
SD10672

Exploring Entity Framework for AutoCAD
Development—And Beyond!
Ben Rand
Job Industrial Services, Inc.

Learning Objectives
 Create an Entity Framework model using Database First and Code First

 Configure database options using Fluent API and DataAnnotations

 Work with Entity Framework objects such as DbContext and DbSet to create, retrieve, update, and
delete database records

 Create AutoCAD objects with data queried from a database via the Entity Framework model

Description
This class provides an introduction to Microsoft’s Entity Framework, one of the leading object-
relational mapper frameworks in use today. With Entity Framework, developers can focus more
of their effort on dealing with how objects in their problem domain relate to each other, and less
effort worrying about data-persistence code. The class starts by taking a quick look at
“Database First” creation of an Entity Framework model. It then moves to the “Code First” style
of development, including POCO classes, DbContext configuration. We learn how to consume
the resulting Entity Framework model in various different project types (including a Console app
and an AutoCAD plug-in application).

Your AU Experts
Ben Rand began his career in AutoCAD with a part time job while studying English at Brigham Young
University. After a year of teaching 6th and 7th grade English, he returned to architecture and AutoCAD.
He taught himself to program first in AutoLISP, then VBA to speed up repetitive drafting tasks. He taught
as an Autodesk Certified Instructor at Salt Lake Community College, covering AutoCAD, LISP and VBA
programming for AutoCAD, as well as 3DS Viz and Max. In 2002, he took a job as CAD Manager for an
industrial engineering firm, and has worked in that industry ever since. Ben now spends most of his
professional time developing in C#. At AU 2013, he won the overall AUGI Top DAUG prize, not bad for
someone who hasn’t done production drafting in many years. He is currently an AutoCAD Mentor All-
Star, helping AutoCAD and AutoCAD LT newbies during their software trial. Ben is an avid reader, and
also enjoys tennis, racquetball, volleyball, running and cycling.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

2

A large percentage of applications (all?) we developers write require the persistence of data and/or the
reading of data from data stores. For example, we might read/write data in a text or XML file, or from a
database of some sort, like MySQL, SQLite or SQL Server. Autocad DWG files are essentially databases
that store geometric data—with the ability to display that data as a pretty, interactive picture.

In a relational database, tables are used to store records. These records are typically “related” to records
in other tables, typically through the use of Primary and Foreign keys. Many common databases use a
language of their own called SQL, which stands for Structured Query Language, to read, write and delete
data in the various tables. These operations are commonly referred to as “CRUD” operations—Create,
Read, Update and Delete.

One of the difficulties faced by developers is “mapping” between the concepts and objects of the
database world—tables, records, keys, “CRUD” SQL statements, etc.—and the concepts and objects of
the application domain—the objects (classes) and their properties used in the application code. To
resolve these difficulties, ORM (object-relational mapping) frameworks have moved to the forefront.

Entity Framework is Microsoft’s entry into the ORM space for .NET. There are, of course, alternatives,
such as NHibernate, LLBLGen Pro, and Castle ActiveRecord (or Ruby’s ActiveRecord). While there are
distinctions among the various frameworks that are worth exploring, they all serve essentially the same
purpose: to allow you to concentrate your development efforts on the problem domain while the
framework takes care of translating your problem domain code into database code (“CRUD” SQL
statements) so that you don’t have to.

Entity Framework has evolved quickly since its initial release by Microsoft in 2008. Today, there are
several ways to work with EF, including database first, model first and code first.

 Database First—you have an existing database you want to work with and you want to work
with a visual designer to create an Entity Framework model so you can start querying, and
updating data. This is probably the quickest way to get started with EF. We’ll take a quick look at
this in class.

 Model First—you are starting a new database, and want to work in a visual designer. EF
converts the model you design to the tables, columns and keys needed to create the database.
We won’t spend time with this in class.

 Code First—rather than working with a designer, you write POCOs (regular classes) that
represent your model. EF translates this model into tables, columns and keys. Because you
control all the code, many developers prefer this method of development. While commonly
used for new database projects, an existing database can be reverse engineered into POCO
classes, and you can take over coding from there.

In this class, we’re going to briefly explore database first, then spend most of the time using the code
first approach which seems to be the way many developers are leaning these days, because of the
greater control you have as a developer over the code.

Prerequisites
In order to complete the class exercises, you’ll need the following prerequisites installed:

 Microsoft Visual Studio 2015 [Community edition should work, but Professional or higher
recommended] (VS 2010 or later) http://bit.ly/1ermhSi

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

3

 SQL Server 2014 Express (SQL Server 2005 or later) w/ Tools (SQL Server Management Studio)
http://bit.ly/1ge8TTr

 AdventureWorks Sample database http://bit.ly/1S4MKaV
 Autocad 2016 ObjectARX SDK http://autode.sk/1HSTCQK
 Autocad 2016 http://www.autodesk.com/store/autocad

The class code will be presented using C#, but all of this can be done with VB. I was a VBA/VB
programmer for many years, but switched over to C# about six years ago. The sample projects will be
available in both VB and C# along with the class materials.

Create an Entity Framework model using Database First and Code First

Database First
We’re going to use the Database First approach as a brief introduction to EF. This is a good approach for
Entity Framework projects where the database already exists, and you want to get up and running as
quickly as possible. It is also good if you prefer to work in a more visual environment.

For this section, it is assumed that you have installed SQL Server Express, and have the
AdventureWorks sample database attached. Please see the Prerequisites heading for
links to download these items.

