

Page 1

CS21802: Dynamo for Construction Workflows
Brendan Nichols
The Beck Group
BrendanNichols@beckgroup.com
@BrendanANichols

Description

We’ve all seen the Dynamo extension used for twisting dramatic towers, and we’ve even
seen it used to recreate some of our favorite Star Wars characters. But if you’re a general
contractor or work in the construction industry, you may be wondering if Dynamo can do
anything for you. In this class, we will demonstrate real construction problems that were
solved with the Dynamo extension. You will see demonstrations analyzing slab flatness,
cut-and-fill volume calculation, and installation simulation. With the skills and examples
taught in this class, you will learn ways that Dynamo could be a game changer for your
business too. This session features Dynamo Studio and Revit. AIA Approved

Your AU Expert

Brendan Nichols is a Senior Virtual Building Engineer at the Beck Group. Beck’s integrated
design-build model allows him to tackle difficult challenges across both Architecture and
Construction. At the Beck Group, Brendan performs laser-scanning, building information
modeling, and supports these processes and workflows throughout the company. After
experiencing Beck’s cross-disciplinary challenges, Brendan has written multiple internal Revit
plugins to eliminate difficult or repetitive day to day tasks. He also enjoys writing scripts and
Dynamo definitions to solve some of Beck’s unique problems.

Learning Objectives

 Learn construction-specific uses for Dynamo

 Learn some Dynamo basics

 Learn how to identify tasks Dynamo could be useful for
 Get an introduction to Dynamo software’s online community and package

manager

Page 2

Halfen Detail Tolerance Simulation

For a legal case, I was asked to find a visual way to explain the tolerances in a Halfen embed
connection and how they would impact the installation of a curtain wall system. Halfen embeds
are typically cast in concrete and can be off of their desired location. The Halfen channel itself
allows tolerance in one direction, while the rest of the attachments provide tolerance in two
different directions with different methods.

A Revit family was made that could simulate these components and their
adjustability. Dynamo was used to manipulate and animate these components to show
the full range of flexibility in a way that legal staff could understand and present.

This section shows some of the very basic parts of Dynamo like manipulating
parameters in families. It also introduces the package manager and the Dynamo
community.

Halfen Connection Family
This family is designed in a way where the channel, and plates that attach the curtain wall to the
concrete slab edge, can all move without changing the actual location of the curtain wall
attachment. It has three instance parameters which control this movement:

Halfen Vert- controls the vertical position of the Halfen channel and simulates how the system
adapts to the channel being placed higher or lower in elevation than designed.
Halfen left- controls the left and right position of the Halfen channel and simulates how the
system adapts to the channel being to the left or right of its design location.
Offset from Face- controls the in-out location of the Halfen channel. This simulates how the
system reacts to the slab edge being off from its designed location

Page 3

In our case, as the contractor, we were obligated to ensure that the Halfen channel and the slab
edge were in the designed location plus or minus our tolerance. The subcontractor would then
be responsible for the rest of the system that attaches to the curtain wall mullion.
 This class will not spend time explaining how to make this family, but I wanted you to
understand the types of parameters we will be driving with Dynamo.

Driving from Dynamo
In Dynamo we can select an instance of this family that’s placed in the project. One way of
doing that is by using this script.

This script uses the name of the family to get a list of all instances of the family and then

we take the first one from that list. It’s very simple but is effectively like clicking an element in
Revit. We could also use a select element node in Dynamo and then just click the element,
however you would need to re-select the family if you used this script in a different file or if the
original element was deleted.
 Next we are going to look at the ways that we can control the parameters of this family
through Dynamo. First, we need to pass the element above to a node called
“Element.SetParameterByName”. Then we also need to give that node a Parameter name and
the intended value for that parameter. You can see that portion of the script below.

In this case we are driving the “Halfen Vert” parameter we discussed before and we are

giving it a number to change that value to. This type of script can be used to modify almost any
parameter from the dynamo environment and is something I’m always using.

