
An MEP Engineer’s Guide to Dynamo

 1

ES10679

An MEP Engineer’s Guide to Dynamo

Andrew Duncan

Arup, BIM Manager

Andrei Capraru

Arup, Mechanical Engineer

Learning Objectives

• Discover enough about Dynamo to get started

• Learn how to link Revit Space information to Revit families for use in calculations

• Learn how to use Dynamo as an engine for performing MEP calculations such as determining

heating loads or flow rates

• Learn how to pull data from Excel into Revit via Dynamo to inform calculations

Description

People often associate Dynamo software with designing complex parametric geometry; but Dynamo

software is not just a tool for creating funky shapes, it’s a whiz at processing all kinds of data. This class

will demonstrate various examples of how Dynamo software has been applied to common MEP

(mechanical, electrical and plumbing) engineering tasks to make them more efficient or more accurate.

We will cover linking Revit Space naming utility information to Revit software families, using Dynamo

software as an engine for MEP calculations, using Dynamo software to give you visual feedback on how

hard equipment is being asked to work in your design, and using Microsoft Excel as a source of data for

much of the above. You also need not worry if you are completely new to Dynamo software (most MEP

folk will be), as we will cover enough basics to get you going before we dive into the advanced stuff.

Your AU Experts

Andrew Duncan is MEP BIM Manager for a large Building Engineering team based in London. This role

requires that he manages all aspects of the group's building information modelling for building services

disciplines, from direct production through to defining processes and standards. He has worked on a

wide variety of new build and refurbishment projects whilst with Arup and has helped to deliver designs

for buildings located all over the globe including the Middle East, South America, Far East Asia, Europe

and the United Kingdom.

Andrei Capraru is a Mechanical Engineer working within multi-disciplinary design teams in London. Since

joining Arup, Andrei has been involved in projects that had BIM (Building Information Modelling) as their

core deliverables. He has design experience in mission critical, educational, healthcare, commercial and

custodial sectors. Andrei has been the lead mechanical engineers on the first pilot project for the UK

Government BIM Mandate which has been awarded BIM Project of the Year in London and the South

Easy by Construction Excellence.

An MEP Engineer’s Guide to Dynamo

 2

Contents

Workflow script 1 – Space Parameter Data Population ... 3

1. Script 1 Workflow.. 3

Step 1. Populate Excel with engineering data .. 3

Step 2. Run the Dynamo script ... 4

2. The script description.. 4

2.1. Read excel data ... 5

2.2. Process the excel data... 6

2.3. List.Deconstruct Node ... 7

2.4. Read the Revit space data ... 8

2.5. Compare Excel Space Types with Revit Space Types .. 9

2.6. Prepare Lists for Revit Parameter writing ... 13

2.7. Write Excel Data into Revit ... 15

Workflow script 2 – MEP Design Data Calculations .. 16

Workflow script 3 – MEP Equipment Data Calculations ... 19

An MEP Engineer’s Guide to Dynamo

 3

Workflow script 1 – Space Parameter Data Population

To get started we will look at the first script in our series, which allows us to populate space data from

Excel into Revit Spaces. The spaces in Revit can hold parameters that define their identity, such as Space

Name, Number, Area, as well as other engineering data such as Heating Load, Average Illuminance, etc.

For this exercise you can use the Revit standard Space Parameters or you can create your own.

Throughout this hand-out and presentation you will see a number of parameters that cannot be found

in the Revit standard files. These Parameters form part of the Arup Standard Template, however the

Dynamo scripts are not dependent on these names, as it will be explained later on.

1. Script 1 Workflow

Step 1. Populate Excel with engineering data

The Excel spreadsheet will represent the database for the engineering data that hold the Space Type

information for the project.

The main driver of the script will be located in the first column of the excel spreadsheet and it needs to

have the exact name as the Revit Space Parameter that defines the type of the space. For this example

we have used a fictive office building that has cellular offices, open space offices, restaurants, reception,

etc.

The most important thing when setting up the Excel spreadsheet is to ensure that the Parameter Names

and the Space_Type values match exactly the name of the Parameters in Revit.

In this example we have defined how the spaces are treated from a mechanical services point of view.

For example, an Open office will be served by Mechanical Ventilation (i.e. Air Handling Units) which will

provide minimum fresh air to the space and the heating and cooling of the space will be done via Fan

Coil Units.

The spaces in Revit will need to be populated with the desired Space types based on the building’s

configuration. You can do this by either selecting each individual space and populating the Space_Type

Figure 1 Excel - Space information database example

An MEP Engineer’s Guide to Dynamo

 4

parameter, or using schedules or other tools that allows you to mass populate information. This will be

the only bit of manual labour that is required for the rest of the class.