Start a new Visual Studio Solution
Create a new C# Class Library Project named AU.AdventureWorks.DatabaseFirst, but change the
Solution name to AU.AdventureWorks. Delete the default Class1.cs which is added automatically. Right-
click References > Manage NuGet Packages. Search for EntityFramework1. Select the package and click
Install.

FIGURE 1 LOADING ENTITY FRAMEWORK USING NUGET

A summary of the changes this NuGet package is displayed, click OK, then accept the license agreement.

Add an Entity Data Model
Right-click the project node, then choose Add > New Item. Select Data, then choose ADO.NET Entity
Data Model. Name the model AWContext, then click Add. Select EF Designer from database, then click

1 EntityFramework 6.1.3 is the latest release at the time of this writing.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

4

Next. Click New Connection, then use the wizard to connect to your SQL Server Express instance.
Change the Connection settings name to AWContext.

FIGURE 2 CONFIGURE THE DATA CONNECTION

The parts of the connection string are as follows:

 metadata= sets up the main components of the EF model.
 provider= identifies the provider, which is how EF communicates with the database. Support

for SQL Server is built in, but providers are also available for other database systems, including
Oracle and SQLite.

 provider connection string

o data source= identifies the server and SQL Server instance
o initial catalog= identifies the name of the database

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

5

o integrated security= identifies how we’re going to login to the database. Here I’m
using integrated security—my Windows credential.

The next step of the wizard is to select which tables, views and stored procedures we want to include in
the model2. For our purposes, we’re only going to target a select few tables. Expand Tables > Sales and
select Sales Order Header and Sales Order Detail. Expand Production and select Product. Change the
name of the model namespace to AWModel. Click Finish to build the model.

The wizard generates an EDMX file which is an XML file. However, VS typically displays the EDMX file as
a diagram, and you can typically handle most modifications to the EDMX file from the GUI diagram.
You’ll see the two tables you selected, with a line drawn between them, indicating a relationship. For
any given SalesOrderHeader, there can be multiple SalesOrderDetail records.

Each SalesOrderDetail has an associated Product, but the database didn’t have a Foreign Key
relationship set up in the SalesOrderDetail table, so EntityFramework was unable to work this
relationship out (there’s no line connecting Product to SalesOrderDetail). We’ll have to add this to
our model.

The Product table (the list of Products) is our primary table, so we’ll want to start the association from
that table to the SalesOrderDetail table. Right-click the Product header and choose Add new >
Association. Be sure that Product appears on the left-hand side under Entity, and SalesOrderDetail
appears on the right-hand side. Uncheck the Add foreign key properties check box, as shown below.

FIGURE 3 ADDING AN ASSOCIATION BETWEEN TABLES

2 If you’re coming new to an established database, selecting all the tables (and/or views) to create an overall
diagram can be a good way to learn the relationships between the various tables, provided it is a properly
normalized database. But you can also cherry pick only the relevant objects for your application’s specific needs.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

6

You’ll notice the Association Name and Navigation Properties change automatically. This indicates a
relationship such that a given product may be associated with many SalesOrderDetails. Conversely, a
given SalesOrderDetail can have only 1 Product associated with it.

FIGURE 4 A DATABASE FIRST MODEL

Because there isn’t a proper foreign key in the database from SalesOrderDetail to Product, we need
to identify this for EF. Double-click the association line between SalesOrderDetail and Product to
bring up the Referential Constraint dialog. Select Product as the Principal, then verify that ProductID is
selected as the Principal Key (i.e. from the Product table) and as the Dependent Property (i.e. from the
SalesOrderDetail table).

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

7

FIGURE 5 ADDING AN ASSOCIATION AND REFERENTIAL CONSTRAINT

Click OK, then Save the diagram.

Create a Console Application
At this point, we’re ready to start using our new EF model. Let’s create a small Console Application, and
write some code. In this section, I’m going to make a couple of deliberate errors3, and work through
these issues to illustrate more of how EF works.

Right-click the solution and choose Add > New Project. Select Console Application from the project
templates, and name it AU.AdventureWorks.ConsoleUI. This template creates a class called Program,
with a Main method. We’ll start here and build out. Be sure to set this project as the StartUp Project.

Add references to the following:

 DatabaseFirst
 EntityFramework (via NuGet).

In the Main method body, add the following code:

3 When presenting to large groups, it’s always a good idea to say you’re going to make some mistakes “for learning
purposes.” That way you’re covered when something inevitably goes wrong. :/

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

8

FIGURE 6 CODE LISTING 1

Here we should point out several things:

 Line 16: The “context” represents our connection to our EF model (AWContext), which takes care
of everything we need for connecting to and querying the database.

 Lines 18-23: We use LINQ to query the SalesOrderHeaders collection (a
DbSet<SalesOrderHeader>) looking for a specific record. I prefer using lambda expressions
because they’re so concise but they took some getting used to. An alternate form is shown
below, which some developers may prefer because it’s similar to SQL:

sale = (from h in context.SalesOrderHeaders
where h.SalesOrderID == 43659
select h).FirstOrDefault();

 Lines 29-33: We iterate through the SalesOrderDetails to extract some of the data we want to
print. Note the use of navigation properties in lines 29 and 31 to dig further into the object
hierarchy. This is fairly intuitive: a SalesOrderHeader has one or more associated
SalesOrderDetails. Each SalesOrderDetail has an associated Product.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

9

 Lines 36: We use the Sum extension method to get a sum of the LineTotal for all
SalesOrderDetails associated with the SalesOrderHeader. LINQ makes this kind of calculation
really easy!

