

Making the change to AutoCAD Civil 3D and HoleBASE SI for Geotechnical BIM

Gary Morin

Director, Keynetix

Join the conversation #AU2017

AUTOBESK.

UNIVERSITY

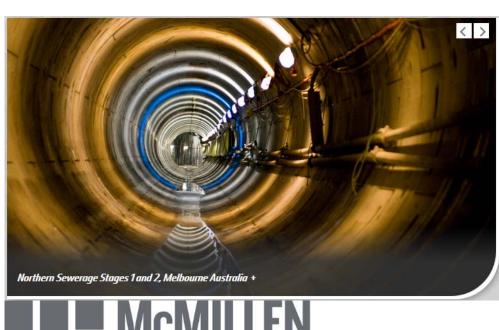
Making the change to AutoCAD Civil 3D and HoleBASE SI for Geotechnical BIM

Thomas Pallua

Associate Engineering Geologist, McMillen Jacobs Associates

Join the conversation #AU2017

AUTODESK.

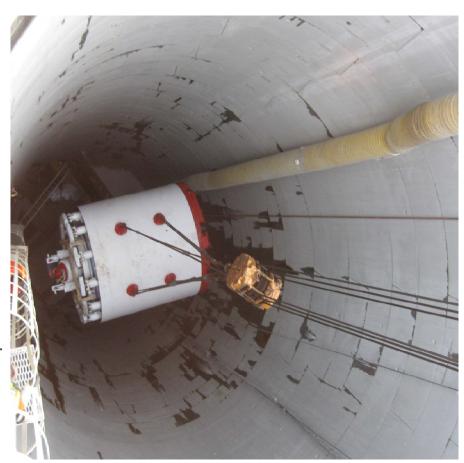

UNIVERSITY

Learning Objectives

- The drivers and needs to change from a legacy system
- The new workflows needed to incorporate both legacy and new data
- The capabilities delivered by integrating HoleBASE SI and AutoCAD Civil 3D
- The benefits and future opportunities geotechnical BIM can deliver

McMillen Jacob Associates Background

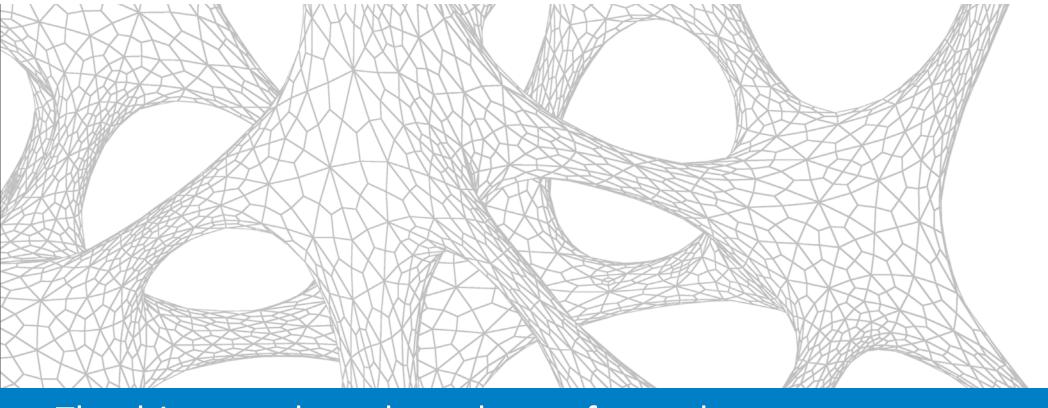
- Engineering Consultants
- Over 20 offices with 400+ staff
- Markets
 - Transportation
 - Water Resources
 - Hydropower
 - Conveyance
- Services
 - Engineering/Underground Eng./Geotech
 - Design/Permitting
 - CM
 - Dispute Resolution



The Project Team Structure

- MJA are prime consultant and geotechnical lead
- Six Sub consultants
- Provide geotechnical baseline conditions
- Develop geotechnical profile for tunnel
- Predict ground and groundwater conditions
- Design tunnel and shafts
- Design civil structures

The Project


- Bored tunnel for Combined Sewer Overflow (CSO)
 - Associated shafts, connections to existing facilities with micro-tunnel (78inch) beneath navigable canal
 - Diversions and drop structures
 - Storage Tunnel (18.83 ft) to store stormand wastewater
- Construction with TBM and M-TBM

TBM being lowered in vertical access shaft

The Project

- Combined Sewer Overflow (CSO)
 - Sewer pipes that carry both wastewater and stormwater
 - When pipes get too full they overflow into near bodies of water (acts like "safety valve" preventing backups)
 - Economical way to handle waste- and stormwater, rather than separate them
 - Advantage: when rainfall is low to moderate, both storm- and wastewater go to treatment plant before being discharged
 - Disadvantage: during heavy rains, untreated storm- and wastewater may be discharged

The drivers and needs to change from a legacy system

Large amount of Data

- Over 70 boreholes supplied by sub contractor
 - Using Bentley gINT
- 17,000 Ground water levels
- MJA replacing legacy gINT with HoleBASE SI and AutoCAD Civil 3D

Desire for uniformed approach

- The legacy Geotechnical Management system used, Bentley gINT
- Architecture of system did not facilitate a standard configuration
 - Each project was a individual file based system
 - Often on stored local machines
 - Each project individually configured

Various Technology Issues

- No significant update to legacy software for 9 years
- Poor support and customer service

Inefficient Data Entry and Workflows

- A lot a lot of time was being wasted entering data
 - No AutoCorrect or spellchecking
 - No auto fill to speed up data entry
 - No quick previews

Inefficient Data Entry and Workflows

- Creation Geotechnical Sections very slow
 - Export gINT ==> Import AutoCAD
 - Lots of post processing in AutoCAD
 - Updates to Data...

