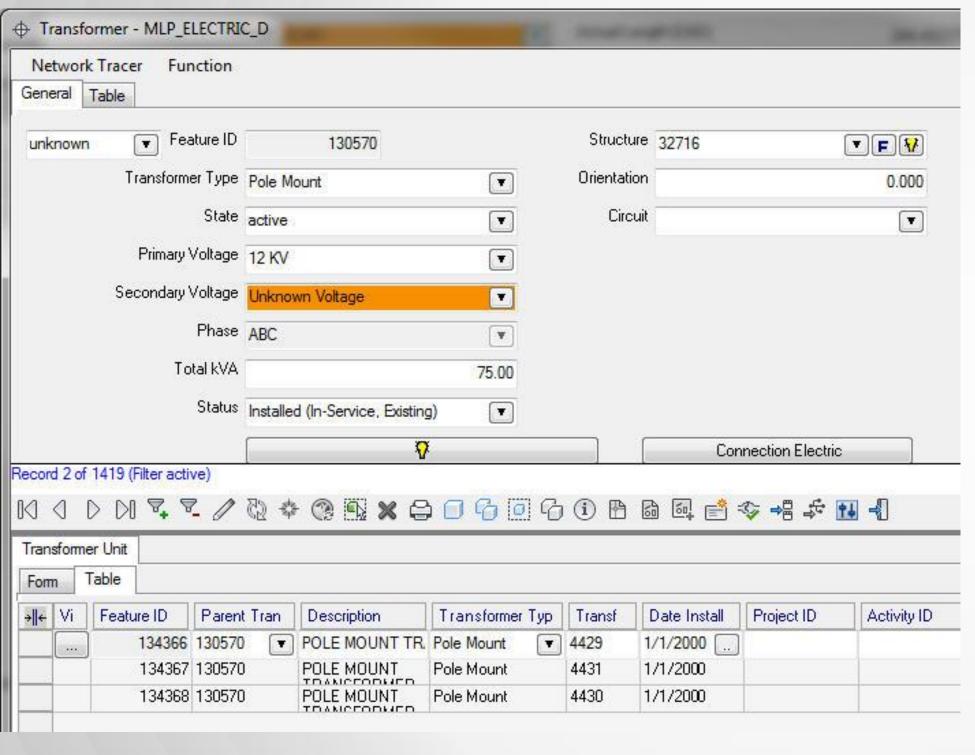
Case Study 1: Pads (GIS Data)

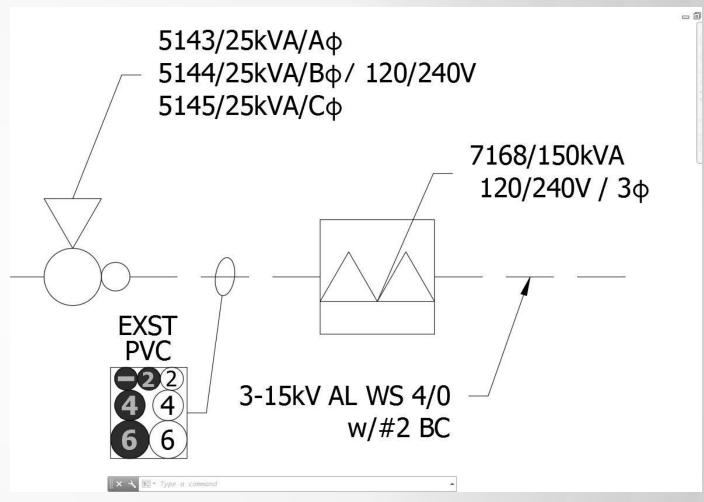
Case Study 2: Transformers (TIS Data)

