SD21092
Visual Reporting with Connected Design Data

Philippe Leefsma
Forge Partner Development

Learning Objectives

e Access and manipulate the data which is available out of the box with your Forge
Viewer models

e Explore various way of overlaying and embedding custom graphics into the Viewer

e Learn how to create powerful, highly customized visual applications integrating
elements from multiple data sources

e Leverage the Forge Model Derivative API to access and manipulate design data in
the cloud

Description

Viewing 3D models on a webpage or in a mobile App is great, but visualizing design
data isn’t just about meshes and textures

In this class | will show you how to use JavaScript to turn the Forge Viewer into a
powerful visual reporting tool, giving you access to valuable data associated with each model
extracted from the original design file and connect your viewing application to external
databases &Web APIs to add rich visualization experience

Basic Web development experience is preferable - HTML5 JavaScript, CSS, Web
Services, REST API’s, ...

Your AU Expert

Philippe has been working for the last 10 years at the Autodesk Developer Network,
nowadays renamed Forge Partner Development. He writes JavaScript for the World Wide Web
around the Autodesk Forge Web Services, helping partners and customers who migrate or
evolve in the Cloud. He is sharing his experiences through devblog articles and on Twitter:

@F3lipek

http://adndevblog.typepad.com/cloud_and_mobile
https://twitter.com/F3lipek

Technology Stack

The Forge Viewer allows you to create custom web applications that enable your customers
to visualize and interact with 2D and 3D design data in a web browser or on a mobile device,
anytime, anywhere. No downloads or plug-ins required. Forge Viewer support over 60 file
formats to bring you stunning, detailed, high-fidelity visualizations of models - right within your
browser experience. Our REST and JavaScript APls make it easy for you to quickly develop
web applications.

Here are the main features
» REST and JavaScript APl make it easier to create applications.

» Upload your model via our REST API, and our web service creates the viewing stream
for you.

= Our JavaScript API provides access to model and model components data in your web
app - no need for desktop CAD software installations.

= 2D and 3D models come to life right within your browser - view detailed textures, vivid
visualizations, smooth navigation, and in-depth design data.

= Browser compatibility with Internet Explorer, Edge, Chrome, Safari, Firefox and Opera.

* Visualize and interact with more than 60 design file formats in your web app; no plug-ins
or downloads required.

File management REST API

The REST file management API’s allows you to upload your CAD models to the Autodesk
Cloud. It requires OAuth 2.0 client authentication and returns JSON formatted responses.

For a step by step description of the exact workflow required to upload and manage your files,
please refer to our developer documentation at https://developer.autodesk.com

Client Side Technology

The client side viewer is a zero-client browser-based JavaScript API that allows you to load
and embed your models in any webpage. It requires a WebGL capable browser and is
implemented on top of WebGL and three.js API.

https://developer.autodesk.com/

@ AUTODESK UNIVERSITY

| - Accessing Forge Design Data

Accessing the viewer API

Here is a basic pseudo code sample that illustrates how easy it is to instantiate a viewer,
all you need is an empty container div and a model Id or URN, then the API will take care about
initializing the WebGL canvas and render the model:

html:
<div id='viewer's </div>

js:

loadDocument(urn, ..., function(doc) {

var viewerContainer = document.getElementById('viewer')

var viewer = Autodesk.Viewing.Viewer3D(viewerContainer)

viewer. loadModel(getViewablePath(doc))

// call API's

viewer.setBackgroundColor(...)

viewer. loadExtension('MyExtId"')

/o
B

Detailed explanations about uploading a design and translate it for the viewer can be
found on the API portal documentation:
https://developer.autodesk.com/en/docs/viewer/v2/tutorials/basic-viewer

Viewer Component Model

Here is a simple component model that we can use to represent each selectable
component in a translated design:

1 A

2 name: 'chassis' //display name of the component

3 dbId: 53 //unique id for the component in the model
4 fragIds: [38, 39] //reference the three.js meshes

5 parent: 37 //dbld of the parent node

6 children: [65, 113, 146] //array of children nodes ids

7 '}

Page 3

https://developer.autodesk.com/en/docs/viewer/v2/tutorials/basic-viewer

M AUTODESK UNIVERSITY

Filter by name
4 V8 Engine
CYLINDER BLOCK:1

CRANK:1
FLYWHEEL:1

» Piston_Piston Ring Assy:2
» Piston_Piston Ring Assy:1
» Piston_Piston Ring Assy:3
» Piston_Piston Ring Assy:4
» Piston_Piston Ring Assy:5
» Piston_Piston Ring Assy:6
» Piston_Piston Ring Assy:7
» Piston_Piston Ring Assy:8
» Connecting rod:1