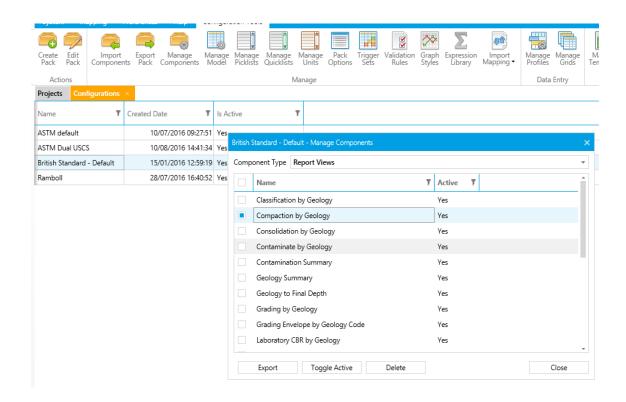
Summarising: MJA wanted

- A centralised coordinated approach to geotechnics
- Employing standardise approach on all projects
- Improve efficiency in data entry
- System designed with a data-driven approach, so data can be queried
- Much closer integration with AutoCAD Civil 3D
- Rapidly create and visualise cross sections (profile views)
- Up to date technology with better customer support

Developing new workflows to incorporate both legacy and new data

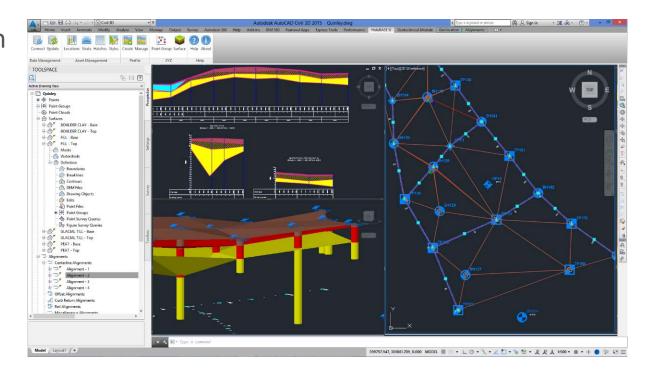
The proposed solution

MJA identified

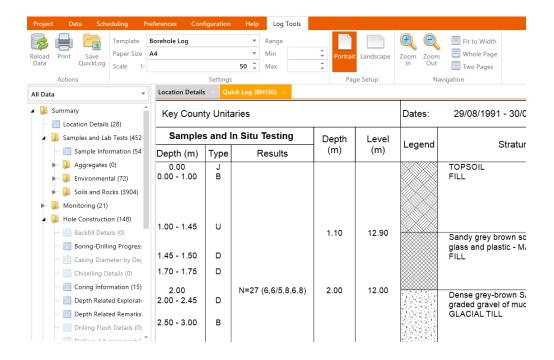


Geotechnical Data Software Transformed

- Close integration with AutoCAD Civil3D
- Centralised geotechnical data management
- Relatively easy to use and configure
- On going development
- Friendly Support


Centralised Geotechnical Data Management

- Configurable and scalable
- Central SQL server
- Standardise configuration
- Standard Templates
- Data driven design
- Possibility to query


HoleBASE SI: Dynamic integration

 Streamlined workflows with AutoCAD Civil 3D for seamless access to geotechnical data

Relatively easy to use and configure

- Easier interface
- Less training required
- Responsive

Incorporate legacy system in the workflow

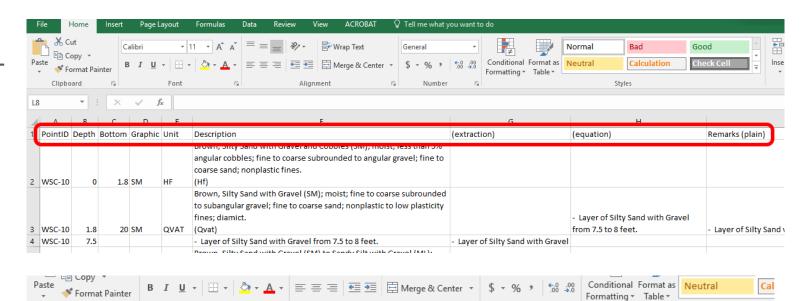
Importing existing gINT data into HoleBASE SI

- Data was supplied by sub contractor.
- gINT does not have a standard database schema
- gINT export to XLS
- HB uses set files and CSV format
- XLS files needed to be renamed with correct CSV file names

File naming formats

- (all points) attb readings.xlsx
- (all points) atterberg.xlsx
- (all points) hyd readings.xlsx
- all points) hydrometer.xlsx
- (all points) lab specimen.xlsx
- (all points) lithology.xlsx
- (all points) point.xlsx
- (all points) project.xlsx
- (all points) sample.xlsx