Press F5 to run the application. Right off the bat, we’re going to run into an InvalidExceptionError,
because the ConsoleUI app can’t find the connection string to connect to our database. Why is this?

FIGURE 7 NO CONNECTION STRING ERROR

The connection string we set up earlier is located in the DatabaseFirst project’s App.config. Now that
ConsoleUI is the startup application, this information must come from its own App.config file. Open the
DatabaseFirst project’s App.config, and copy and paste the entire <connectionStrings> node to
ConsoleUI’s App.config file, and run the application again.

At this point, we should see a console window, and an Order # displayed, and then another error is
thrown:

FIGURE 8 WORKING THROUGH AN OBJECTCONTEXT DISPOSED ERROR

We were successful in retrieving data from the database, but only the SalesOrderHeader record. When
we hit the end of the using statement, our connection to the context (and the database) is closed.
Later, when we attempt to navigate further into our SalesOrderHeader object, the connection is no
longer available. By default, EF is lazy loading data from the database, which means that it won’t
retrieve data until it is explicitly requested by the application.

Here, we can either restructure our program a bit to keep the connection open while we do all this
processing, or we can eager load the data we need. I want to demonstrate one of the important
considerations of lazy vs eager loading. Let’s make a very small change to our code, shifting the closing
bracket of the using statement to just after the closing bracket of the if statement. This causes all the
processing to happen before the context (connection) object is disposed.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

10

FIGURE 9 CODE LISTING 1.A

And run the application again:

FIGURE 10 LAZY LOADING DATA

Success! We now see all the detail and associated product information in the console. However, notice
on the left something else that VS 20154 reveals: each time our program iterates over the next
SalesOrderDetail, EF executes another SELECT statement to return the data from the database. That
means that there’s quite a bit of traffic back and forth from the database. Is there a better way?

Let’s go back and make some more modifications:

4 This may only be available in the Enterprise version of VS. I hadn’t seen it in VS 2013 Professional (or prior).
Needless to say, this is really helpful information to know.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

11

FIGURE 11 LISTING 1.B

Here, we’re using the .Include extension method to eager load more data along with our results.
Because of the navigation defined in our EF model, EF will only query the SalesOrderDetails that
actually belong to the SalesOrderHeader that we ask for. Run the application again. Note above that
we’re including both the SalesOrderDetails and the Product associated with each detail. I’ve used
two different ways to specify these navigations.

FIGURE 12 EAGER LOADING DATA

This time, notice that not only do we avoid the error we got before (because all the data is already
included), but there’s also only one SELECT statement sent to the database. To be sure, a bigger chunk
of data will be returned in the request, but overall we’ve decreased a lot of back-and-forth from the
database, and sped up our application quite a bit. It’s important to note that neither lazy loading nor
eager loading is inherently bad or preferable. Which you use will be very situation dependent; they both
have their place.

We’ve just had a brief introduction to the Database First approach to using Entity Framework. This can
be a good way to get started with EF, or if you’re inheriting an existing database and probably won’t be
changing the structure so much—though using Database First certainly does not mean you can’t.

Creating a Code First Model
We’re now going to switch gears to try out the Code First approach. Rather than having code
“mysteriously” generated for you by EF, many developers favor this approach because it provides so
much control over the model entities. It’s also a highly useful approach for “greenfield” database
development, and you almost never have to touch the database itself.

In this section, we’re going to create a fairly simple model based on a common scenario you might
encounter in the Oil & Gas industry. We’d like to keep track of a list of projects, each of which can have
one or more associated items of equipment.

Close the AU.AdventureWorks solution and start a new C# Class Library project called
AU.CodeFirst.Model, and change the solution name to AU.CodeFirst. Delete the default Class1 file, then
add a new class called DomainObject. Because this is a brand new, from scratch database, and we have

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

12

the run of the place, I want all of my model objects to have some common properties. So I’m going to
have most of my classes inherit from DomainObject. This way I don’t have to repeat a lot of common
code. Add the following class:

FIGURE 13 LISTING 2

Next, we’ll add our Project class:

FIGURE 14 LISTING 3

Pretty straightforward. Note the inheritance from DomainObject. Also note the Equipments property,
an ICollection<Equipment>. It’s marked with the virtual keyword which is needed for EF to provide
lazy loading of navigable properties. Thus, each Project can have a collection of Equipment associated
with it. Next, we’ll add the Equipment class:

FIGURE 15 LISTING 4

The main thing to note here are the Project and Project_ID properties. The Project property is used
to create a navigation property from each piece of equipment back to the project it belongs to. The
Project_ID field will be used to create the Foreign Key in the database5.

5 Although it’s not strictly required to specify a Foreign Key, EF will in fact create an FK field in the database for you.
It is highly recommended that you include it in your model so that you can retrieve objects by ID values (integers)
rather than having to retrieve the actual object (i.e. a Project) first.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

13

Creating a context object
In order to make this into a fully functional EF model, we need to create a class that inherits from a
special Entity Framework class, DbContext. This class acts as the glue that binds our model together, and
is the engine6 that makes it all work.

Add a new C# Class Library project to the solution named AU.CodeFirst.DataAccess. Add references to
the following:

 AU.CodeFirst.Model
 EntityFramework (via NuGet)

Next, add a new class called EngineeringContext with the following code:

FIGURE 16 LISTING 5

 Line 11: The class inherits from DbContext, an EF class.
 Lines 13-14: Use DbSet<T> to expose the projects and equipment objects from our model.