Animating in Dynamo
Revit doesn’t come out of the box with any animation capabilities that I know of. And it’s always
something I wanted to do. Dynamo is here with a solution. I was keyed onto this node and
package called “Dynanimator” created by Håvard Vasshaug. You can find the original blog post
here:
https://vasshaug.net/2015/04/22/dynanimator-released-animating-data-changes-in-revit-with-
dynamo/

He was using this node to do things like manipulate window size openings and see the
effects on lighting inside of buildings. He’s also used it to do some interesting mesh
manipulations and other great stuff.

https://vasshaug.net/2015/04/22/dynanimator-released-animating-data-changes-in-revit-with-dynamo/
https://vasshaug.net/2015/04/22/dynanimator-released-animating-data-changes-in-revit-with-dynamo/

Page 4

Dynamo Community
Dynamo has a very active and helpful community. You can create, find, and share
Dynamo definitions directly through the Dynamo platform. I downloaded Håvard’s
Dynanimator package through the Dynamo package manager found under
Packages>Search for a package.

From this interface you can search for any package another Dynamo user has shared on
the package manager. This community and ability to share, really makes it easy to find
solutions for problems that other people have already had. Most times, you don’t need to
re-invent the wheel to get the job done, instead you re-purpose what others have done
for your own uses.
If you need any help doing this, the Dynamo forum is a great place to look for help
https://forum.dynamobim.com/

https://forum.dynamobim.com/

Page 5

Using Dynanimator
After downloading and installing the “Dynanimator” package, it will appear on the left
toolbar along with all the standard Dynamo options. We will use the node called
“Dynanimate Numeric Parameter”. This node goes in the place of the
“Element.SetParameterByName” node that we used earlier. This node allows us to give
a range of values to set the parameter to and exports a view of each iteration to a folder
on your computer.

First change Dynamo’s run option to Manual. Then input the range of values
you’d like to use for your parameter. Then input the number of iterations or frames you’d
like to export. Keep in mind that if you plan to convert your frames to video, 30 frames
typically equals 1 second of video. Then you need to set your path and set your view
that you want to export. Using the standard view options in Revit you can really control
the view to make sure you get the effect you are looking for. Then you can press “Run”
and watch your views exporting. After your views are exported you can use any video
editing software of your choice to convert these frames into a video.

Page 6

Slab Flatness Analysis

Often times after we pour slabs or demo an existing building down to the slabs, we need to add
a topping slab to level the floors. Floor finishes like terrazzo are especially expensive and
leveling out the elevation changes in the floor with concrete can be cheaper than just using
terrazzo.

In these circumstances we like to use laser scanning to capture the existing or
as-built conditions of the slab in order to analyze where the high and low spots in the
slab are. We use laser scanning, but conventional surveying can also capture these
deviations by measuring the elevation offsets on a consistent gridded distance. In the
end we are both working with a list of spot coordinates showing the elevations of the
slabs at different regular locations.

This topic will show list manipulation and cleanup steps taken through dynamo to
remove erroneous data points. These data manipulations become critical in most of the
cases where you use dynamo. It will also show how to place family instances from a list
of coordinates and show some different visualization techniques to use on your data.

Reading from Excel file
To get our data from scans into Revit/Dynamo for analysis we export a text file that can be
brought into excel. Dynamo is then used to clean the file of empty rows and sort the values into
their proper positions.

The script to read data out of excel is pretty simple. The node takes an excel file which can be
navigated to using a file path node and then you need to specify the sheet name. After you read
the excel file you will notice the data has some things we need to clean out.

Page 7

On the left you can see the data readout of the excel file. The data structure is a series of
nested lists. Every other list is full of null values, which we want to remove. We do this with the
node on the right. “List.TakeEveryNthItem” selects every other list and returns them. Which is
what we want.

.
Next we use the node on the left to flatten the lists. “List.Flatten” takes all the numbers and gets
them out of their sublists. Which is something we need to do for the next step. You can see that
every fourth value in this set is 0. That’s because our pointcloud software expects there to be
another value for each of these points which we didn’t export this time and don’t need for this
analysis.
 On the right you can see we use the node “List.DropEveryNthItem” which we use to
remove every fourth item from the new list. Now our data is clean and ready for what’s next!