- Field Geological Descriptions.csv
- Location Details.csv
- Monitoring Installations and Instruments.csv
- Monitoring Readings.csv
- 🖺 Sample Information.csv
- Stratum Detail Descriptions.csv
- Water Level.csv

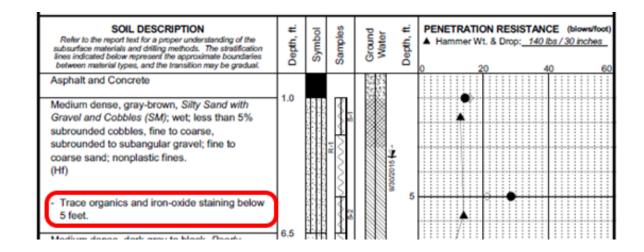

gINT HoleBASE SI

Column Names

gINT

Clipboard

Font


HoleBASE SI

A1	1 *	: ×	√ J	Location ID				
1	^	n	_	0	г	г	_	
	Location ID	Depth Top	Depth Bas	Description	Legend Code	Geology Code	USCS	Geology Code 2
`	WSC-10	U	1.8	Brown, Slity Sand with Gravel and Copples (Sivi); moist; less than 5%	SIVI	FILL	SIVI	
	WSC-10	1.8	20	Brown, Silty Sand with Gravel (SM); moist; fine to coarse subrounded to	SM	RGD	SM	
	WSC-10	7.5	7.5	- Layer of Silty Sand with Gravel from 7.5 to 8 feet.				
5	WSC-10	20	26.7	Brown, Silty Sand with Gravel (SM) to Sandy Silt with Gravel (ML); moist;	SM	RGD	SM	
	WSC-10	26.7	30	Brown and gray, Sandy Silt (ML) to Sandy Silt with Gravel (ML); wet; fine	ML	RCS	ML	
7	WSC-10	30	31.6	Gray, Gravelly Silt with Sand (ML); fine to coarse subrounded to	ML	ccs	ML	

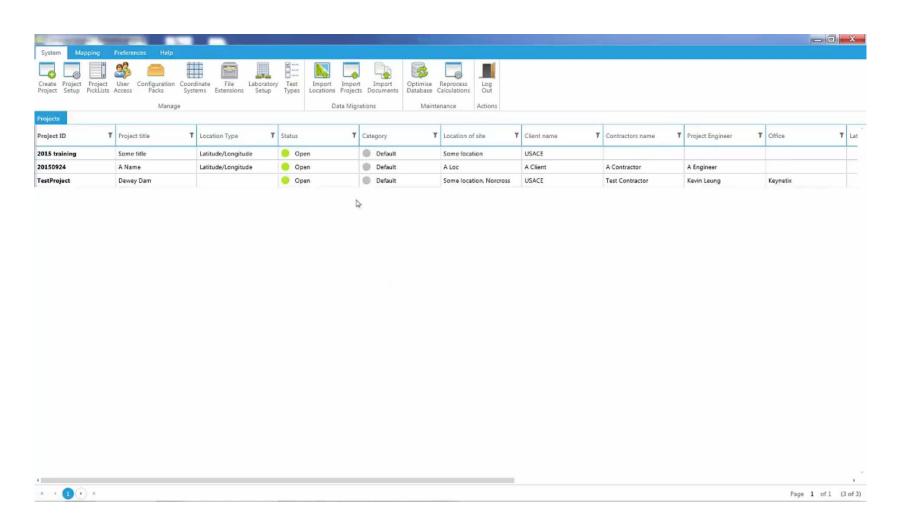
Styles

Other import issues

- Separating data from text remarks
 - Common practice in gINT

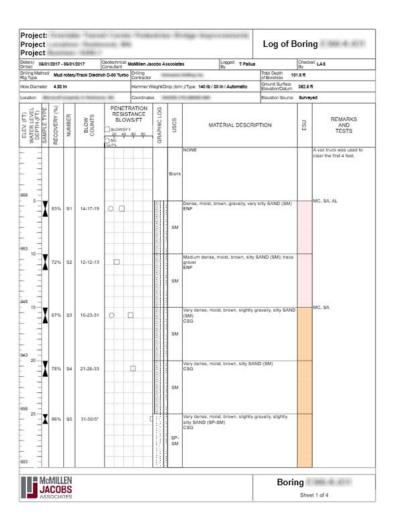
Importing: Lessons learnt

- Creating the correct format CSV files was painful and tedious.
- A "Mapping" file should have been used
 - Import directly from gINT to HoleBASE SI
- In the future uses data collection with pLog, which is quick and easy

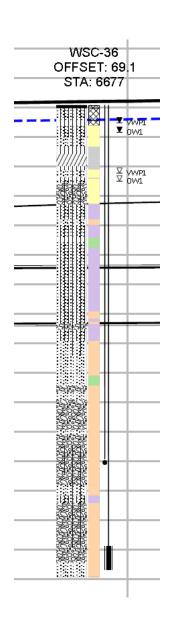

Developing new workflows that boost efficiency

Data capture with pLog

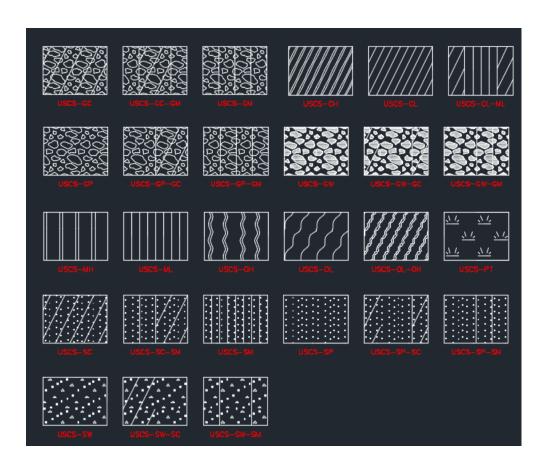
- On site Data Capture
- Use by MJA for new boreholes
- pLog Enterprise direct import into HBSI
- Data in only entered once
- Advanced Description Builder helps with standardization process