We’re almost there, but we can’t run the application, nor do we have a database yet. Let’s add a console
app to the solution, and try and get things running. Name the project AU.CodeFirst.ConsoleUI and set it
as the Startup Project. Add references to the following:

 AU.CodeFirst.DataAccess
 AU.CodeFirst.Model
 EntityFramework (via NuGet).

Edit the Program.Main method as shown below:

6 Hmm, a gluey-engine. Maybe I should think of a better metaphor.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

14

FIGURE 17 LISTING 6

 Line 15: The context code is essentially the same as what we used in Database First style
development. Once we have a model and DbContext derived class (however we choose to get
there), any “consuming” code is the same.

 Line 17-25: Create a new Project object to add to our database.
 Line 27: Add the project to the context’s Projects property.
 Line 28: Save the changes to the database.
 Lines 31-33: Retrieve the project by Number.
 Lines 37-38: Display the information, including the project’s ID value, which comes from the

database.

Run the application and you should see some evidence—note the ID number, which we did NOT specify
in code—that we are retrieving data from the database:

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

15

FIGURE 18 READING DATA FROM THE DATABASE

So we saved data to a database, and read it back, which is great. But it raises a question: what database
did our application just write to and read from? We haven’t done anything to configure this anywhere in
our solution.

Configure database options using Fluent API and DataAnnotations
One of the nice things about using CodeFirst on a new database project is that EF does a lot of work for
you in the background to minimize your effort to get your project up and running. Starting in VS 2010,
Microsoft introduced something called LocalDB, which is an even lighter version of SQL Server Express. If
you don’t have SQL Server Express (or higher) installed on your development computer, VS will just use
LocalDB to host a local version of any databases EF creates7.

If we look in SQL Server Object Explorer, you should see a (localdb) instance8. Drill down into Databases
and you should see a database named AU.CodeFirst.DataAccess.EngineeringContext, and if you drill into
Tables, you should see three tables: dbo.__MigrationHistory, dbo.Projects and dbo.Equipments. We’ll
talk about the MigrationHistory table more as we get further into CodeFirst Migrations.

Expand Equipments > Columns, and Projects > Columns to see what EF has done for you.

You should see the ID columns marked as PK (Primary Key), any string properties are set as
nvarchar(max). You’ll also note that Equipments has a ProjectId or a Project_ID1 column which is a
Foreign Key. Lots of work done for us, and it’s a good starting point, but most of us like more control
than this…and what’s up with EF not making Project_ID our FK?

Configuring the Database Name
DbContext has several conventions for getting to the database name. If we don’t provide something, EF
will provide something for us9. In this case, EF creates a database corresponding to our solution name +
the name of our context class, thus AU.CodeFirst.DataAccess.EngineeringContext.

DbContext has a constructor that accepts a connection string name. And, by default it will look for a
connection string named the same as the DbContext-derived class (EngineeringContext in our case).
Open App.config in the AU.CodeFirst.ConsoleUI project.

Copy the following code into the <configuration> element:

7 Of course, we’ll eventually need to have the database on an instance of SQL Server Express (or higher) for
production use. But that task can be pushed down the road a bit.
8 If you have some flavor of SQL Server installed on your development laptop, VS will use that in favor of localdb,
so you may need to add a connection to your SQL Server instance in SQL Server Object Explorer.
9 “If you don’t have a lawyer, one will be appointed for you…”

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

16

FIGURE 19 LISTING 710

We’ll also need this in the DataAccess project’s App.config, for Migrations, so paste it in that file as well.
I’ve highlighted the name of our connection string, the SQL Server instance name, and the name of the
database, Engineering. We need to update our EngineeringContext class to use the new connection
string. Add this constructor:

FIGURE 20 LISTING 8

This tells EF to look in the startup application’s App.config file and search for a connectionString

named EngineeringContext. It uses the connection information to connect to the appropriate SQL
Server instance and create (if necessary) the database specified as the Initial Catalog.

Run the application again, and then check SQL Server Object Explorer. We should see a new Engineering
database appear.

Using Data Annotations to configure database options
When we looked at the database schema EF created for us, we saw that all the string properties were
made into nvarchar(max) columns. These require a lot more storage space than we’re likely to need for
most string values. We may also want to specify that some columns are required, and we may want
different naming for some of the tables and columns than the conventions EF uses to derive these.

Fortunately, EF gives us plenty of control over all this configuration, using either DataAnnotations or the
Fluent API. Which you choose is largely a matter of preference11.

First, let’s look at using DataAnnotations to indicate required fields, and to limit string column sizes. In
the AU.CodeFirst.Model project, add a reference to:

 System.ComponentModel.DataAnnotations

Open the Equipment class, and add the following using statements12:

using System.ComponentModel.DataAnnotations;

10 You will need to input the name of your SQL Express instance or (localdb) for the Data Source.
11 There are some things you can only do with the Fluent API, but by and large you can do most configuration using
either DataAnnotations or Fluent API. You can even use a mixture as I will demonstrate in the code.
12 This is usually strike one in the argument against DataAnnotations, you have to drag one more reference into
otherwise “clean” POCO classes. I’m not that much of a purist…if you need it you need it, but it’s still something to
consider.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

17

using System.ComponentModel.DataAnnotations.Schema;

Next, make the following modifications:

FIGURE 21 LISTING 9

Here, I’ve used only a few of the many DataAnnotations13 available, Table, Required and MaxLength.
Others include DataType, Range, RegularExpression, CreditCard and Phone. These annotations are
used to determine the SQL code required to generate table and column names, data types and sizes,
and constraints. They can also serve to validate object data before the data gets sent to the database.