» Connecting rod:2

Components representing the design hierarchy in ModelStructure Panel

Model Structure

The two following snippets illustrate how to recursively iterate the instance tree

for the root node and generate the hierarchy for the whole model:

function buildModelTree (model) {

var instanceTree = model.getData().instanceTree

var rootNode = {
dbId: rootld,

1

2

3

4

5 var rootld = instanceTree.getRootId()

6

7

8

9 name: instanceTree.getNodeName(rootlId)

10 }

11

12 buildModelTreeRec(rootNode)
13

14 return rootNode

15}

Page 4

M AUTODESK UNIVERSITY

1 function buildModelTreeRec (node) {

2

3 instanceTree.enumNodeChildren (node.dbId, function (childId) {
4

5 node.children = node.children || []

6

7 var childNode = {

8 dbId: childId,

9 name: instanceTree.getNodeName(childId)
10 }

11

12 node.children.push(childNode)

13

14 buildModelTreeRec(childNode)

15 })

16 |}

Complete code sample can be found on my extensions repository: ModelStructure Extension

Node Fragments

Fragments represent each mesh created in the model, one node can be made of one or
several fragments, the snippet below illustrates how to iterate fragments for a specific nodeld:

var instanceTree = model.getData().instanceTree
var fragIds = []
instanceTree.enumNodeFragments(dbId, function (fragld) {

fraglds.push(fragId)

o O WU b WN R

})

Component Properties

Each component comes along with specific properties attached to it, they differ
depending from which native file format was generated the design. The following snippet
illustrates how to access properties for a specific nodeld:

model.getProperties(dbId, function(result) {
if (result.properties){
result.properties.forEach(function (prop) -
console. log(prop)

b
} Page 5

O 0o Jd O WU A WNPRE

o}

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.ModelStructure/Autodesk.ADN.Viewing.Extension.ModelStructure.js

@ AUTODESK UNIVERSITY

FLYWHEEL:1
4 Design Tracking Properties
Date Created 20/06/2014

Design Status ~ WorkinProgress

Designer Hi-Tech
Part Number FLYWHEEL
4 Physical

7.250

Density kilogram/miillimeter?

Material Iron, Cast

» Other

Properties are accessible in the viewer through the property panel

You can check a complete sample extension form there: PropertyDump Extension

Page 6

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.PropertyDump/Autodesk.ADN.Viewing.Extension.PropertyDump.js

@ AUTODESK UNIVERSITY

[l - Ul Customization

2D Overlays

The viewer is simply a WebGL 3D canvas element contained inside a div, so it means
that with html and CSS you can overlay any custom 2D element you want on top of it, then
control them or hook them up to viewer events using JavaScript. This makes Ul customization
pretty flexible and powerful, letting you the capabilities to overlay any custom data on top of the
models.

Custom Panel

class CustomPanel extends Autodesk.Viewing.UI.DockingPanel {

constructor(container, title, options = {}) {

this.container.appendChild(...)
}

1
2
3
4
5 super(container, panelld, title, options)
6
7
8
9

VISUAL REPORTS

Pie Chart | |

Ru
Acetal Resin, White \
lon Composite (Nylon, molybdenum disulphide) N

\ |
ABS Plastic ‘
R L
e > ‘\“

> Stainless Steel

Stesl, Mid ~___

, High Strength Low Alloy ———

Nylon-6/6 o
Other
Brass, Soft Yellow
Polyaryletherketone Resin

The DockingPanel is a component provided by the viewer API, it is the base class used
to display information inside the viewer and interact with the settings. You can reuse it and
extend it in your own applications to provide seamless integration experience to the user:

DockingPanel Extension

Page 7

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.DockingPanel/Autodesk.ADN.Viewing.Extension.DockingPanel.js

@ AUTODESK UNIVERSITY

Custom PropertyPanel

The ViewerPropertyPanel extends the previous base DockingPanel. It is used by the
viewer to display selected component properties. You can extend it to inject or replace original
properties by custom properties.