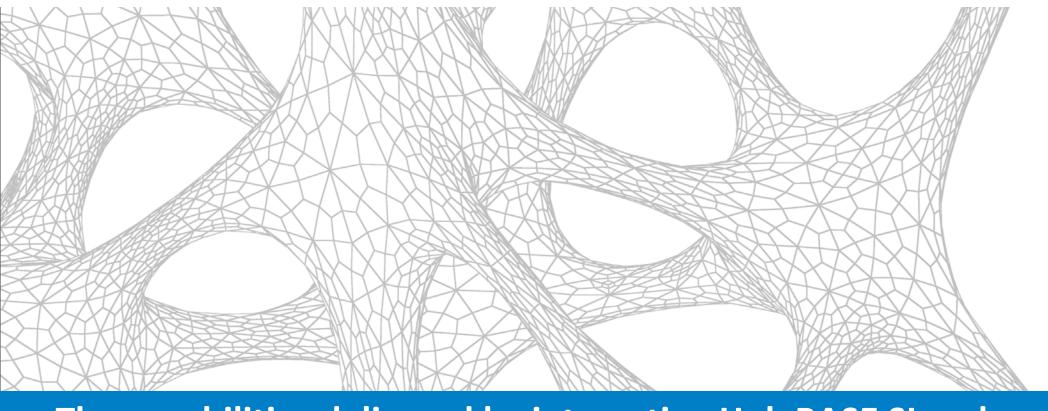


Plog to HoleBASE SI import


Creating Borehole Templates

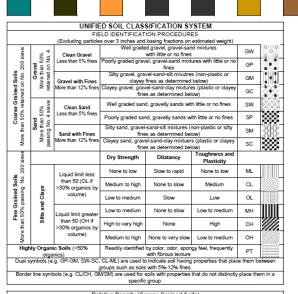
- New standard for organisation
- Created in HoleBASE SI Template studio.
- Available for all new projects


New Log Strip for AutoCAD Civil 3D


- Created in Template Studio
- Two graphics columns
 - USCS (Unified Soil Classification System)
 - ESU (Engineering Soil Unit)
- Ground water level
 - Themed of event
- Instrumentation
 - Piezometer

Standardised Hatch Patterns

- For USCS
- For ESU
- Used in AutoCAD Civil
- Configured in HoleBASE



The capabilities delivered by integrating HoleBASE SI and AutoCAD Civil 3D

- New system meant workflows and outputs would be quick and repeatable
- Greater opportunity to spot anomalies
- Quickly Identify gaps in the data
- Advanced Description Builder used for consistent soil descriptions

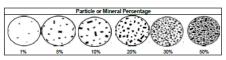
	SM	Very dense, moist, brown, very silty SAND (SM); trace gravel, fine to coarse sand CSG	
	ML	Very dense, moist, brown, slightly sandy SILT (ML);	
	SM	fine sand, with sand laminations CSF Very dense, moist, brown, slightly silty SAND (SM); fine to medium sand	
	SM	CSF Very dense, moist, brown, very silty SAND (SM); fine sand CSF	

Before we followed procedures on laminated guides for field work

Relative Density (Coarse Grained Soils)			
Density SPT (N) (Blows/Ft		15 lb Dynamic Cone (Blows/1.75")	Field Test
Very loose	0 to 4	0 to 4	Penetrated 3 ft. or more with 1/2" hand probe
Loose	5 to 10	5 to 12	Penetrated 1-2 ft. with 1/2" hand probe
Medium dense	11 to 30	>12	Penetrated 3-12 in. with 1/2" hand probe
Dense	31 to 50		Penetrated 1-3 in. with 1/2" hand probe
Very dense	>50		Penetrated <1 in. with 1/2" hand probe

- 1	Description Order of Terms
1 Re	lative density or consistency
2 Mo	sisture content
3 Co	lor
4 'Sli	ightly' constituents (5-12%)
5 Ma	odifier constituents (12-30%)
6 'Ve	ery' constituents (>30%)
7 M4	JOR CONSTITUENT
8 (U	SCS symbol);
9 Tra	ace descriptors
	lasticity, dilatency, oughness, etc.
11 G	irain size, rounding, gradation, to.
	tructure, bedding, cementation, nineralogy, organics, odor, etc.
13 (0	Geologic unit)
siit, w	pies: e, wet, gray, gravelly SAND (SW); trace ell graded fine to coarse sand, fine igular gravel, homogeneous (Qva)
sandy	molst, dark gray, slightly gravelly, very r CLAY (CL); fine gravel, low plasticity, ated with gray SILT (Outs)