Code First Migrations
Let’s run our project again and see what happens.

13 Strike two against DataAnnotations is that our previously clean POCO class is now quite a bit more difficult to
read, with all the annotations getting in the way. Really it’s a matter of preference and coding style. Wait until
you’ve tried Fluent API, and see what you prefer. Ultimately, you can mix and match, but that could be confusing
when the code enters the maintenance phase, or if you have conflicting configurations.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

18

FIGURE 22 A MODEL CHANGE ERROR

Wait a minute. The first time we ran the project, EF created the database for us, no argument. We just
made some changes to our model (adding DataAnnotations), which definitely require some changes to
the database schema, but why didn’t EF just do it for us?

EF is trying to protect you from yourself a bit here. Database schema changes are potentially dangerous.
You could be dropping columns or tables (i.e. LOSING DATA) and so you need to be cautious about these
sorts of changes14. When your application starts up, Entity Framework initializes the model and
compares it against the database schema to make sure they’re in sync15.

I have been using EF since around 2008, most of the time developing directly against
production databases. While this is definitely NOT a best practice recommendation, I
have never inadvertently lost data because of something I did with EF schema changes.
However, the potential is there and the danger is real. Be careful making schema
changes and be sure you understand what EF is doing. If you’re not sure, create a
sample project to test unfamiliar functionality first. Make a backup of a production
database and restore it to a development server to test/develop against.

The error message suggests using Code First Migrations. This is a terrific tool that helps migrate changes
from your EF model to the database schema16. In Visual Studio, go to View > Other Windows > Package
Manager Console (referred to as PMC going forward). PMC uses PowerShell to give you access to lots of
cool functionality. It’s kind of like Autocad’s command-line, so Autocad devs might feel right at home.

In the PMC, set the Default Project to AU.CodeFirst.DataAccess. This is important because it’s where
the DbContext derived class lives. At the command prompt, type Enable-Migrations and press Enter.
Several things will happen:

 A Migrations folder is created. This folder will store migration classes that will be created along
the way, enabling you to apply and even roll back schema changes.

 A Configuration class is added. This class configures certain settings about how EF functions, as
well as provides a means for seeding data into the database for development purposes.

 An InitialCreate class. Because our database already exists, the InitialCreate class is added to
provide a base point and to give us a roll-back capability if we wanted to discard a given change.

14 EF has some other built-in protections if proposed schema changes will result in data loss.
15 This might sound time-consuming, but EF uses some tricks to speed this up and in practice it’s pretty fast.
16 You could go make all the changes in the database yourself, but it would be very tedious and difficult to get
exactly right.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

19

The cool thing about the Migration classes from a non-SQL developer standpoint is that it isn’t SQL, it’s
just code. EF will convert it to SQL code, but the generated migration code is pretty easy to get the gist
of, and even make modifications to (if necessary)17.

We’re going to baby step our way into this. At the PM Console, type Add-Migration

Equipment_annotations and press Enter. This will create a new Equipment_annotations class for us
with the following migration code:

FIGURE 23 LISTING 10

Two methods are overridden: Up and Down. Up is used for new modifications to the database, Down is
used to roll them back. Notice that the “Equipments” table will now be renamed to “Equipment”, thanks
to the Table annotation. And several existing columns will be altered, changing their size, data type (in
some cases), and whether or not they are required. Note especially the dropping of the Project_ID

column and the renaming of Project_ID1 to Project_ID. This is what the ForeignKey attribute does to
realign the foreign key the way we originally wanted it.

It’s important to READ the migration code before proceeding to the next step. I catch
many problems in my model configuration by reading this code first. After you fix the
configuration error(s), type Add-Migration <name_of_migration> –force to
regenerate the migration file.

After reading the migration code, type Update-Database at the PM Console, and press Enter. If you
want to see the actual SQL code18, type Update-Database –verbose. Assuming there aren’t any errors

17 Be careful about making modifications to migration classes. Usually, if there’s a problem it’s because of an
underlying issue in your model configuration. The underlying issues should be addressed, then the migration class
can be regenerated. There are some valid cases where you would edit a migration class, but in my experience
they’re fairly rare.
18 If you want to output the actual SQL code so that a DBA can run the script, use update-database –script.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

20

from SQL Server, the migration applies the changes to the database. Information about the migration is
stored in the __MigrationHistory table.

FIGURE 24 MIGRATIONHISTORY TABLE

EF uses the information in this table to compare the existing database to any changes you may have
made in your model, in order to compute the migration files. Leave this table to EF.

Many-to-Many Relationships
A design change has been requested for our application. We need to expand our model to include
contractors, which can be associated with a project. Of course, one project can have multiple
contractors, and one contractor can work on multiple projects. This leads us to a more complicated
“many to many” relationship.

We also want all our model objects to support a Comments field, where a user could enter whatever
comment they wanted to associate with that record. Let’s make those changes before proceeding to our
discussion of Fluent API.

In the AU.CodeFirst.Model project, open the DomainObject class and add the following property to it:

FIGURE 25 LISTING 11

Next, add the following class:

FIGURE 26 LISTING 12

Add the following property to the Project class:

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

21

FIGURE 27 LISTING 13

A project can have many contractors, and a contractor can have many projects.