Figure 2 Revit Space Properties - Space_Type data population

Step 2. Run the Dynamo script

Once the Excel data has been setup and populated and the Revit Space_Type Parameter filled in for all

spaces, we can run the Dynamo script. Once the run is complete, your Revit spaces will be populated

with the information from excel. You can now start producing your Colored Drawings, Generate

Engineering Data or Produce Room Data sheets within Revit.

It is that easy! You can either run the script on manual mode and run it after you’ve done all the changes

or have it run automatically in the background capturing the changes live as you modify your excel

spreadsheet. Depending on the size of the model and the number of spaces this might slow down your

system.

2. The script description

Now that we’ve covered what the script does and covered the workflow, let’s have a look at what is

happening in Dynamo and how the script was built. We will run through the script in small chunks and

discuss all the more important nodes.

The Space Population Script is split into two main branches:

- The Excel data branch which reads the data from excel and does all the processing required to

bring the Lists in the correct format

- The Revit Spaces branch which reads the spaces information and processes the Lists to have a

similar List format as the Excel branch

A third branch deals with the error handling of the script, informing on which Space Types have been

successfully populate and if there are any inconsistencies between Revit and Excel with regards to the

Space Type names.

An MEP Engineer’s Guide to Dynamo

 5

2.1. Read excel data

The first node in the script defines the Excel file path that contains the Space Type data. The node comes

with a Browse function to help the user find the required file easier.

The next node in line is the File.FromPath node which takes the file path information from the previous

node and generates a file object. The file object is then passed over to the Excel.ReadFromFile node

which will read the data from the Output Excel spreadsheet and will store the data in the form of a List.

Figure 3 Script overlook Step 1

Figure 4 Select spreadsheet and read excel data

An MEP Engineer’s Guide to Dynamo

 6

2.2. Process the excel data

By default the Excel.ReadFromFile node will create a List with the Excel data contained in the specified

spreadsheet. The main List will contain a set of sub-Lists (i.e [0] List, [1] List, etc) that hold the data for

each individual row in excel.

If we have a closer look at sub-List [L0] List we can see that it contains all the information contained in

the row 1 cells in the exact order they’ve been entered in the table.

Now that we understand the structure of the List generated by the Excel.ReadFromFile node we can

start looking at ways to manipulate the List to get it into a format suitable for combining with the

information that we are extracting from Revit.

Figure 5 Excel.ReadFromFile

Figure 6 Excel Space Type database

An MEP Engineer’s Guide to Dynamo

 7

2.3. List.Deconstruct Node

The deconstruct node will split the initial List generated by the Excel.ReadFromFile node into two new

separate Lists. The First List will contain the elements in the [0] List, and the Rest List will contain the

remaining elements. In this way we managed to separate the Excel table header and the data within the

table into two separate Lists.

The Count node will count the number of elements in [0] List, and the value will be used later on in the

script to inform on the number of Parameters to be updated.

Figure 7 List.Deconstruct location in the script

Figure 8 List.Deconstruct outputs

An MEP Engineer’s Guide to Dynamo

 8

The third node from the top will extract the first sub-List from the Rest List. The respond will correspond

with thee values contained on the second row of the Excel file. In our case it will hold the parameters

assigned to the Atrium space type.

2.4. Read the Revit space data

At this point we have extracted the data out of excel and split it in two Lists, one that contains the

header of the excel table and the second List that contains remainder of the table. In Revit terminology,

we now have the first List that contains the Space Parameter Names and the second List that contains

the Space Parameter Values. In order to proceed further with our Excel manipulation we need to look at

the data extracted from Revit and compare the Space Parameter Names between Revit and Excel to

check they match.

To access the Space data from Revit we used the Categories node. This node allows you to select any of

the Revit build-in Categories. For our script we are interested in the MEPSpaces category, which will be

passed into the All Elements of Category node. This node will selects all the MEP Spaces from the model.

We now have access to all the spaces in Revit. In order to interrogate their parameters we need to use

the Element.GetParameterValueByName. The node syntax requires a Parameter Name or a List of

Parameter Names as its secondary input. For this input we can now use the List.FirstItem node

described in section 2.2 which contains the Excel header names. The output of this node is a List of all

Figure 9 Revit data interrogation

Figure 10 Access Revit MEPSpaces and read their Parameters

An MEP Engineer’s Guide to Dynamo

 9

the spaces in the Revit model and their corresponding Space Type. For example the [0] Reception List

element matches the Revit Space no 1 which has the Space_Type Parameter = Reception.