Page 8

Creating something from our cleaned data
At this point we have a list of numbers. Every three numbers is an XYZ coordinate. Each of
these coordinates is a point on the slab that we are interested in. Now, we want to convert this
list of numbers into actual geometry inside of Revit.
 I use a family called “Color Tile” for this operation. It’s a very simple generic family. It’s
point based and square. It has one parameter which controls the width of the square.
Conceptually they are like pixels and we can make the pixels bigger or smaller depending on
how big our sample is. So once this is loaded into Revit place one instance of it somewhere.
This ensures that Dynamo can find the family to use it.
 Now before we place try to place our families, we need to convert our units. Our
Pointcloud software uses the Metric system and we need values in feet for our Revit project. We
can easily convert this in Dynamo with a specifically designed “ConvertBetweenUnits” node.

This node has a few fairly obvious dropdown options for setting up your conversions.
 After our units have been converted we are ready to place our Sample tile family.
Placing numerous family instances is one of the most practical and powerful uses for Dynamo.
Doing this one time can save hours of manual tedious work whenever a problem like that pops
up in your work, it’s a really good time to consider using Dynamo as your tool. The key node
behind this is for our example is the “FamilyInstance.ByPoint” node.

This node takes two parameters. The first is a family type. We can get at a family type in
Dynamo by passing the name of the family type into the “FamilyType.ByName” node. It is an
important distinction in Dynamo that the node require very specific inputs. If we just passed the
name of the family instance into this final node, it wouldn’t work.
 The other input for the family instance node is a point. Again we are using the numbers
we cleaned up earlier and inputting them into a “Point.ByCoordinates” node. This node converts
them into an actual point and then we push that point into the final node. At this point, Dynamo
and Revit will take a long time to place all of these instances. You need to let your computer
spin while it does this. It may take an hour, but we are placing thousands of family instances into

Page 9

the project. In the end it will look like this:

Which is really great. We have thousands of objects representing our slab. They match the
surveyed points in location and accurately replicate the elevation changes of the slab. In this
picture above, I’ve cleaned more of the erroneous points from the geometry. The pointcloud
software extraction makes a few mistakes when extracting the points. These mistakes are quite
difficult to remove computationally, however are very easy to remove visually in Revit. This is
another case where Dynamo really makes a difference in our workflows and problem solving.
It’s so easy to switch between the type of things computers are good at doing and the things
that humans are good at doing. If you can master when to use which approach, you can really
accomplish some really interesting things.

Better Visualizing our Data
Now having these points represented with actual geometry is a really big step forward to
understanding the changing slope of our slab. But Dynamo has some even better things we can
do with this data. We’d really like to use color to make the changing elevation of the slabs even
easier to understand.
 We’re going to move to a separate Dynamo script for this second part. We could
continue working in the same file but I like to follow a software development idea when working
in Dynamo as well. That idea is to separate concerns and make single use scripts. The idea
behind that is that it’s easier to see where things are going wrong and easier to re-use scripts.
So our first script has the job of cleaning up data and inserting family instances. This second

Page 10

script will be tasked with coloring family instances based on elevation relative to one another.
Also our operation in the first script is very computationally intensive, and we don’t want to
repeat it and slow ourselves down. However, that means we are going to have to “get at” those
tiles again in our new script. Which is accomplished with the “AllElementsOfType” node.

This node takes a Family Type like we used earlier and gets all instances in the entire project.
This time we are going to use the dropdown family type selector node to choose our “Color Tile”
family that we have in our Revit file. If you put that node’s output into the “Element.GetLocation”
node we can see all of our points that we were working with earlier, will show up in our Dynamo
workspace.

Now that we’ve re-accessed our family instances and our data point we can work on the part of
the scrip that will add color to them. The node that will do that is “Element.OverrideColorInView”
node. Which makes an instance and makes it any RGB color that we want in the specific view
we want. It has two inputs, the first is our elements which we already have in Dynamo. The
second is an RGB color object.

Page 11

Creating that color in a programmatic way can be a bit tricky but also allows a lot of creativity.
The way I’m going to do it is to use a “Math.RemapRange” node. Basically, can pass a list of
numbers into it and re-distribute those numbers to a new minimum and maximum number. So
our Z-values from our families can be mapped to 0-255 which allows for creating RGB colors.
 Using a “Color.ByARGB” node we can make a color. With our re-mapped list of numbers
and any other numbers we come up with we can really get creative with colors. When we map
all red green and blue channels to the new mapped colors we get a greyscale map of the
elevation changes. But we could also only manipulate one channel and create a gradient from
green to black, or white to blue, etc.