We also need to update our EngineeringContext, to add the new DbSet<Contractor> property. Add the
following to the EngineeringContext class:

FIGURE 28 LISTING 14

Using the Fluent API to configure database options
Instead of DataAnnotations, we’ll now use Fluent API to specify configuration options. Rather than
explicitly configuring the length of every string field to avoid unwanted nvarchar(max) fields, we can
configure a more reasonable default. Many of our (eventual) tables might have similar fields, like
“Description”. So, we’ll give all fields named “Description” a different default from the standard default
for string fields.

The key method for configuration of the EF model is the OnModelCreating method of our DbContext-
derived class. We’ll override this method in the EngineeringContext class in the
AU.CodeFirst.DataAccess project. Add the following code:

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

22

FIGURE 29 LISTING 15

Note the following:

 Lines 24-25: Here we specify that ANY string property in the model defaults to a maximum
length of 100 characters, unless some later configuration specifies otherwise.

 Lines 26-28: Next, we make a more specific configuration where only string properties named
“Description” default to a maximum length of 255 characters.

 Lines 29-31: We add another specific configuration for any string field named “Comments,”
which be max length in the database.

 Lines 33-37: Configure the Contractor entity to Map to a table named “Contractor” and redirect
the “Description” field in our class to a column named “Desc” in the database19.

 Lines 38-40: Change the max length of the Description property for the Contractor entity to have
a length of 300 characters. This later (and more specific) configuration trumps the previous
“Description” configuration.

Using EntityTypeConfiguration Classes
As your model grows, OnModelCreating is going to get big in a hurry, since you will likely have at least
some configuration to do for each class in the model. I don’t particularly like having long, complex
methods like this, preferring instead to move configurations for each entity to their own separate
configuration class. I only use OnModelCreating for the “global” configurations, and to call the
Configurations.AddFromAssembly method20. Let’s pare that method down to this:

19 This isn’t something I’d typically do on purpose, UNLESS the database already existed and had a naming
convention I didn’t like. Then I might choose a better name as the property name in my model class, but still map it
to the existing column name in the database.
20 This method is new to EF 6, so it isn’t there in earlier versions of EF.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

23

FIGURE 30 LISTING 15.A

Next, we’ll create separate configuration classes, derived from EF’s EntityTypeConfiguration<T>
class. Because there will be (potentially) many of these, I’ll create a separate folder for them. Right-click
the AU.CodeFirst.DataAccess project and choose Add New Folder. Name the folder Configurations. Add
the following class to the new folder:

FIGURE 31 LISTING 16

You only need to provide a constructor in this class, with the particulars of the configuration you want
for that type of object. You’ll note that the code is pretty similar, though there are some syntactical
differences from what we saw in lines 33-40 of Listing 15. While we’re at it, we need a configuration
class for the Project class as well:

FIGURE 32 LISTING 17

 Line 13: Note the HasMany statement in both configuration classes (line 18 of Listing 16). This is
how we tell EF that a Project has many Contractors and a Contractor has many projects. We’ll
see the effect of this shortly.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

24

We’ve done quite a lot of modification to our model. It’s high time we create a migration and update the
database. In the PM Console, type:
Add-Migration Configuration_and_Contractor

The configuration class is generated and opened. There’s quite a lot going on, but in the interest of
space, I’ll only show the Up method here:

FIGURE 33 LISTING 18

Key things to note:

 Lines 10-23: A new Contractor table will be added. Note the “Desc” column, which will have a
max length of 300 (not 255).

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

25

 Lines 15, 18, 19: Other string columns have a max length of 100.
 Line 21: The Comments field is max length.
 Lines 25-36: A new ContractorProjects table will be created. Note that we didn’t create a POCO

for this—it’s purely a many-to-many mapping table. This is a common convention used in
databases.

 Lines 38-39: New Comments columns will be added to the Equipment and Projects tables,
thanks to inheritance from our base DomainObject class.

 Lines 40-46: Existing string columns in the Equipment and Projects tables modified to a max
length of 100.

Go ahead and run update-database from the PMC.

Seeding the database
When developing a new database, it’s often helpful to have “seed” data in place for testing with “real”
data. The DbMigrationsConfiguration class, from which our Configuration class is derived, features
a Seed method we can override just for this purpose. Open the Configuration class in the DataAccess
project. Some commented out sample code is placed there for you as a guide. We’ll seed a couple of
projects, contractors, and equipment into the new, empty database.

Add the following code to the override of the Seed method:

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

26

FIGURE 34 LISTING 19

We didn’t make a change to our model, so we only need to run Update-Database again, to try and get
our seed data into the database. In PMC, go ahead and run Update-Database … and you’ll get yet
another error. This time it’s a NullReferenceException, traced to the line of the Seed method where
we tried to add contractors to a project.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

27

FIGURE 35 NULLREFERENCEEXCEPTION

The problem is that the Contractors property in our model hasn’t been initialized21, so we need to
safeguard against this by updating our Project class to initialize the collections. Add this constructor to
the Project class.

FIGURE 36 LISTING 20

We should also add a constructor to the Contractor class:

FIGURE 37 LISTING 21

In PMC, run Update-Database again. We can use SQL Server Object Explorer to view the records that
have been seeded into the database for us.