	deleted fie	elds:						Status: Va	alid Status Co	odes:		Status	s: Valid Sta	tus Cod	es:				
	PO_NBR,	IMPEDANCE_LOS	S, IMPE	DANCE_CAL	.C, all (6) TA	APS fields, MOST fields to the	right of TAPS	S - In Sto	ck			P - P	ending (ret	urned &	in row TY150)			
	deleted re	cords: STATUS =V,	X					I - Installe	ed			L - Le	eased						
								T - Install	ed (mpt not v	erified))	U - U	nusable						
												B - B	orrowed						
												V - S	old						
												X - Ju	unked/Retir	ed					
	XFMR_														MAP			PRIMARY	
SEQ	NBR	STOCK_NBR	kVA	TYPE	PHASE	MAKE	V-Prim	V-Sec	IMPED.	WT	D	W	Н	GALL		STATUS	ENTERED_DATE	_SWITCH	POLARITY
	6 1002	60011002501010		25 PL		1 ALLIS CHALMERS	2400/4160Y	120/240	2.70		0	0	0		16 123152A	I	03/14/1986 00:00:00	NO	Α
	10 1008	60011002501010		25 PL		1 ALLIS CHALMERS	2400/4160Y	120/240	2.70		0	0	0		16 123152A		11/13/1986 00:00:00	NO	Α
	23 1020	60011002502010		25 PL		1 LINE MATERIAL	7200/12470Y	120/240	2.40)	0	0	0	0	16 163348B	I	03/14/1986 00:00:00	NO	A
	73 1073	60011002502010		25 PL		1 LINE MATERIAL	7200/12470Y	120/240	2.30)	0	0	0	0	16 163347C	l	03/24/1986 00:00:00	NO	Α
	140 115	60011007502010		75 PL		1 WESTINGHOUSE	7200/12470Y	120/240	1.50		0	0	0		34 143176A		03/26/1986 00:00:00	NO	Α
	151 1165	60011005002010		50 PL		1 ALLIS CHALMERS	7200/12470Y	120/240	1.60)	0	0	0	0	26 123478A	I	03/26/1986 00:00:00	NO	Α
	153 1167	60011005002010		50 PL		1 ALLIS CHALMERS	7200/12470Y	120/240	1.60)	0	0	0	0	26 133042B	I	03/26/1986 00:00:00	NO	Α
	156 117	60011001501010		15 PL		1 WESTINGHOUSE	2400/4160Y	120/240	2.30		0	0	0		10 123162B		03/26/1986 00:00:00	NO	Α
	157 1172	60011005001010		50 PL		1 ALLIS CHALMERS	2400/4160Y	120/240	1.50)	0	0	0	0	24 123025A	l	03/26/1986 00:00:00	NO	Α
	165 118	60011001001010		10 PL		1 WESTINGHOUSE	2400/4160Y	120/240	2.30)	0	0	0	0	10 123162B	l	03/26/1986 00:00:00	NO	Α
	166 1180	60011005002010		50 PL		1 WESTINGHOUSE	7200/12470Y	120/240	1.50	67	0	0	0	0	28 123247J	l	01/16/1986 00:00:00	NO	A
	171 1187	60011002502010		25 PL		1 LINE MATERIAL	7200/12470Y	120/240	2.30)	0	0	0	0	16 153422D	l	03/26/1986 00:00:00	NO	Α
	188 1207	60011001502010		15 PL		1 WAGNER	7200/12470Y	120/240	2.50		0	0	0	0	11 133715A	I	03/26/1986 00:00:00	NO	Α
	205 1224	60011001502010		15 PL		1 LINE MATERIAL	7200/12470Y	120/240	1.70	32	25	17	19 3	9	12 123769B	l	12/21/1995 00:00:00	NO	Α
	239 1264	60011007501010		75 PL		1 LINE MATERIAL	2400/4160Y	120/240	1.40		0	0	0		40 123032M		09/06/1995 00:00:00	NO	Α
	247 1278	60011003702010		38 PL		1 WESTINGHOUSE	7200/12470Y	120/240	2.50)	0	0	0	0	24 153413C	l	03/28/1986 00:00:00	NO	Α
	303 1346	60021005002011		50 PM		1 ALLIS CHALMERS	12470GRDY/7200	240/120	1.60			0	0		68 133665D	I	03/28/1986 00:00:00	NO	А
	317 1362	60011007502010		75 PL		1 WESTINGHOUSE	7200/12470Y	120/240	1.50		'5	0	0		34 113632D	l	03/28/1986 00:00:00		Α
	318 1363	60011002502050		25 PL		1 WESTINGHOUSE	7200/12470Y	240/480	1.60)	0	0	0	0	21 123739A	I	03/28/1986 00:00:00	NO	A
	340 1397	60011002502050		25 PL		1 WESTINGHOUSE	7200/12470Y	240/480	1.60)	0	0	0	0	21 142962Z	I	03/28/1986 00:00:00	NO	А
	369 1436	60011002501010		25 PL		1 WAGNER	2400/4160Y	120/240	2.20)	0	0	0	0	15 123152B	l	03/28/1986 00:00:00	NO	Α

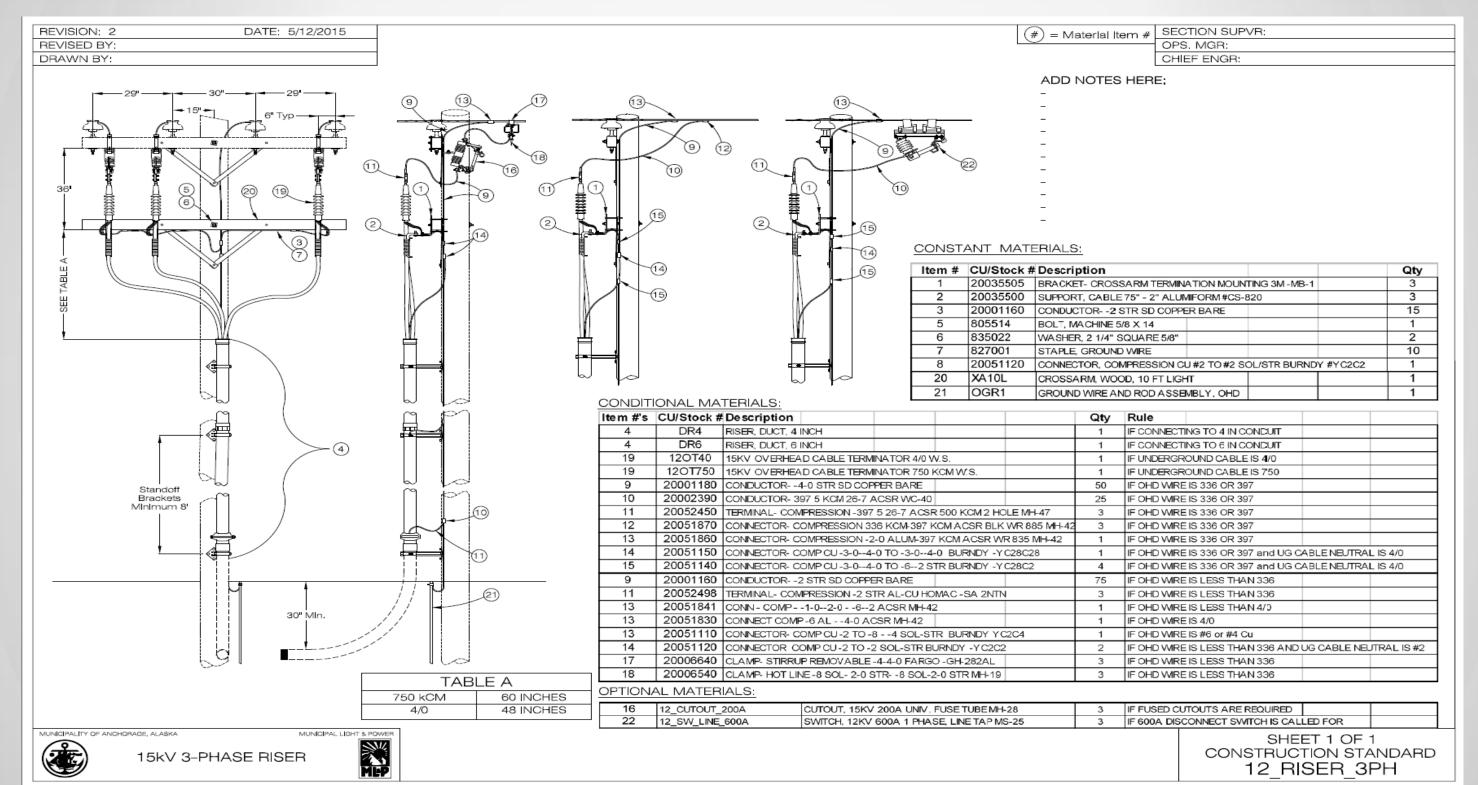
Case Study 2: Transformers (Convert to Models)

