
 SD21092

Visual Reporting with Connected Design Data
Philippe Leefsma
Forge Partner Development

Description

Viewing 3D models on a webpage or in a mobile App is great, but visualizing design
data isn’t just about meshes and textures

 In this class I will show you how to use JavaScript to turn the Forge Viewer into a
powerful visual reporting tool, giving you access to valuable data associated with each model
extracted from the original design file and connect your viewing application to external
databases &Web APIs to add rich visualization experience

 Basic Web development experience is preferable - HTML5 JavaScript, CSS, Web
Services, REST API’s, …

Your AU Expert

Philippe has been working for the last 10 years at the Autodesk Developer Network,
nowadays renamed Forge Partner Development. He writes JavaScript for the World Wide Web
around the Autodesk Forge Web Services, helping partners and customers who migrate or
evolve in the Cloud. He is sharing his experiences through devblog articles and on Twitter:
@F3lipek

Learning Objectives

 Access and manipulate the data which is available out of the box with your Forge
Viewer models

 Explore various way of overlaying and embedding custom graphics into the Viewer

 Learn how to create powerful, highly customized visual applications integrating
elements from multiple data sources

 Leverage the Forge Model Derivative API to access and manipulate design data in
the cloud

http://adndevblog.typepad.com/cloud_and_mobile
https://twitter.com/F3lipek

Technology Stack

 The Forge Viewer allows you to create custom web applications that enable your customers
to visualize and interact with 2D and 3D design data in a web browser or on a mobile device,
anytime, anywhere. No downloads or plug-ins required. Forge Viewer support over 60 file
formats to bring you stunning, detailed, high-fidelity visualizations of models - right within your
browser experience. Our REST and JavaScript APIs make it easy for you to quickly develop
web applications.

Here are the main features

 REST and JavaScript API make it easier to create applications.

 Upload your model via our REST API, and our web service creates the viewing stream

for you.

 Our JavaScript API provides access to model and model components data in your web

app - no need for desktop CAD software installations.

 2D and 3D models come to life right within your browser - view detailed textures, vivid

visualizations, smooth navigation, and in-depth design data.

 Browser compatibility with Internet Explorer, Edge, Chrome, Safari, Firefox and Opera.

 Visualize and interact with more than 60 design file formats in your web app; no plug-ins

or downloads required.

File management REST API

 The REST file management API’s allows you to upload your CAD models to the Autodesk
Cloud. It requires OAuth 2.0 client authentication and returns JSON formatted responses.

For a step by step description of the exact workflow required to upload and manage your files,
please refer to our developer documentation at https://developer.autodesk.com

Client Side Technology

 The client side viewer is a zero-client browser-based JavaScript API that allows you to load
and embed your models in any webpage. It requires a WebGL capable browser and is
implemented on top of WebGL and three.js API.

https://developer.autodesk.com/

Page 3

I - Accessing Forge Design Data

Accessing the viewer API

Here is a basic pseudo code sample that illustrates how easy it is to instantiate a viewer,
all you need is an empty container div and a model Id or URN, then the API will take care about
initializing the WebGL canvas and render the model:

Detailed explanations about uploading a design and translate it for the viewer can be
found on the API portal documentation:
https://developer.autodesk.com/en/docs/viewer/v2/tutorials/basic-viewer

Viewer Component Model

Here is a simple component model that we can use to represent each selectable
component in a translated design:

https://developer.autodesk.com/en/docs/viewer/v2/tutorials/basic-viewer

Page 4

Model Structure

The two following snippets illustrate how to recursively iterate the instance tree
for the root node and generate the hierarchy for the whole model:

Components representing the design hierarchy in ModelStructure Panel

Page 5

Complete code sample can be found on my extensions repository: ModelStructure Extension

Node Fragments

Fragments represent each mesh created in the model, one node can be made of one or
several fragments, the snippet below illustrates how to iterate fragments for a specific nodeId:

Component Properties

Each component comes along with specific properties attached to it, they differ
depending from which native file format was generated the design. The following snippet
illustrates how to access properties for a specific nodeId:

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.ModelStructure/Autodesk.ADN.Viewing.Extension.ModelStructure.js

Page 6

You can check a complete sample extension form there: PropertyDump Extension

Properties are accessible in the viewer through the property panel

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.PropertyDump/Autodesk.ADN.Viewing.Extension.PropertyDump.js

Page 7

II - UI Customization

2D Overlays

The viewer is simply a WebGL 3D canvas element contained inside a div, so it means
that with html and CSS you can overlay any custom 2D element you want on top of it, then
control them or hook them up to viewer events using JavaScript. This makes UI customization
pretty flexible and powerful, letting you the capabilities to overlay any custom data on top of the
models.