The most interesting aspect of this has to do with the many-to-many relationship between projects and
contractors. In our seed code, we added contractor1 and contractor2 to proj1.Contractors. What
this does in the database is add two records to the ContractorProjects table, linking each contractor to
the project. The great thing about this is that the navigation from the Project table to the
ContractorProjects table to the Contractor table happens automagically in the background, thanks to
the navigation properties we setup during configuration.

Work with Entity Framework objects such as DbContext and DbSet to create, retrieve,
update, and delete database records
The Created and Modified date fields are intended to mark when a record is first created, and then the
date and time of the last modification to the record. It would be nice if we could find a “centralized”
spot for this. We’ll now expand our understanding of DbContext a bit, by overriding SaveChanges to fill
this information in any time we’re about to save changes to the database.

21 In practice you might not run into this problem for a while, particularly if you’re working with an existing
database already populated with data. Most of the time you’ll query and modify existing data (so EF fills the
DbSet). Still, it’s good to know how to counter this problem, and the fix is pretty simple.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

28

Because all the objects in our model conveniently derive from DomainObject, and thus inherit the
Created and Modified properties, we can check entities before they’re saved and fill in the necessary
date values.

Open the EngineeringContext class in the AU.CodeFirst.DataAccess project, and override the
SaveChanges method. Add the following code to this method:

FIGURE 38 LISTING 22

DbContext utilizes something called ChangeTracker to keep track of the “state” of entities. These states
include Detached22, Unchanged, Added, Modified, and Deleted. In the code above, we’ll check all
entries. For those whose state is Added, we’ll update the Created date. For those whose state is either
Added or Modified, we’ll update the Modified field. Note that we need to cast the entry.Entity object
to a DomainObject to access the Created and Modified properties. And finally, we call the base
SaveChanges methods.

Refactoring towards Abstraction
One thing about our code in the ConsoleUI project bothers me. The client code that makes use of
EngineeringContext (to this point our console app), isn’t going to be of much use to us when we switch
to our Autocad project. It’s also not going to be very easy to write unit tests. Although we’re not going
to get into a big discussion of unit testing (maybe a class for next year?), I want to at least take you a few
steps in the direction of making our code more testable and reusable.

The first step is to provide an abstraction of our EngineeringContext, which we can do by creating an
interface. An interface is a contract that says any implementer of the interface promises to provide
certain methods or properties. Other code can be written to this abstraction rather than the concrete
implementation of a class. This is key to writing not just testable code, but code that is easy to maintain
and extend.

In the AU.CodeFirst.DataAccess project, open the EngineeringContext class. Position your cursor
somewhere in the EngineeringContext part of the public class line and press CTRL+. then choose
Extract Interface. This creates the following interface code:

22 Detached is a special state wherein objects can be retrieved into the context, but their state is not tracked and
changes will not be persisted. You can think of this as a “read-only” state.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

29

FIGURE 39 LISTING 23

and modifies EngineeringContext:

FIGURE 40 LISTING 24

The next step is to create a repository class23. This repository will act as the main layer of interaction for
code in our UI layer (whatever that might be: a console app, Autocad plugin or web site). It will contain
all the code that interacts directly with an IEngineeringContext implementer (i.e. our
EngineeringContext class). We need our repository class to do a few key things:

 get all records for a particular type
 get only records meeting certain criteria
 add or update a record
 delete a record

This leads us to the following interface, which we can setup using generics.

FIGURE 41 LISTING 25

We’ll now create an implementer of this interface for interacting with Equipment.

23 See important note on the following page, this isn’t a complete Repository pattern implementation.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

30

FIGURE 42 LISTING 26

This implementation24 demonstrates basic interaction with DbContext for all CRUD operations (Create,
Read, Update and Delete). Of particular interest is the GetBy method which allows a caller to specify a
criteria expression used to evaluate which items will be returned. You’ll see how this is used
momentarily.

Please keep in mind that this is not a complete implementation. I’m trying to keep the
example as short as possible and have left out a lot of other important considerations.
Please see the list of references at the end for more in-depth resources than what I’ve
provided here. This very simple implementation should suffice for what we want to
eventually accomplish in our Autocad plugin.

Notice that this repository depends on a class that implements IEngineeringContext (an abstraction).
And this dependency is injected into the repository class via its constructor. These are critical aspects of
making your code testable and modifiable.

24 We would also eventually need similar repositories for our Project and Contractor classes as well.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

31

Let’s write a quick test in our ConsoleUI project before proceeding to our final Autocad project. Change
the Project.Main method as follows:

FIGURE 43 LISTING 27

Run the console app to see how we’re retrieving the equipment, then updating the Name and saving the
changes to the database. The interaction with EngineeringContext is almost completely hidden away
in the implementation of our IRepository interface: EquipmentRepository. This is perfect as we can
now reuse this in a variety of application types, including our Autocad plug-in.

Create AutoCAD objects with data queried from a database via the Entity Framework
model
We’ve created a database from scratch using Code First, and seen how to create, update, delete and
read data. To wrap things up, we want to do something more practical as Autodesk developers. Let’s
write an Autocad plug-in that can draw something for us (a table), using information retrieved via EF.

Create an Autocad DLL
Add a new C# class library project to your solution called AU.CodeFirst.Autocad. Make this the Startup
project.

Add references to the following:

 EntityFramework (via NuGet)
 AU.CodeFirst.DataAccess
 AU.CodeFirst.Model
 System.Configuration
 AcMgd, AcDbMgd, AcCoreMgd (browse to the ObjectArx 2016\inc25 folder. Be sure to set the

CopyLocal property of these three references to false.