⊒ 19 • (≥ - [<i>i</i>			-	_	Transforme	r Model Num	bers.xlsx [Read	-Only] - Microso	ft Excel	_		-			
e Home	Insert Page La		ormulas Data Review View Add-Ins	Laserfiche	Acrobat											· 🕜 -
A1	▼ (C	Jx Asse C	mbly Unit D	Е	G	Н			V		M	N		P	0	R
A	Transformer		U	Transformer	Transformer		Maximum KVA	Secondary	Transformer % resistance	Transformer % reactance	Transformer			·	Transformer Tra	ansformer
ssembly Unit	Model Number	Quantity	Description	type	phase	KVA	allowed	voltage	Low	Low	High	High		ly) Transformer Model Name	Low Hig	
M1001501	60011001503010	1	PL 4X12KV/15KVA 1Ph 120/240 3B	PL4X12	1	15	22.5	120/240	0.88	0.67	2.71	2.0	6 3	397 4DV12 PL1P 15KVA 120/240 3B	1.1	3.4
M1002501	60011002503010		PL 4X12KV/25KVA 1Ph 120/240 3B	PL4X12	1	25		120/240	0.67	0.74			9 4	435 4DV12 PL1P 25KVA 120/240 3B	1	3.9
LM1003801	60011003803010		PL 4X12KV/37.5KVA 1Ph 120/240 3B	PL4X12	1	37.5		120/240	0.76					352 4DV12 PL1P 37.5KVA 120/240 3B	1.3	4.4
LM1005001	60011005003010		PL 4X12KV/50KVA 1Ph 120/240 3B	PL4X12	1	50		120/240	0.58					689 4DV12 PL1P 50KVA 120/240 3B	1.1	3.6
LM1007501	60011007503010		PL 4X12KV/75KVA 1Ph 120/240 3B	PL4X12	1	75		120/240	0.53					928 4DV12 PL1P 75KVA 120/240 3B	1.1	3.7
LM1010001	60011010003010		PL 4X12KV/100KVA 1Ph 120/240 3B	PL4X12	1	100		120/240	0.45					085 4DV12 PL1P 100KVA 120/240 3B	1	5.6
	60011001503010		PL 3-4X12KV/15KVA (45kVA) 3Ph 120/208	PL4X12	3			120/208	0.88					4DV12 PL3P 45KVA 120/208	1.1	3.4
LM1002501	60011002503010		PL 3-4X12KV/25KVA (75KVA) 3Ph 120/208	PL4X12	3			120/208	0.67	0.74				305 4DV12 PL3P 75KVA 120/208	1	3.9
LM1005001	60011005003010		PL 3-4X12KV/50KVA (150KVA) 3Ph 120/208	PL4X12	3			120/208	0.58					067 4DV12 PL3P 150KVA 120/208	1.1	3.6
LM1010001	60011010003010		` '		3			120/208	0.45					255 4DV12 PL3P 300KVA 120/208	1	5.6
LM1001505	60011001503050		PL 4X12KV/15KVA 1Ph 240/480 3B	PL4X12	1	15		240/480	0.88					199 4DV12 PL1P 15KVA 240/480 3B	1.1	3.4
LM1002505	60011002503050		PL 4X12KV/25KVA 1Ph 240/480 3B	PL4X12	1	25		240/480	0.67	0.74				428 4DV12 PL1P 25KVA 240/480 3B	1	3.9
PLM1003805 PLM1005005	60011003803050 60011005003050		PL 4X12KV/37.5KVA 1Ph 240/480 3B	PL4X12	1	37.5		240/480	0.76					530 4DV12 PL1P 37.5KVA 240/480 3B	1.3	4.4
	60011005003050		PL 4X12KV/50KVA 1Ph 240/480 3B PL 4X12KV/75KVA 1Ph 240/480 3B	PL4X12	1	50		240/480	0.58					556 4DV12 PL1P 50KVA 240/480 3B	1.1	3.6
LM1007505	6001101003050		PL 4X12KV/75KVA 1Ph 240/480 3B PL 4X12KV/100KVA 1Ph 240/480 3B	PL4X12	1	75 100		240/480	0.53					909 4DV12 PL1P 75KVA 240/480 3B 017 4DV12 PL1P 100KVA 240/480 3B	1.1	3.7
LM1010005 LM1001508	60011010003030			PL4X12	3			240/480	0.45						1.1	5.6 3.4
LM1001506 LM1002508	60011001503080		PL 3-4X12KV/15KVA (45KVA) 3Ph 277/480 PL 3-4X12KV/25KVA (75KVA) 3Ph 277/480	PL4X12 PL4X12	3			277/480 277/480	0.88 0.67	0.67				4DV12 PL3P 45KVA 277/480 4DV12 PL3P 75KVA 277/480	1.1	3.9
LM1002506	60011002303080		PL 3-4X12KV/25KVA (75KVA) 3Ph 277/480 PL 3-4X12KV/50KVA (150KVA) 3Ph 277/480	PL4X12 PL4X12	3			277/480	0.67					4DV12 PL3P 75KVA 277/480 4DV12 PL3P 150KVA 277/480	1.1	3.6
LM1010000	60011003003080	_			3			277/480	0.56					4DV12 PL3P 150KVA 277/480 4DV12 PL3P 300KVA 277/480	1.1	5.6