	Moisture Content
Description	Criteria
Dry	Absence of moisture, dusty, dry to touch
Slightly moist	Perceptible moisture
Moist	Damp but no visible water
Very moist	Water visible but not free draining
Wet	Visible free water, usually from below water table
	Modifiers and Estimated Percentage
Modifiers	Criteria


	Modifiers and Estimated Percentage		
Modifiers	Criteria		
Trace	Particles present at levels estimated at <5%		
Slightly	Particles present at levels estimated at 5% to 12%		
Clayey, silty, sandy, or gravelly	Particles present at levels estimated at 12% to 30%		
Very	Percentage of minor constituent estimated to be >30%		
With (cobbles or boulders)	Present at any concentration, estimate percentage		

	Gradation			
Gradation	Description			
Well graded	Approximately equal amount of all grain sizes			
Poorly graded	Predominately one size (uniformly graded) or a wide range of sizes with a missing intermediate size (gap graded)			

	Consistency (Fine Grained Soils)						
Consistency	SPT (N) (Blows/Ft.)	Torvane (psf)*	Pocket Pen. (psf)*	Field Test			
Very soft	0 to 1	250	500	Easily penetrated several inches by thumb. Extrudes between thumb and fingers when squeezed			
Soft	2 to 4	250 to 500	500 to 1,000	Easily penetrated one inch by thumb. Molded by light finger pressure.			
Medium stiff	5 to 8	500 to 1,000	1,000 to 2,000	Can be penetrated over 1/4" with moderate pressure. Molded by strong finger pressure.			
Stiff	9 to 15	1,000 to 2,000	2,000 to 4,000	Indented about 1/4" by thumb, but penetrated only with great effort.			
Very stiff	16 to 30	2,000 to 4,000	4,000 to 8,000	Readily indented by thumbnail.			
Hard	>30	>4,000	>8,000	Indented with difficulty by fingernail.			

^{*} Shear strength

^{**} Unconfined compressive strength

	Organics
Description	Content (Percent Volume)
Occasional	Less than 1%.
Scattered	1% to 10%
Numerous	10% to 30%

scription	Criteria	Descrip
Weak	Crumbles or breaks with handling or little finger pressure.	None
oderate	Crumbles or breaks with considerable finger pressure.	Weal
Strong	Will not crumble or break with finger	Stron

HCI Reaction				
Description	Criteria			
None	No visible reaction			
Weak	Some reaction, with bubbles forming slowly.			
Strong	Violent reaction, with bubbles forming immediately.			

	Dilatancy		
Description	Criteria		
None	No visible change in the specimen.		
Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing.		
Rapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing.		

Dry Strength		
Description	Criteria	
None	The dry specimen crumbles into powder with mere pressure of handling.	
Low	The dry specimen crumbles into powder with some finger pressure.	
Medium	The dry specimen breaks into pieces or crumbles with considerable finger pressure.	
High	The dry specimen cannot be broken with finger pressure. Speciment will break into pleces between thumb and a hard surface.	
Very High	The dry specimen cannot be broken between the thumb and a hard surface.	

	Toughness			
Description	Criteria			
Low	Only slight pressure is required to roll the thread near the plastic limit. The thread and the lump are weak, soft.			
Medium	Medium pressure is required to roil the thread to near the plastic limit. The thread and the lump have medium stiffness.			
High	Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness.			

		Rour	nding		
			(D)	0	
	5	8	3	0	
Very angular	Angular	Sub-angular	Sub-rounded	Rounded	Well rounded
		•	•	•	

Bedding		
Description	Criteria	
Very thinly laminated	Less than 1/16" thickness (1.5mm)	
Thinly laminated	1/16" - 1/4" thickness (1.5mm - 6mm)	
Laminated	1/4" - 3/4" thickness (6mm - 2cm)	
Very thinly bedded	3/4" - 2 1/2" thickness (2cm - 6cm)	
Thinly bedded	2 1/2" - 6" thickness (6cm - 15cm)	
Medium bedded	6" - 24" thickness (15cm - 60cm)	
Thickly bedded	2' - 6' thickness (60cm - 2m)	
Pocket	Small, erratic deposit, less than 12" maximum dimension	
Lensed	Inclusion of small beds of different soils that are thin at edges and pinch out.	
Homogeneous	Same color and appearance throughout.	
Scattered	One or less per 12" thickness.	
Frequent	More than one per 12" thickness.	