Custom Panel

The DockingPanel is a component provided by the viewer API, it is the base class used
to display information inside the viewer and interact with the settings. You can reuse it and
extend it in your own applications to provide seamless integration experience to the user:

DockingPanel Extension

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.DockingPanel/Autodesk.ADN.Viewing.Extension.DockingPanel.js

Page 8

Custom PropertyPanel

 The ViewerPropertyPanel extends the previous base DockingPanel. It is used by the
viewer to display selected component properties. You can extend it to inject or replace original
properties by custom properties.

Following samples illustrate how to
Extend and customize the property panel:

PropertyPanel Extension

MetaProperties Extension

Fragment Overrides

 We introduced before how to access fragmentId’s associated with each node. Here is
what they are useful for: they can be used to access the actual Three.js meshes in order to
apply different material to them or transform the components:

MetaProperties Extension panel

https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.PropertyPanel/Autodesk.ADN.Viewing.Extension.PropertyPanel.js
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/blob/master/src/Autodesk.ADN.Viewing.Extension.MetaProperties/Autodesk.ADN.Viewing.Extension.MetaProperties.js

Page 9

The following links contain samples that illustrate how to map component materials
based on specific selected property. They also make use of the d3.js visualization library

Visual Reporting

VisualReport Extension

https://d3js.org/
http://adndevblog.typepad.com/cloud_and_mobile/2016/05/visual-reporting-for-view-data-d3.html
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/tree/master/src/Viewing.Extension.VisualReport

Page 10

SVG

Scalable Vector Graphics (SVG) is an XML-based markup language for describing two-
dimensional vector graphics. SVG is essentially to graphics what HTML is to text.

(source: Mozilla Developer Network)

 SVG can provide pretty powerful customization capabilities to overlay custom data on
top of the viewer and hook them up to events.

See those links for complete code samples and live demo:

Markup3D

Markup3D Extension

Coordinates Conversion

Makup3D Extension

http://adndevblog.typepad.com/cloud_and_mobile/2016/04/markup3d-sample-for-view-data-api.html
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/tree/master/src/Viewing.Extension.Markup3D

Page 11

The previous Markup3D demo is using coordinate conversion to keep 2D markups in
sync with the actual 3D point location on the model.

Here is how it can be achieved

Page 12

3D Overlays & Custom meshes

 Another technique that you may use to insert additional visual data into the viewer is to
add your own 3D meshes to the scene:

A very example of custom 3D meshes inserted in the viewer bringing useful information is
the Simulation Hub

https://www.simulationhub.com/knowledge-base/simulation-gallery

Page 13

CSS3DRenderer & CSS3DObject

 The CSS3DRenderer and CSS3DObject let you insert 2D content inside the 3D scene,
providing some interesting customization capabilities

III - Connecting your App to the Cloud

REST API with Node.Js and Express

CSS3D demo: embedding 2d graphics in the viewer

CSS3D demo: embedding 2D web page in the viewer

Page 14

III – Connecting your Application to the Cloud

RESTful API with Node.js & Express

Setting up REST routes in a Node.js/Express application on your server that can
be called by your client application in order to exchange data is very easy

On the client side, you can make use of the new fetch API to easily request data
from your server:

https://developer.mozilla.org/en/docs/Web/API/Fetch_API

Page 15

The latest async/await JavaScript feature lets you write asynchronous code in a pretty neat way

For a comprehensive sample using all those concepts, take a look at the following project:

https://github.com/Autodesk-Forge/forge-rcdb.nodejs

http://adndevblog.typepad.com/cloud_and_mobile/2015/11/getting-rid-of-javascript-callbacks-using-asyncawait.html
https://github.com/Autodesk-Forge/forge-rcdb.nodejs

Page 16

Resources

Autodesk Forge Developer Portal

This presentation Online

Github repository for this presentation

Github repository with Autodesk Forge samples (1)

Github repository with Autodesk Forge samples (2)

Library of viewer extension demos

Forge RCDB repository on Github

D3 Library

https://developer.autodesk.com/
https://leefsmp.github.io/forge-connected-data/
https://leefsmp.github.io/forge-connected-data/
https://github.com/leefsmp/forge-connected-data
https://github.com/Developer-Autodesk
https://github.com/Autodesk-Forge
https://github.com/Developer-Autodesk/library-javascript-viewer-extensions/tree/master/src/Viewing.Extension.Markup3D
https://github.com/Autodesk-Forge/forge-rcdb.nodejs
https://d3js.org/