LP1001501	60011010003000		PL 12KV/15KVA 1Ph 120/240 3B	PL4X12 PL12	1	15		120/240	0.45					300 12 PL1P 15KVA 120/240 3B	1.1	3.4
LP1001501	60011001502010		PL 12KV/15KVA 1Ph 120/240 3B	PL12	1	25		120/240	0.67	0.07				403 12 PL1P 25KVA 120/240 3B	1.1	3.9
LP1002301	60011002302010		PL 12KV/37.5KVA 1Ph 120/240 3B	PL12	1	37.5		120/240	0.76					634 12 PL1P 37.5KVA 120/240 3B	1.3	4.4
LP1005001	60011005002010		PL 12KV/50KVA 1Ph 120/240 3B	PL12	1	50		120/240	0.78					660 12 PL1P 50KVA 120/240 3B	1.1	3.6
LP1007501	60011003002010		PL 12KV/75KVA 1Ph 120/240 3B	PL12	1	75		120/240	0.53					936 12 PL1P 75KVA 120/240 3B	1.1	3.7
PLP1010001	600110110002010		PL 12KV/100KVA 1Ph 120/240 3B	PL12	1	100		120/240	0.45	0.89				082 12 PL1P 100KVA 120/240 3B	1	5.6
LP1016701	60011016702010		PL 12KV/167KVA 1Ph 120/240 3B	PL12	1	167		120/240	0.48					471 12 PL1P 167KVA 120/240 3B	1.3	4.6
LP1001501	60011001502010		PL 3-12KV/15KVA (45KVA) 3Ph 120/208	PL12	3			120/208	0.88					900 12 PL3P 45KVA 120/208	1.1	3.4
PLP1002501	60011002502010		PL 3-12KV/25KVA (75KVA) 3Ph 120/208	PL12	3			120/208	0.67	0.74				209 12 PL3P 75KVA 120/208	1	3.9
LP1005001	60011005002010		PL 3-12KV/50KVA (150KVA) 3Ph 120/208	PL12	3			120/208	0.58					980 12 PL3P 150KVA 120/208	1.1	3.6
LP1010001	60011010002010		PL 3-12KV/100KVA (300KVA) 3Ph 120/208	PL12	3			120/208	0.45					246 12 PL3P 300KVA 120/208	1	5.6
LP1001505	60011001502050		PL 12KV/15KVA 1Ph 240/480 3B	PL12	1	15		240/480	0.88					250 12 PL1P 15KVA 240/480 3B	1.1	3.4
LP1002505	60011002502050		PL 12KV/25KVA 1Ph 240/480 3B	PL12	1	25		240/480	0.67	0.74				372 12 PL1P 25KVA 240/480 3B	1	3.9
LP1003805	60011003802050		PL 12KV/37.5KVA 1Ph 240/480 3B	PL12	1	37.5		240/480	0.76					522 12 PL1P 37.5KVA 240/480 3B	1.3	4.4
LP1005005	60011005002050		PL 12KV/50KVA 1Ph 240/480 3B	PL12	1	50		240/480	0.58					734 12 PL1P 50KVA 240/480 3B	1.1	3.6
LP1007505	60011007502050		PL 12KV/75KVA 1Ph 240/480 3B	PL12	1	75		240/480	0.53					859 12 PL1P 75KVA 240/480 3B	1.1	3.7
	60011010002050		PL 12KV/100KVA 1Ph 240/480 3B	PL12	1	100		240/480	0.45					015 12 PL1P 100KVA 240/480 3B	1	5.6
	60011005002080		PL 3-12KV/50KVA (150KVA) 3Ph 277/480	PL12	3	150		277/480	0.58					660 12 PL3P 150KVA 277/480	1.1	3.6
	60011010002080		PL 3-12KV/100KVA (300KVA) 3Ph 277/480	PL12	3			277/480	0.45					086 12 PL3P 300KVA 277/480	1	5.6
LH1002501	60011002504010		PL 35KV/25KVA 1Ph 120/240 3B	PL35	1	25		120/240	0.67					649 35 PL1P 25KVA 120/240 3B	1	3.9
	60011005004010		PL 35KV/50KVA 1Ph 120/240 3B	PL35	1	50		120/240	0.58					668 35 PL1P 50KVA 120/240 3B	1.1	3.6
LH1007501	60011007504010	1 1	PL 35KV/75KVA 1Ph 120/240 3B	PL35	1	75	112.5	120/240	0.53	0.96	1.8	3.2	3 9	971 35 PL1P 75KVA 120/240 3B	1.1	3.7
LH1010001	60011010004010		PL 35KV/100KVA 1Ph 120/240 3B	PL35	1	100	150	120/240	0.45		2.5			001 35 PL1P 100KVA 120/240 3B	1	5.6
LH1002501	60011002504010		PL 35KV/25KVA (75KVA) 3Ph 120/208	PL35	3	75		120/208	0.67	0.74	2.62			947 35 PL3P 75KVA 120/208	1	3.9
LH1005001	60011005004010		PL 3-35KV/50KVA (150KVA) 3Ph 120/208	PL35	3	150	225	120/208	0.58	0.93	1.91	3.0	5 20	004 35 PL3P 150KVA 120/208	1.1	3.6
LH1010001	60011010004010	5 3	PL 3-35KV/100KVA (300KVA) 3Ph 120/208	PL35	3	300	450	120/208	0.45	0.89	2.5	5.0	1 30	003 35 PL3P 300KVA 120/208	1	5.6