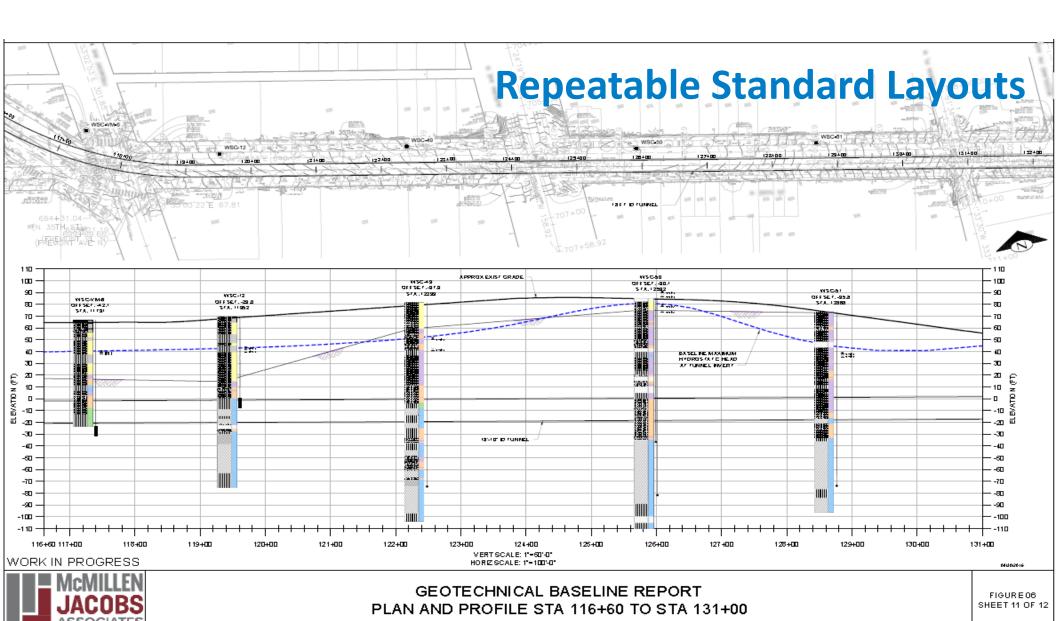
Discontinuity and Structure		
Description	Criteria	
Jointed	Discontinuity or fracture without visible displacement.	
Faulted	Discontinuity or fracture with displacement of sides relative to one another.	
Brecclated	Contains angular fragments of cohesive soil.	
Indined	Dipping or rotated beds or discontinuities, note angle from horizontal.	
Fissured	Breaks along definite planes of fracture with little resistance.	
Slickensided	Fracture planes appear polished or glossy, sometimes striated.	
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown.	

Grain Size			
Term	Grain Size	Example	
Boulder	Greater than 12" (30cm)	Basketball or larger	
Cobble	3" - 12" (75mm - 30cm)	Fist to basketball	
Gravel coarse	3/4" - 3" (20mm - 75cm)	Thumb to fist	
Gravel fine	No. 4 sieve - 3/4* (5mm - 20mm)	Peak to thumb	
Sand coarse	No. 10 sleve - No. 4 sleve (2mm - 5mm)	Rock salt to pea	
Sand medium	No. 40 sleve - No. 10 sleve (0.4mm - 2mm)	Sugar to rock salt	
Sand fine	No. 200 sleve - No. 40 sleve (0.08mm - 0.4mm)	Flour to sugar	
Fines	Passing No. 200 sleve (<0.08mm)	Grains not visible	

Graphic Log Symbols

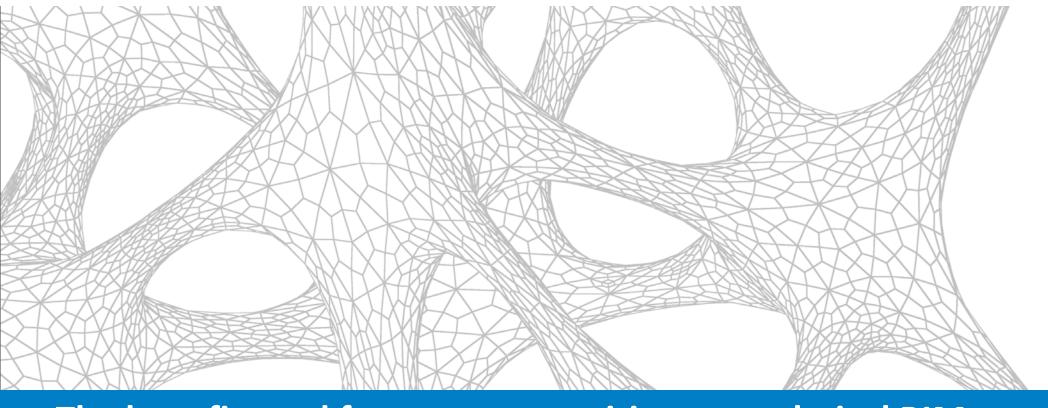
	A well defined change in units which was clearly seen in a sample, or noted in cuttings or drilling behavior.				
	A gradational change in units which was clearly noted.				
'	A change in unit which was not clearly defined, either because of sample interval or				
	End of exploration / total depth.				
	Well Down Hole Materials				
Hatch	Hatch Description				
Haton	Description				
- Idacai					
	3/4" bentonite chips				
	3/4" bentonite chips Neat cement				
	3/4" bentonite chips Neat cement Slough of formation malerials				
	3/4" bentontle chips Neat cement Slough of formation materials Bentontle-cement grout				

Plasticity			
Description	Criteria		
Nonplastic	A 1/8" (3mm) thread cannot be rolled at any water content.		
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.		
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbies when drier than the plastic limit.		
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when direct han the plastic limit.		


Sample Symbols		
FIII	Indication	
	Sample was retained.	
I	The sample was used for logging only and discarded in the field.	
×	Sample was not recovered.	