2.5. Compare Excel Space Types with Revit Space Types

2.5.1. Excel Data Filtering

Now that we have a List of Space Type values from Excel and a List with all the Revit Spaces’ Space_Type

Parameter values we can use a “==” node to compare the two Lists. The node will generate a List of true

and false values. For this node Ensure the Lacing Type is set to Cross Product as we want to check how

Figure 11 Element.GetParameterValueByName output example

Figure 12 Compare Revit data with Excel Data using Space Type the criteria

An MEP Engineer’s Guide to Dynamo

 10

many Revit Spaces have the Restaurant Space Type value, how many are Open Offices and so on. For

more details on Lacing please refer to the Class Slide Presentation.

The CountTrue node will quantify the number of spaces that have been assigned against a certain Space

Type value. For example we can determine the number of Restaurant spaces or the number of Toilet

spaces in the building.

The Math.Sum node sums up all the values in the List generated by the previous node. The result

represents the number of spaces in Revit that have one of the Excel Space_Type values. For this script,

the result from this note tells us that 85 Revit spaces will be populated at the end of the script.

The greater than 0 node will helps identify the positions in the List that don’t match a Space_Type. In

our case we have quite a number of false positions due to the empty cells in Excel. An empty but

formatted cell (i.e. has a border applied to it) in excel is recorded as a null value by Dynamo. Empty and

unformatted cells will be ignored. So if you end up with too many null values in the

Read.ValuesFromExcel node, you might want to consider removing the formatting on some of the empty

rows.

Figure 13 Revit vs Excel Space Type Comparison script

Figure 14 List.Cycle node position in the script

An MEP Engineer’s Guide to Dynamo

 11

The List.Cycle node takes as input the First List generated at the beginning of the script that contains the

first row of the Excel file or the Parameter Names that are to be populated in Revit. The second input is

the Math.Sum node described earlier. The result of the node will be a List that has as values the Excel

Row 1 data repeated 85 times, which is the number of spaces in Revit that will be populated at the end

of the script. The resulting List will feed into the final Revit data writing node, which will be discussed in

more details further down.

List.FilterByBoolMask filters the original List to only those Space Types present in the Revit model. For

this example the second List is full of null items as all the Revit Space_Types are found in the Excel table.

The In node output stores the first List or the items that made the criteria, the Out node output stores

the element that didn’t meet the criteria. The Out List is pushed to the error handling part of the script

to inform the user on the discrepancies between Excel and Revit Space Type data.

2.5.2. Revit Data Filtering

The last action we have done on the Revit data was to extract all the Space Parameter values. We now

need to process them in a similar manner to the ones in excel, however the amount of formatting

required is minimal as we have focused on getting the Excel List in a format similar to the Revit output.

The only task required for the Revit data is to eliminate the Lists that contain Space_Type information

that don’t match the excel Space Types.

The process is similar to the one discussed earlier, and consists broadly of comparing the Space_Type

Parameter data with the Excel Space Type information which generates a true/false set of Lists used

then as masking to eliminate the data that doesn’t meet the criteria.

Figure 15 List.Cycle and List.FilterByBoolMask Example

An MEP Engineer’s Guide to Dynamo

 12

Figure 16 Revit Data Filtering

Figure 17 Dynamo nodes used for Revit data filtering

An MEP Engineer’s Guide to Dynamo

 13

2.6. Prepare Lists for Revit Parameter writing

The next step in our script is to arrange the Revit Spaces List, the Excel Parameter List and the Excel

Values List in the same format such that a short Lacing option can be used the

Element.SetParameterByName which will be discussed in section 2.7.

2.6.1. Revit side List manipulation

In section 2.4 we’ve described the List.Cycle node where we repeated the Parameters which we wanted

populated into Revit by the number of spaces in Revit. To do this we need to create a List that repeats

the space element to match the number of parameters we want to populate. For example if we had only

3 parameters to populate then the space elements would’ve been repeated 3 times.

Figure 18 Revit and Excel List formatting

Figure 19 Revit List side data manipulation

An MEP Engineer’s Guide to Dynamo

 14

Figure 20 Dynamo nodes

Figure 21 Repeat the Space data List to match number of parameter to be populated

An MEP Engineer’s Guide to Dynamo

 15

2.6.2. Excel values List manipulation

We spoke extensively about the Space Type values and about the Excel Table Header which defines the

Revit Space Parameters that are going to be populated. We also described at length how the data

contained by these two Lists has been manipulated and formatted, however we haven’t yet spoken

about the actual values that will given to the Revit Space Parameter. The List generated at the beginning

of this script and which resulted from the Rest List out of the List.Deconstruct node will need to be

repeated and formatted such that it meets the Revit Space List, i.e. each row will need to be repeated 85

times to match the Revit Space List formatting. The process is similar to the one described in the

previous section.