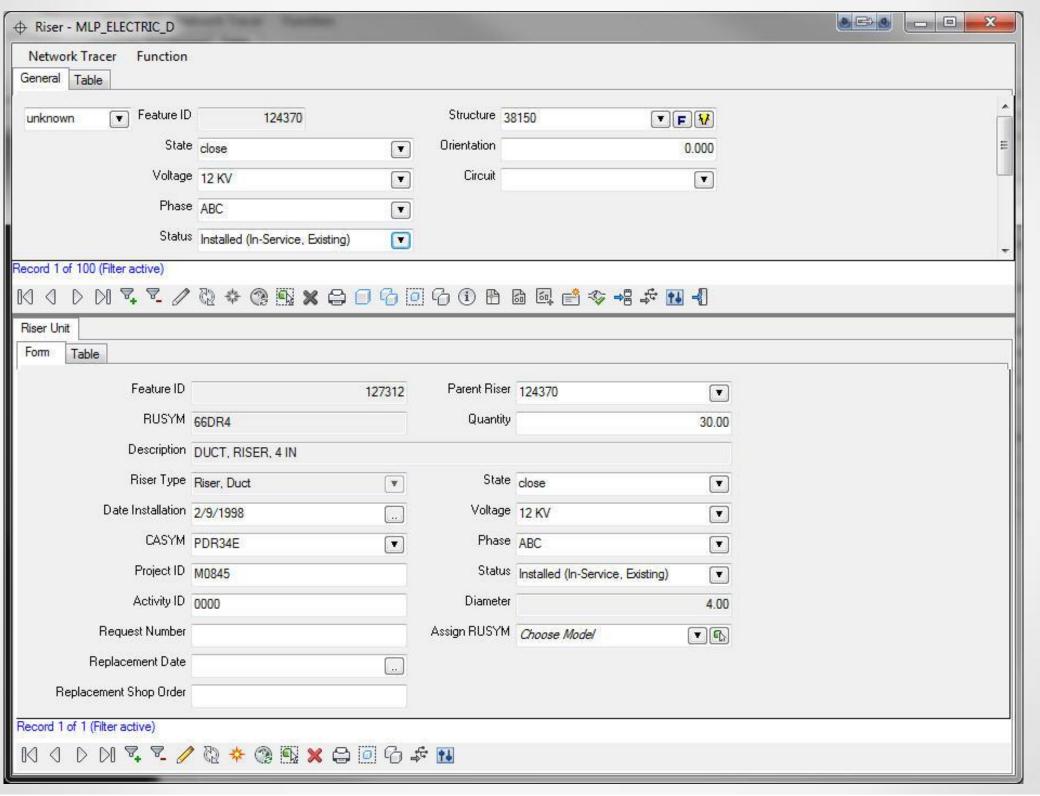

Case Study 2: Transformers (AUD Industry Models)

Models Attributes Styles	Details Callouts											
ansformer data:												
Model Name	Description	Model Grou	Structure Type	Transformer Type	Phase Count	Kva (kVA)	Max Kva (kVA)	Voltage	Voltage 2	Percent Resistance Low	Percent Reactance Low	Weight (II
12_PL1P_75KVA_240/480_3B	PL 12KV/75KVA 1Ph 240/480 3B	PL12-1P	overhead	Pole Mount	1	75	112.5	240/480 V	<null></null>	0.53	0.96	859
12_PL3P_150KVA_120/208	PL 3-12KV/50KVA (150KVA) 3Ph 120/208	PL12-3P	overhead	Pole Mount	3	150	225	120/208Y V	<null></null>	0.58	0.93	1,980
12_PL3P_150KVA_277/480	PL 3-12KV/50KVA (150KVA) 3Ph 277/480	PL12-3P	overhead	Pole Mount	3	150	225	277/480Y V	<null></null>	0.58	0.93	660
12_PL3P_300KVA_120/208	PL 3-12KV/100KVA (300KVA) 3Ph 120/208	PL12-3P	overhead	Pole Mount	3	300	450	120/208Y V	<null></null>	0.45	0.89	3,246
12_PL3P_300KVA_277/480	PL 3-12KV/100KVA (300KVA) 3Ph 277/480	PL12-3P	overhead	Pole Mount	3	300	450	277/480Y V	<null></null>	0.45	0.89	1,086
12_PL3P_45KVA_120/208	PL 3-12KV/15KVA (45KVA) 3Ph 120/208	PL12-3P	overhead	Pole Mount	3	45	67.5	120/208Y V	<null></null>	0.88	0.67	900
12_PL3P_75KVA_120/208	PL 3-12KV/25KVA (75KVA) 3Ph 120/208	PL12-3P	overhead	Pole Mount	3	75	112.5	120/208Y V	<null></null>	0.67	0.74	1,209
12_PM1P_100KVA_120/240_3E	3 PM 12KV/100KVA 1Ph 120/240 3B	PM12-1P	above ground	Pad Mount	1	100	125	120/240 V	<null></null>	0.58	1.16	0
12_PM1P_100KVA_120/240_4E	B PM 12KV/100KVA 1Ph 120/240 4B	PM12-1P	above ground	Pad Mount	1	100	125	120/240 V	<null></null>	0.58	1.16	0
12_PM1P_167KVA_120/240_3E	3 PM 12KV/167KVA 1Ph 120/240 3B	PM12-1P	above ground	Pad Mount	1	167	208.75	120/240 V	<null></null>	0.45	1.11	0
12 PM1P 167KVA 120/240 4E	B PM 12KV/167KVA 1Ph 120/240 4B	PM12-1P	above ground	Pad Mount	1	167	208.75	120/240 V	<null></null>	0.45	1.11	0



Case Study 2: Transformers (GIS Data, Parent/Child)

Case Study 3: Riser (Construction Standard)