1 class CustomPropertyPanel extends Autodesk.Viewing.UI.ViewerPropertyPanel {
2

z constructor(viewer) { CUSIONBACIE DTusesa't

5 super(viewer) Physical

6 } Design Tracking Properties

7 Other

8 setProperties (properties) { Meta Properties

9 . Text Property I'm just a text!
12 properties.push({ ... custom property ... }) Link Property

12 super.setProperties(properties) File Property

13 } : =

14 1 mage Property

Following samples illustrate how to
Extend and customize the property panel:

PropertyPanel Extension

MetaProperties Extension

MetaProperties Extension panel

Fragment Overrides

We introduced before how to access fragmentld’s associated with each node. Here is
what they are useful for: they can be used to access the actual Three.js meshes in order to
apply different material to them or transform the components:

1 |//current model

2 var model = viewer.model

3

4 |//create custom material

5 var material = new THREE.MeshPhongMaterial({
6 color: '#F43BCl'

7 //... other properties

g 1

9

10 | //set material on specific fragld

11 model.getFragmentList().setMaterial(

12 fragld, material)

13

14 //force viewer to update scene

15 viewer.impl.invalidate(true) Page 8

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.PropertyPanel/Autodesk.ADN.Viewing.Extension.PropertyPanel.js
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.MetaProperties/Autodesk.ADN.Viewing.Extension.MetaProperties.js

@ AUTODESK UNIVERSITY

1 | //access render proxy

2 var renderProxy = viewer.impl.getRenderProxy(
3 model, fragld)

4

5 |//clone geometry

6 var meshProxy = new THREE.Mesh(

7 renderProxy.geometry)

8

9 meshProxy.matrix.copy(

10 renderProxy.matrixWorld)

11

12 //create 3d overlay

13 viewer.impl.addOverlay(

14 materialName, meshProxy)

15

16 | // force update

17 viewer.impl.invalidate(true)

1 // access fragment proxy i.e. THREE.Mesh
2 var fragProxy = viewer.impl.getFragmentProxy(
3 model, fragId)

4

5 fragProxy.getAnimTransform()

6

7 fragProxy.position = new THREE.Vector3(x, vy, z)
8

9 | //Not a standard three.js quaternion
10 fragProxy.quaternion._x = qx;
11 fragProxy.quaternion._y = qy;

12 fragProxy.quaternion._z = qz;

13 fragProxy.quaternion._w = qw;

14

15 fragProxy.updateAnimTransform()

16

17 viewer.impl.invalidate(true)

The following links contain samples that illustrate how to map component materials
based on specific selected property. They also make use of the d3.js visualization library

Visual Reporting

VisualReport Extension

Page 9

https://d3js.org/
http://adndevblog.typepad.com/cloud_and_mobile/2016/05/visual-reporting-for-view-data-d3.html
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/tree/master/src/Viewing.Extension.VisualReport

@ AUTODESK UNIVERSITY

SVG

Scalable Vector Graphics (SVG) is an XML-based markup language for describing two-
dimensional vector graphics. SVG is essentially to graphics what HTML is to text.
(source: Mozilla Developer Network)

SVG can provide pretty powerful customization capabilities to overlay custom data on
top of the viewer and hook them up to events.

Material: Steel
X)) Bindto State
&XD) Occlusion ..) jr

Appearance: Plastic, Matte (White)

Makup3D Extension

See those links for complete code samples and live demo:

Markup3D

Markup3D Extension

Coordinates Conversion

Page 10

http://adndevblog.typepad.com/cloud_and_mobile/2016/04/markup3d-sample-for-view-data-api.html
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/tree/master/src/Viewing.Extension.Markup3D

M AUTODESK UNIVERSITY

The previous Markup3D demo is using coordinate conversion to keep 2D markups in
sync with the actual 3D point location on the model.

Here is how it can be achieved

1 function screenToWorld (screenPoint) {

2

3 var viewport = viewer.navigation.getScreenViewport()

4

5 var n = {

6 x: (screenPoint.x - viewport.left) / viewport.width,
7 y: (screenPoint.y - viewport.top) / viewport.height
8 }

9

10 var worldPoint = viewer.utilities.getHitPoint(n.x, n.y)
11

12 return worldPoint

13}

function worldToScreen(worldPoint) {

var p = new THREE.Vector4()

p.x = worldPoint.x
p.y = worldPoint.y
p.z = worldPoint.z
p.w=1

var camera = viewer.navigation.getCamera()

p.applyMatrix4(camera.matrixWorldInverse)
p.applyMatrix4(camera.projectionMatrix)

var screenPoint = viewer.impl.viewportToClient(p.x, p.Yy)
//snap pixel centre
screenPoint.x = Math.floor(screenPoint.x) + 0.5

screenPoint.y = Math.floor(screenPoint.y) + 0.5

return screenPoint

Page 11

AUTODESK UNIVERSITY

3D Overlays & Custom meshes

Another technigue that you may use to insert additional visual data into the viewer is to
add your own 3D meshes to the scene:

1 var geometry = new THREE.SphereGeometry(size, 4, 4)
2

3 var mesh = new THREE.Mesh(

4 geometry,

5 material)

6

7 mesh.position.set(x, vy, 2)

8

9

viewer.impl.scene.add(mesh)

VELOCITY X

8.76 m/s

Om/ss

Q simulationHub

A very example of custom 3D meshes inserted in the viewer bringing useful information is
the Simulation Hub

Page 12

https://www.simulationhub.com/knowledge-base/simulation-gallery

!@E AUTODESK UNIVERSITY

CSS3DRenderer & CSS3DObject

The CSS3DRenderer and CSS3DObject let you insert 2D content inside the 3D scene,
providing some interesting customization capabilities

var cssRenderer = new THREE.CSS3DRenderer()

viewer.container.appendChild(
cssRenderer,domElement)

var glScene = new THREE.Scene()

var iFrame

document,createElement('iframe’;
var c¢ssObj = new THREE.CSS3DObject(iFrame)
cssObj.position.set(x, vy, z)
cssObj.scale.set(sx, sy, sz)

glScene.add(css0bj)

Pier 9 IoT Viewer

IVE HAAS F1 AND STE
HAAS RACING REPORT >

—

I
| 01 mse scoop: DXCLUS

Watcp, Video

CSS3D demo: embedding 2D web page in the viewer CSS3D demo: embedding 2d graphics in the viewer

Page 13

@ AUTODESK UNIVERSITY

[l = Connecting your Application to the Cloud

RESTful APl with Node.js & Express

Setting up REST routes in a Node.js/Express application on your server that can
be called by your client application in order to exchange data is very easy

1 var router = express.Router()

2

3 router.get('/items/:id"', function (req, res) {
4

5 var item = getItemFromDatabase(id)
6

7 res.json(item)

g8 1)

9

10 var app = express()

11

12 app.use('/api', router)

13

14 app.listen(process.env.PORT)|

On the client side, you can make use of the new fetch API to easily request data
from your server:

1 function getItem(id, onSuccess, onError) {
2

3 fetch('/api/items/' + id).then(function (response) {
4

5 response.json(function (item) {

6

7 onSuccess(item)

8 })

9

10 }, function (error) {

11

12 onError(error)

13 1)

14}

Page 14

https://developer.mozilla.org/en/docs/Web/API/Fetch_API

M AUTODESK UNIVERSITY

The latest async/await JavaScript feature lets you write asynchronous code in a pretty neat way

async function getItem (id) {

var response = await fetch('/api/items/' + id)

var item = await response.json()

return item

async function taskOnItems (itemIds) {

const itemTasks = itemIds.map((id) => {

return getItem(id)
1)

const items = await Promise.all(itemTasks)

//All items retrieved
items.forEach((item) => {

console.log('Item: ' + item.name)

3

For a comprehensive sample using all those concepts, take a look at the following project:

https://github.com/Autodesk-Forge/forge-rcdb.nodejs

“)

w Forge | RCDB @' Home

* | Database
Material Supplier
ABS Plastic Autodesk

Acetal Resin, ADN
Black

Acetal Resin, Autodesk
White

Aluminum- Autodesk

Cost Breakdown

© Brass, Soft Yellow

Q@ Nylon6ls

L settings ~

Price (/kg)

© Nylon Composite (Nylon, molybdenum disulphide)

© Avout.

Currency
BRL -

BRL ~
BRL ~

CNY ~

Page 15

http://adndevblog.typepad.com/cloud_and_mobile/2015/11/getting-rid-of-javascript-callbacks-using-asyncawait.html
https://github.com/Autodesk-Forge/forge-rcdb.nodejs

!@'(AUTODESK UNIVERSITY

Resources

Autodesk Forge Developer Portal

This presentation Online

Github repository for this presentation

Github repository with Autodesk Forge samples (1)

Github repository with Autodesk Forge samples (2)

Library of viewer extension demos

Forge RCDB repository on Github

D3 Library

Page 16

https://developer.autodesk.com/
https://leefsmp.github.io/forge-connected-data/
https://leefsmp.github.io/forge-connected-data/
https://github.com/leefsmp/forge-connected-data
https://github.com/Developer-Autodesk
https://github.com/Autodesk-Forge
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/tree/master/src/Viewing.Extension.Markup3D
https://github.com/Autodesk-Forge/forge-rcdb.nodejs
https://d3js.org/