Finally, copy the connectionStrings section of one of the other App.Config files we’ve modified before
into the new project’s App.Config26.

And finally, right-click the project, choose Properties > Debug and set the Start Action to launch
Autocad, as shown below:

25 By default the ObjectArx SDK installs to C:\ObjectArx 2016. Of course, if you are using an earlier version of the
SDK, the version number may differ (i.e. ObjectArx 2015).
26 There’s a serious gotcha coming up with this…stay tuned.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

32

FIGURE 44 DEBUGGING INTO AUTOCAD

The main thing we want to demonstrate here is how to leverage the EF model we’ve created to create
objects in Autocad. We’ll retrieve data from the database and use it to create a table of the Equipment
data belonging to a user-specified project. While this example is going to be pretty simple, the sky is
really the limit here.

Add a class file to your project named Commands, and add the code in the listing below. For sake of
space, I’ve included the Line notes ahead of the listing this time. This is a much longer method than I’d
ordinarily like, but the main gist of it is as follows.

 Lines 20-24: Prompt the user for a project #.
 Lines 26-32: Retrieve the equipment associated with that project.
 Lines 39-42: Prompt the user for an insertion point.
 Lines 45-73: Create a table with the project number in the table’s “header” row, and each

equipment’s tag and name values in the “data” rows.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

33

FIGURE 45 LISTING 28

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

34

The first time I ran this I expected everything to go smoothly, since this worked just fine in the console
app. But when I ran it inside Autocad, I ran into an unexpected problem.

Because our DLL is running inside Autocad, it’s not our dll’s App.Config that’s being used…it’s Autocad’s!
Our plugin can’t locate the database, since the connectionString we need is not in Autocad.exe.config,
and all sorts of whackiness27 ensues.

I really don’t want to go mucking about in the Autocad.exe.config file, nor should you, so we need to
add a way for our application to read our dll’s config file, locate the correct connectionString, and
supply that data to our EngineeringContext. Look back at listing 28, lines 29-30 and you’ll see the call
to the ConfigurationReader class we’re about to add.

To make this work, we need to add another constructor to our EngineeringContext class first:

FIGURE 46 LISTING 29

And then in our Autocad project, add a class called ConfigurationReader. I found this solution on the
Internet (thank you Rod Howarth28!) and added the GetConnectionString method.

 Lines 21-34: Locate the dll’s config file and read it into a
System.Configuration.Configuration object.

 Lines 54-59: Locate the ConnectionStrings section, and get the named (i.e.
“EngineeringContext”) ConnectionString.

27 I prefer “whackiness” to “Autocad crashed and burned a horrible death of the fatal execution variety.”
28 See Rod Howarth reference in the Resources section at the end of the document.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

35

FIGURE 47 LISTING 30

At this point, we can run our solution in Debug mode, and Autocad should fire up. Start a new drawing,
then use the NETLOAD command and browse to the solution folder, and under
AU.CodeFirst.Autocad\bin\Debug, load the AU.CodeFirst.Autocad.dll. At the command prompt, type
AUTE and press Enter.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

36

At the prompt, enter 2015001 and press Enter.

At the prompt, pick an insertion point.

You should be rewarded with a beautiful baby table.

FIGURE 48 A TABLE IS BORN

Summary
The goal of this class was to give you an introduction to using Entity Framework. We examined how to
use the Database First approach to quickly get started with an existing database. We then created a
brand new database using the Code First approach.

We looked at some of the ways we can customize the configuration of an EF model, including specifying
a database name and server location, using data annotations and the Fluent API to configure schema
options, as well as seeding our development database with sample data.

We took some first steps towards layering our application, and abstracting away from our DbContext
derived class, which makes our solution more reusable, testable and modifiable.

And finally, we created an Autocad plugin that extracted data from the database via EF, which was used
to draw a table object. Although I picked Autocad because that’s where much of my experience lies, this
should be easily extendable to other Autodesk applications that support .NET plugins.

This was a lot of ground to cover, and I hope it wasn’t too much—it’s a big topic and I wanted to cover
enough to make EF useable. I also hope the problem-solving approach was valuable as it better
represents a true “life in the trenches with EF” experience, at least as I’ve lived it. Please see the
Resources section at the end of this document for more in-depth study.

SD10672 - Exploring Entity Framework for AutoCAD Development—And Beyond!

37

Resources
 Google “Julie Lerman”, the end29.

o Several courses on Pluralsight
o Book: Programming Entity Framework: Code First http://amzn.to/1SODx34
o Book: Programming Entity Framework: DbContext http://amzn.to/1RUrYql
o Book: Programming Entity Framework: Building Data Centric Apps with ADO.NET Entity

Framework http://amzn.to/1QBiOk7
 “Data Points: Code First Goodies in Entity Framework 6.” MSDN Magazine, January 2014:

https://msdn.microsoft.com/en-us/magazine/Dn519921.aspx
 Entity Framework Documentation: https://msdn.microsoft.com/en-us/data/ee712907
 Entity Framework Tutorial: http://www.entityframeworktutorial.net/code-first/entity-

framework-code-first.aspx
 Autodesk “My First Plug-in Training”.

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=18162797
 Rod Howarth, How to use an app.config file in a DLL plugin (External Command):

http://blog.rodhowarth.com/2009/07/how-to-use-appconfig-file-in-dll-plugin.html

29 Just kidding, but she is a very prolific author and THE expert on Entity Framework.