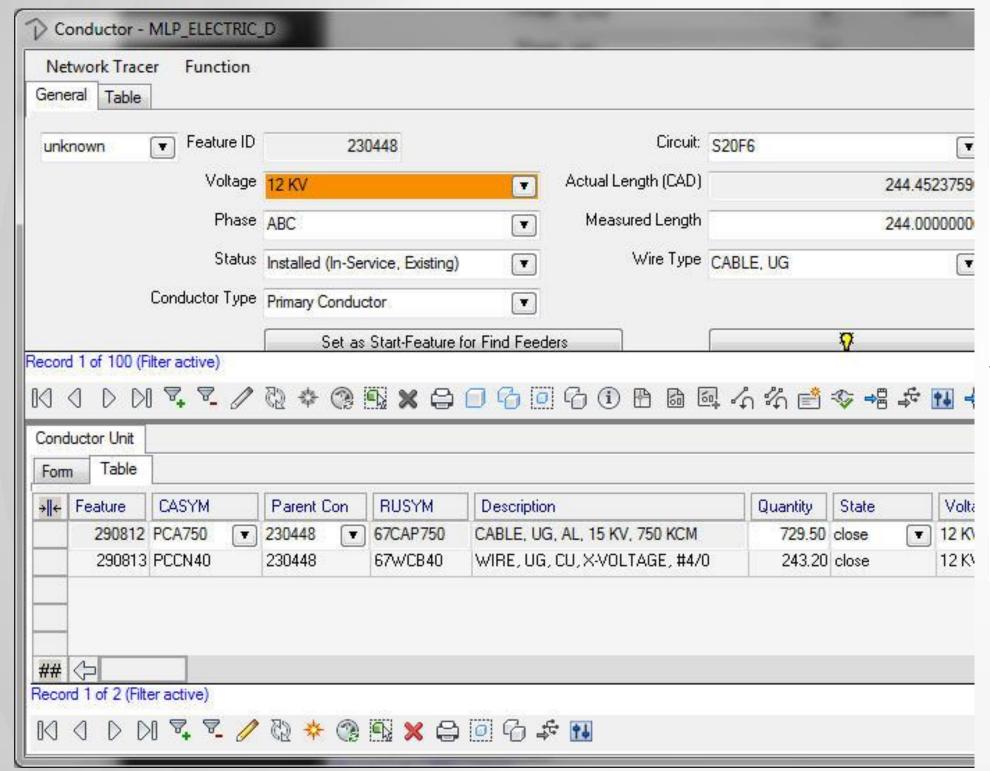


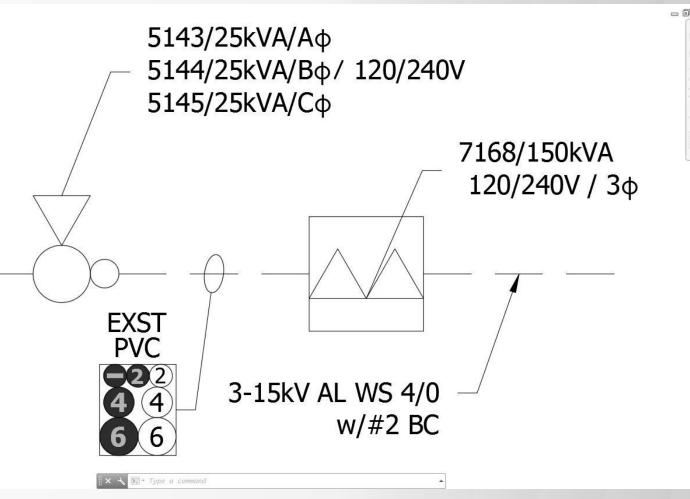
Case Study 3: Riser (AUD Industry Models)

Ī	Models Attributes	Styles Details Callouts										
R	Riser data:											
	Model Name	Description	CU	Model Grou	Riser Type	Riser Attachment	Phase Coun	Nominal Voltage	CASYM	RUSYM		
	12RISER3PH_A_4	12KV Riser, 4 Inch, 3 Phase Hard Connection	12RISER3PH_A	primary	primary	crossarm	3	12 KV	12RISER3PH_A	67-12RISER3PH_A		
	12RISER3PH_A_6	12KV Riser, 6 Inch, 3 Phase Hard Connection	12RISER3PH_A	primary	primary	crossarm	3	12 KV	12RISER3PH_A	67-12RISER3PH_A		
	12RISER3PH_B_4	12KV Riser, 4 Inch, 3 Phase Bridge Switch	12RISER3PH_B	primary	primary	crossarm	3	12 KV	12RISER3PH_B	67-12RISER3PH_B		
	12RISER3PH_B_6	12KV Riser, 6 Inch, 3 Phase Bridge Switch	12RISER3PH_B	primary	primary	crossarm	3	12 KV	12RISER3PH_B	67-12RISER3PH_B		
Ш	12RISER3PH_C_4	12KV Riser, 4 Inch, 3 Phase With Cutout	12RISER3PH_C	primary	primary	crossarm	3	12 KV	12RISER3PH_C	67-12RISER3PH_C		
	12RISER3PH_C_6	12KV Riser, 6 Inch, 3 Phase With Cutout	12RISER3PH_C	primary	primary	crossarm	3	12 KV	12RISER3PH_C	67-12RISER3PH_C		

Case Study 3: Riser (GIS Data)

Case Study 4: Conductors (AUD Industry Models)


Conductor data:												
Model Name	Description	Model Group	Phase Count	Neutral Model Name	Outer Dian	Ampacity (A)	Resistance	Reactance	Min Bend Rad	Max Eyepull (lbf)	Max Grippull (lbf)	RUSYM
397.5_ACSR_IBIS_TRAN	Wire, 397.5 ACSR "IBIS", 3ph Transmission	transmission	3	<null></null>	0.783	590	0.0525	0.0835	9	3,180	1,000	56-397.5_ACSR_IBIS_TRAN
795_ACSR_DRAKE_TRAN	Wire, 795 ACSR "DRAKE", 3ph Transmission	transmission	3	<null></null>	1.108	907	0.0263	0.0756	13	6,360	1,000	56-795_ACSR_DRAKE_TRAN
1_0_ACSR_RAVEN_1ph_DIST	Wire, 1/0 ACSR "RAVEN", 1ph	primary	2	1_0_ACSR_RAVEN_N	0.398	230	0.2161	0.1163	5	845	845	65-1_0_ACSR_RAVEN_1ph_DIST
1_0_ACSR_RAVEN_3ph_DIST	Wire, 1/0 ACSR "RAVEN", 3ph	primary	3	1_0_ACSR_RAVEN_N	0.398	230	0.2161	0.1163	5	845	845	65-1_0_ACSR_RAVEN_3ph_DIST
1_0_ACSR_RAVEN_N	Wire, 1/0 ACSR "RAVEN", Neutral	neutral	0	<null></null>	0.398	230	0.2161	0.1163	5	845	845	65-1_0_ACSR_RAVEN_N
397.5_ACSR_IBIS_DIST	Wire, 397.5 ACSR "IBIS", 3ph Distribution	primary	3	397.5_ACSR_IBIS_N	0.783	590	0.0525	0.0835	9	3,180	1,000	65-397.5_ACSR_IBIS_DIST
397.5_ACSR_IBIS_N	Wire, 397.5 ACSR "IBIS", Neutral	neutral	0	<null></null>	0.783	590	0.0525	0.0835	9	3,180	1,000	65-397.5_ACSR_IBIS_N
600_10_AL_QUAD_OH_DIST	Wire, 1/0 QUAD "COSTENA", Distribution Secondary	secondary	3	<null></null>	1.33	215	0.22	0.031	16	2,534	1,000	<null></null>
600_10_AL_TPX_OH_DIST	Wire, 1/0 TPX "RANELLA", Distribution Secondary	secondary	3	<null></null>	1	235	0.105	0.029	12	1,690	1,000	<null></null>
600_2_AL_QUAD_OH_DIST	Wire, #2 QUAD "PALOMINO", Distribution Secondary	secondary	3	<null></null>	1.03	155	0.336	0.032	12	1,593	1,000	<null></null>
600 2 AL TPX OH DIST	Wire. #2 TPX "COCKLE". Distribution Secondary	secondary	3	<null></null>	0.77	170	0.336	0.032	9	1.062	1.000	<null></null>