Key to Samplers		
Code	Sampler	
DM	D&M type 3.25" O.D. split barrel sampler with liner	
SPT	2" O.D. split barrel	
s	3" O.D. split barrel sampler with liner	
т	3" O.D. thin wall (Shelby Tube)	
cc	Continuous Core	
G	Grab Sample	

HoleBASE to AutoCAD Civil Integration Provides:


- Dynamic Integration of geotechnical and site investigation data in the AutoCAD Civil 3D environment
- Create dynamic geotechnical profiles and sections in seconds as opposed to hours
- Visualization of geotechnical boring data, allowing creation of 3D borehole layouts and sub-surfaces
- Create Civil point groups and surfaces from data stored in HoleBASE SI

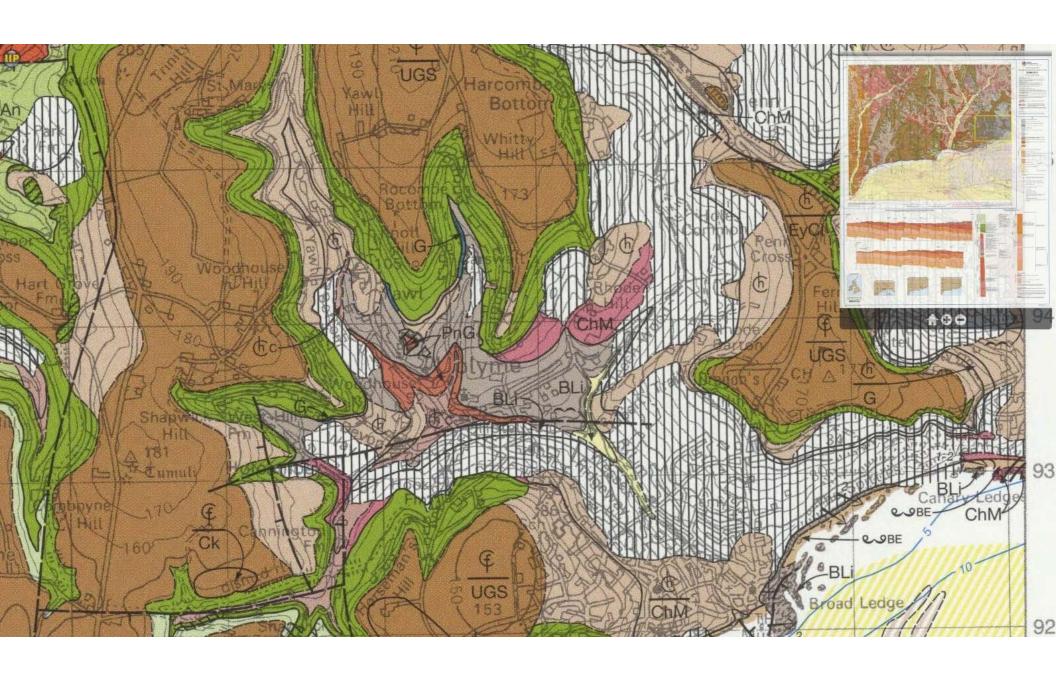
Allowing engineers to engineer

Faster workflows and efficient process

More time for engineering

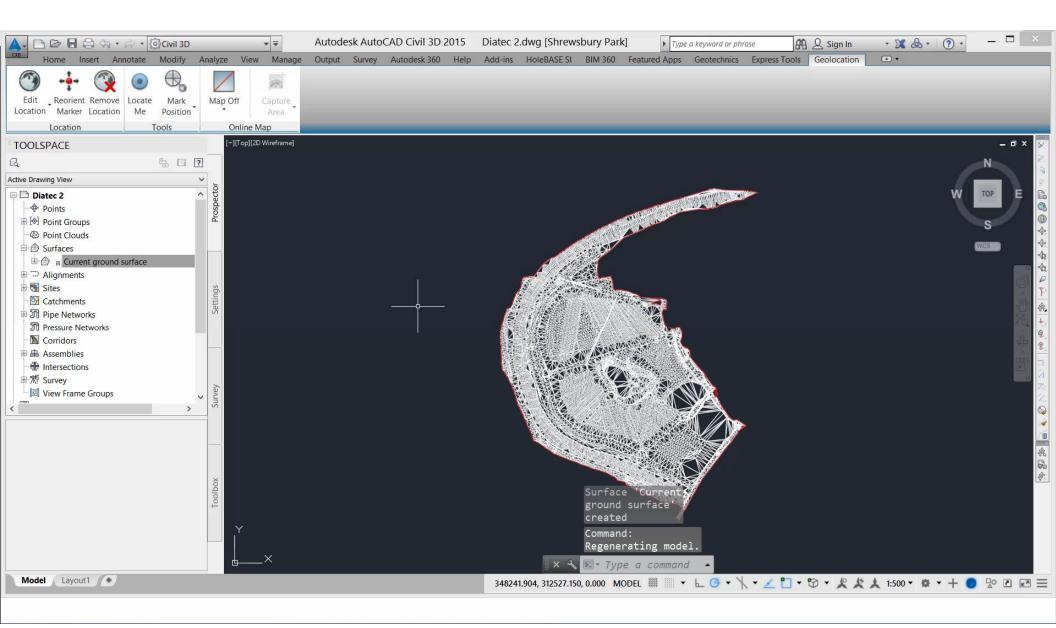

The benefits and future opportunities geotechnical BIM can deliver

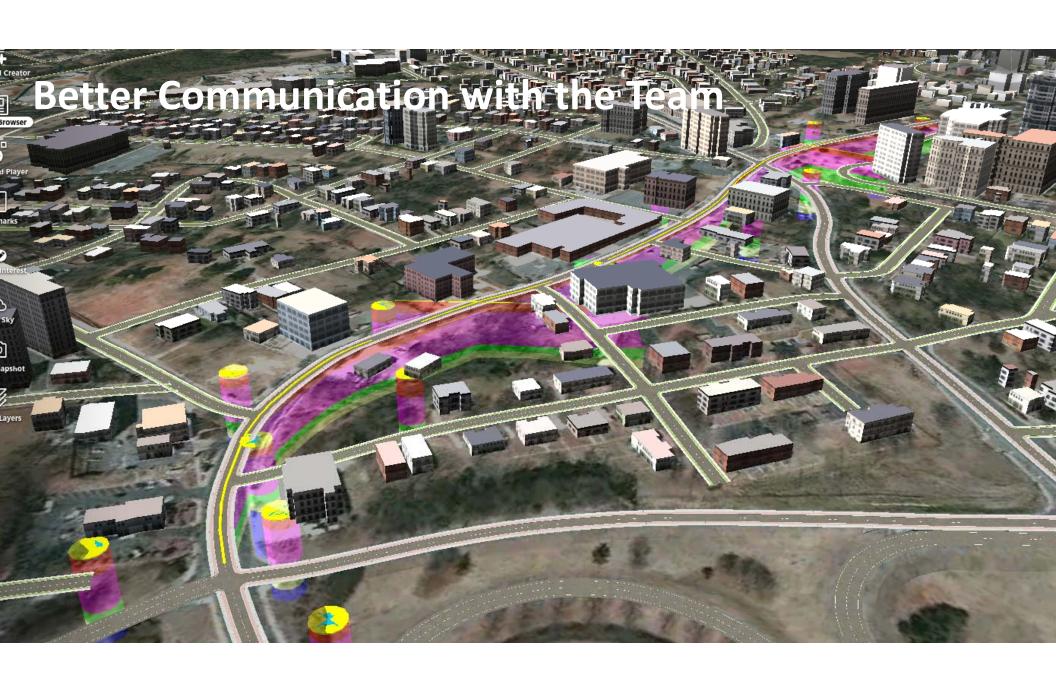
Potential Benefits

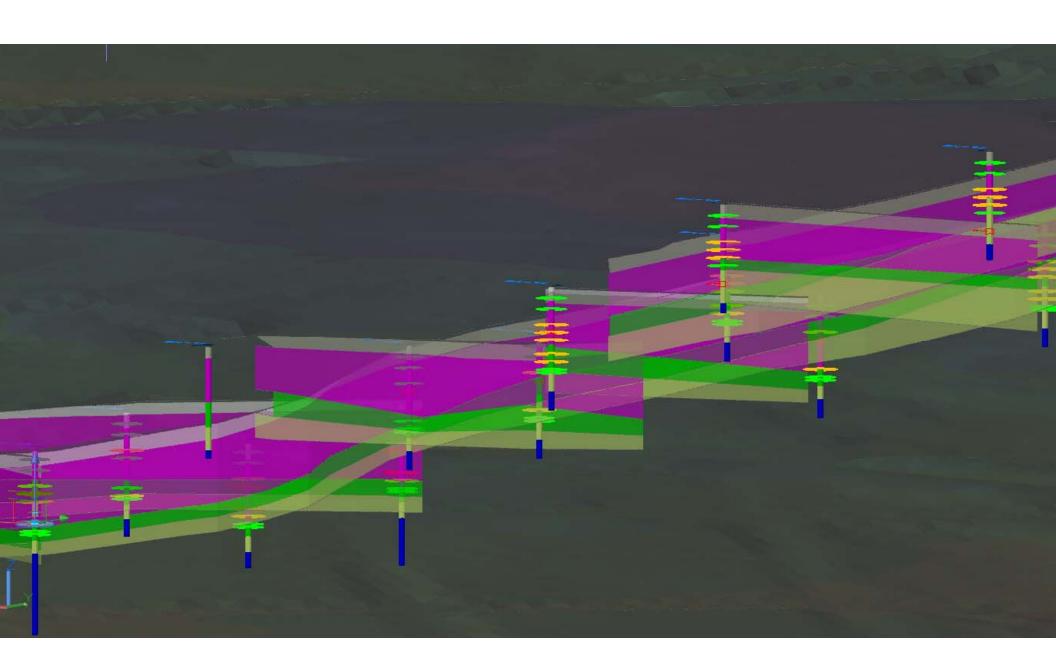

- Desk studies and site investigations are more focused
- Engineers can react faster to potential issues on site
- A more complete picture of the ground can be built
- Understanding of ground behavior is improved, leading to better design
- Communications within the design team, as well as with the client and other stakeholders are improved.

Focused Desk Studies

- Build upon and refine previous knowledge
- We may already have experience in the area


React faster to potential issues on site


- Field Data can captured and quickly see in context.
- Speeds up process
- Can react faster
- Mobilize equipment while drillers are on site



A More Complete Picture

- Better understand and visualise data in context
- Rapidly view down hole data
- In context with the proposed site plan
- Better understand were potential problems may occur

•Q & A

Make anything.

Autodesk and the Autodesk logo are registered trademarks or trademarks or Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical errors that may appear in this document.

© 2017 Autodesk. All rights reserved.