2.7. Write Excel Data into Revit

The last node in our script is the Element.SetParameterByName node which

takes as input the space List, the ParameterName List and the Excel values

List which we’ve prepared in the previous sections. Now that we have all

three elements formatted in the same manner we can go run the script. As

the 3 Lists are identical in format, the short lacing setting will be required for the node.

Figure 22 Revit List side data manipulation

Figure 23 Dynamo script for re-arranging the Excel value List

An MEP Engineer’s Guide to Dynamo

 16

Workflow script 2 – MEP Design Data Calculations

The MEP Design Data Calculations script helps to generate Heating, Cooling and Ventilation loads data

for the spaces based on early stage design information. The Heating and Cooling loads will be

determined by the area of the space and the building’s estimated load in W/m². The occupancy and

ventilation rates will be determined by defining the occupancy density and the ventilation criteria for

the room in either ACH or l/s/person. The design parameters used to determine the engineering data

can be populated in the Revit Spaces using the Space Parameter Data Population Dynamo Script.

Figure 24 Example of design Parameters used to determine engineering data

Most of the script uses the same principles as the script described in Workflow 1. We start by accessing

the space information, re-order the data contained in the Lists, process the data and push it back in

Revit.

In this script we are accessing the space information slightly differently than in the previous script. Since

we know exactly which parameters we want to access, we have used the Get.ParameterValueByName

node and we have defined exactly which Parameters we want to read from directly.

Figure 25 General description of the MEP Design Data Calculation tool

An MEP Engineer’s Guide to Dynamo

 17

The relatively large number of nodes in the middle of the graph which are described as RE-ORDER THE

LISTS CONTAINING THE PARAMETER VALUES are actually just transposing the List resulted from the

Get.ParameterByName node. As discussed during the class, all those nodes can be replaces by

List.Transpose which achieves the exact same result.

Now that we have accessed all the design information out of the Revit spaces we can look generating

Engineering Data like Heating and Cooling Loads, Ventilation Rates and Occupancy values.

Figure 26 Read Space parameters from Revit

Figure 27 Occupancy calculations nodes

An MEP Engineer’s Guide to Dynamo

 18

 Most of the nodes used for the calculations have already been discussed in the first script. The only new

introduction is the List.Maximum node which generates a list that stores the maxximum value of

multiple lists at the same index number. In our case we are using this to determine the maximum

between the l/s/person requirement and the air changes per hour of a space.

Figure 28 Heating load calculation nodes

Figure 29 Ventilation calculation nodes

An MEP Engineer’s Guide to Dynamo

 19

Workflow script 3 – MEP Equipment Data Calculations

Now that we have Engineering Data populated in the spaces we can use it to help us select the

mechanical equipment. For this example we are only looking at the heating load of a space, however the

script can be easily modified to perform the same task for the cooling load just by modifying the

parameter name for reading the data from Space_Mechanical_Heating to Space_Mechanical_Cooling.

 For our example we want to populate the fan coil units in the space with the heating load required to

cover space’s demand. For this we need to identify the number of FCUs in the space and divide the

space’s total heat demand over the number of FCUs serving that space.

We already discussed in the previous workflows how to access space information, we now need to

access the fan coil unit information. We achieve this by using the Categories node again as in the

previous scripts, but we now set it to select all the Mechanical Equipment in the Revit model. Now that

we have all the mechanical equipment instances selected we need to filter it down to the units that can

hold a heating load value. To do this we filter off the elements in the list that don’t have a

Performance_Capacity_Heating parameter. The nodes to achieve this are shown in Figure 31.

The next step is to determine which fan coil units correspond to which space. This is being achieved by

using the Geometry.DoesIntersect node which will give a true or false value depending of the space

geometry intersects with the fan coil unit’s geometry.

The last part of the graph is used to color the fan coil units based on how hard they are working. If the

heating load set to the fan coil unit exceeds its maximum capacity, the unit will be colored red to flag up

that the equipment needs to be reselected.

Figure 30 Equipment load calculation

An MEP Engineer’s Guide to Dynamo

 20

Figure 31 Select all fan coil units in the Revit model

Figure 32 Setting fan coin unit loads workflow