Models Attributes Styles Details Callouts

Case Study 4: Conductors (GIS Data, Parent/Child)

Chapter 6: Intelligent Design, Rules

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

"Intelligent Design" Pad Rules

- If no equipment on pad, order steel plate
- Number of incoming ports cannot exceed what pad allows
- If "Is Stacked" = true, set Z value to (-1)* height of pad
- If 1-Phase 25-250kVA Transformer or 15kV 1 1-Phase Switch cabinet, optional composite pad not recommended

"Intelligent Design" Transformer Rules

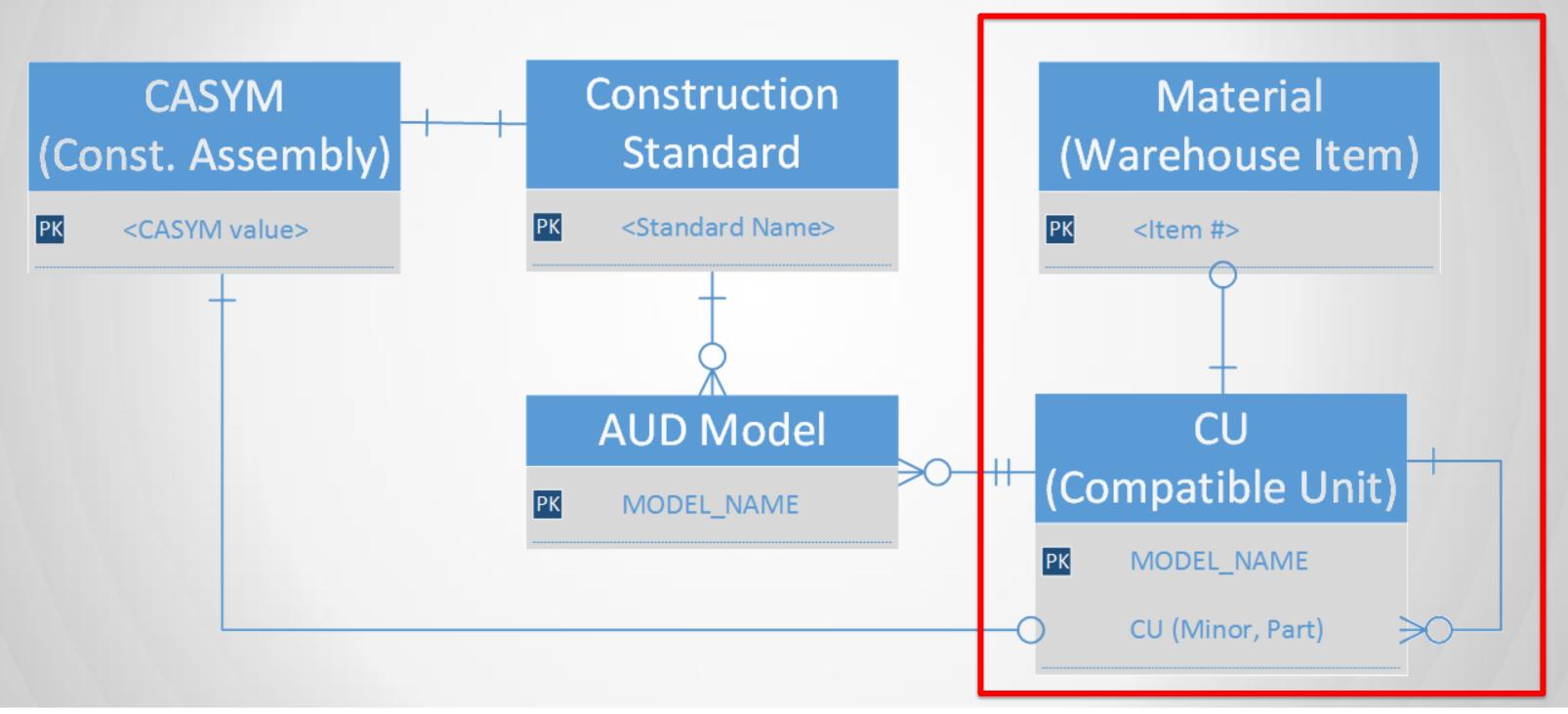
- Voltage must match connected conductors
- Transformer must be contained by a structure
- If transformer contained by "existing" vault less than length 14ft and width 8ft, raise a notice
- If dimensions of vault not available raise a notice

"Intelligent Design" Riser Rules

- If a non-primary riser (secondary, lighting, comm) is connected to a switch or cutout, raise an alert
- For primary conductor in the riser, order termination quantity times primary conductor phase count
- Match riser conduit to connecting conduit size
- If connecting conduit is 2 inches or less, use 2 inch riser

"Intelligent Design" Conductor Rules

- Apply cable pulling tension and voltage drop rules
- Validate that the voltage of conductor matches voltage of connected device for primary voltages only
- Order appropriate elbows and terminations (see table)
- Sizing per voltage drop rules


Chapter 7: Material Catalog Relationship

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

AUD 2016 Material Catalog Relationship

Material Catalog, Major CU, Minor CU, Part CU

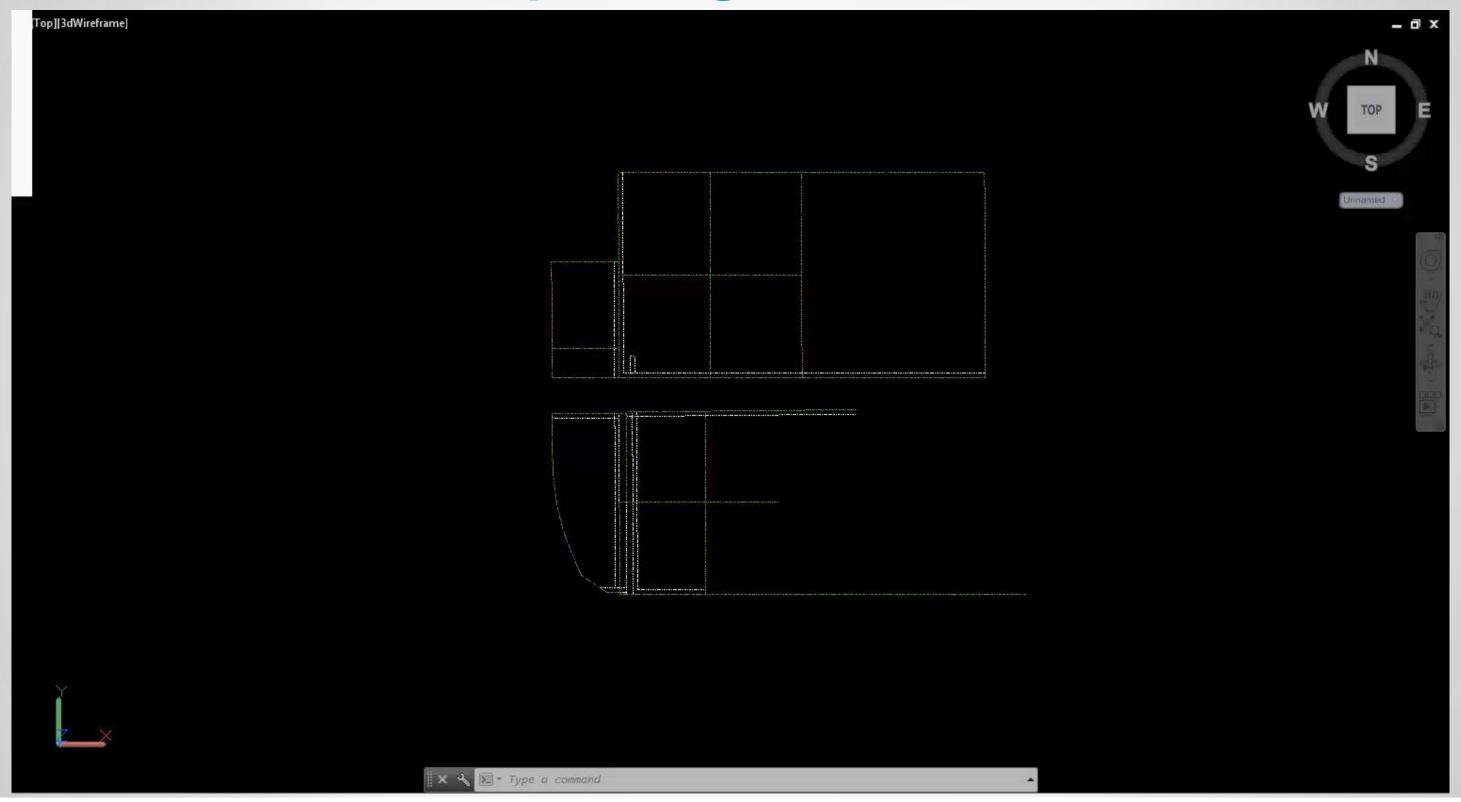
	Major CU		Assigned to:	Cluff								
Assembly	VAULT6X10_2HOLE	Description	VAULT, UG, 8	3 W X 10 L X	7 H FT, 2	-MAN	IHOLE					
Uom	EA	Category	Vault									
Labor Hrs:	USL	28	DIF	35	НОТ	35	Cost					
Constant Materia	ls:											
	Item #		Description				Qty		Item#	RUSYM	Description	Qty
	3		VAULT- 6 X 1						1	66VAULT6X10_2HOLE	<u> </u>	1
	4		RACK-CABLI				10					\perp
	5	20042520	ARM-SUPPO	RT NON-ME	TALLIC 14	<u>IIN</u>	10					
	Minor CU											
	CASYM	Description				Qty						
		Vault Manho				1						
2	VAULTGROUND	Vault Ground	d Loop Assem	bly		1						
Conditional Mater								_	_			
	Minor CU	Stock#	Description					Qty	Rule			
(Selected by Rules	VAULTMANHOLE		Vault Manhole					1		<u>ipment Base not on Vau</u>		
		20036640	TAPE- ARC A								DR 1000MCM 3 Phase Circuit In Vault (per circ	cuit)
		20036640	TAPE- ARC A								3 Phase Circuit In Vault (per circuit)	
		20036650	TAPE-ARC A	ND FIREPR	<u>OOF 1 1-2</u>	IN X	<u> 20 FT</u>	5	IF Prim	nary Voltage 4/0 OR 1/0	1 Phase Circuit In Vault (per circuit)	
Optional Material							_					
	Stock #	Description					Qty	Rule				
			D. X 4 In Manh				0					
			D. X 6 In Manh			06	0					
			D. X 12 In Mar				0					4
	20042355	Ring. 42 In I.	D. X 24 In Mar	nhole Extens	ion		0					

Chapter 8: Lessons Learned

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

AUD 2016 Lessons Learned/Considerations

- Do not try to complete Industry Models early
- Iterative approach to completing AUD 2016 models
- Recommend re-creating construction standards
- Recommend modeling in AUD to match GIS, integration and DX implications
- Resource planning, significant internal project resources
- Excellent time to consider how and why you do things


Chapter 9: 3D Design with AUD 2016, Recap and Infraworks

- Current AUD 2009 Solution
- AUD 2016 Project Goals
- Proposed AUD 2016 Architecture
- Core AUD 2016 and Map3D Integration
- AUD 2016 Industry Model Issues
 - Case Studies (4)
- Intelligent Design, Rules
- Material Catalog Relationship
- Lessons Learned/Considerations
- 3D Design with AUD 2016, Recap, and Infraworks

AUD 2016 and Recap Design

Infraworks with Recap 3D Models

Be heard! Provide AU session feedback.

- Via the Survey Stations, email or mobile device.
- AU 2016 passes awarded daily!
- Give your feedback after each session.
- Give instructors feedback in real-time.

Questions?

Everett Clary
GIS/Engineering Support Supervisor

Email: claryet@muni.org