Page 12

Well How Much Concrete is it?
Now that we can all understand our data, we can place this image onto sheets and share it with
our field staff. But we still haven’t told them how much concrete do they need to top off this slab.
We can again use Dynamo to help.

We’re going to make use of Revit’s scheduling abilities to schedule a parameter on each of
these tiles. We’re going to fill out this parameter in much the same way we did in the first
example. However, rather than manipulating a parameter live we are going to store data in
these parameters.
 Each of our Color Tiles have a parameter called “Distance to New TOS” that we are
using to store the value. Then we take the Z-value of each tile, use a subtraction node, and
reduce the elevation by our designed elevation of 100. Now each tile has the distance it is from
the designed elevation. With tags we could tag high and low spots using this parameter. With
Revit Schedules and a little math we could calculate how much concrete we need.

Page 13

Cut and Fill Analysis

A cut and fill analysis is quite similar to the slab flatness analysis we just performed. However,
rather than choosing a new top of slab location arbitrarily, we are going to use a designed
topography and see how far our existing needs to be modified to meet the design.
 Again we started with a list of points that represent the existing topography. We also
have the design topography which we brought in from Autocad and converted to a Topography
object in Revit.

Now with Dynamo freshly opened we are going to import a DLL file that I created. This DLL file
is for a custom node that I programmed in C#. The file is called ListPointProject.dll and we are
going to use one of the nodes in the file for our next step.
 Dynamo is really easy to add nodes and packages to if you are a developer. You can
import Dynamo’s library in C# and make use of all of the models and methods that are available
to you in the Dynamo UI. However, you get to make use of the tooling and efficiencies of a
traditional programming environment. If you aren’t a developer, you can also contribute nodes of
assembled existing nodes. This ability for everyone to contribute is probably a big reason why
Dynamo is so successful.
 After importing my DLL file, you will have a new dropdown on the left toolbar inside of
Dynamo called List Point Project. We are going to use the node called
“CutAndFillHelpers.ClosestVerticeToPointZDiff”.

Page 14

This node takes three inputs, a mesh extracted from topography, a set of sample points, and a
file path object. It takes these inputs and writes a lot of information to a CSV file that we create.
The function that its doing is something that would have been difficult to do with Dynamo nodes
alone. Basically we need to take every one of those tiles, and find how far away it is from the
topography object.
 Takes one tile at a time and goes through each vertex on the mesh. It finds the closest
vertex in the X and Y plane and calculates the difference in elevation. This is one way to
estimate how much the existing topography needs to change in order to match the designed.
This type of calculation involved “nested for-loops” and requires the computer to crunch a lot of
data. It is probably possible to do this sort of thing exclusively in Dynamo, but was very
challenging for me to think through. Writing this type of operation in C# is much more
straightforward than it would have been in Dynamo and there are some performance
improvements.

Page 15

The rest of our script almost entirely stuff we’ve seen before. Except on the top, we are using a
few nodes to get at our Topography mesh. We can use the categories node to select a category
of elements and input that into the “All Elements of Category” node to get our topography. Then
we use the node called “Topography.Mesh” to get to the geometry of the topography object.
There are dozens of operators for meshes that don’t exist for the higher level Topography
object, so if you are ever working with topography you will probably need to do the same thing.
Then we are putting those tiles into my node and giving a file path to an empty file to it as well.
After you press run, this file will not be empty anymore. It will contain a series of rows, with
column values of

1- Tile X Value
2- Tile Y Value
3- Tile Z Value
4- Topography Vertex Z Value
5- Elevation difference
6- Distance from Tile to Vertex

This last value is a good indicator of how accurate the elevation difference calculated will be. If
the Vertex and the Tile are very far apart then the Elevation difference will be less reliable.

Better Visualizing our Data
Once again we are at the point where we have all the data for the solution of our problem. The
issue is that we need to communicate it to others. This is really why this problem was a Dynamo
problem and not a Programming problem. We get to use all of the tools and features available in
Revit to document our solution.
 Once again we are going to use a separate Dynamo file for this visualization. In the
example files we are calling it “TilePlacer.dyn”. We need to delete all of the existing tiles in Revit
before running this script. Because this will re-create them. We are using the same techniques
as shown in example 2 to place the tiles but we are doing if from the file we made in the last
Dynamo file. With one modification, we are rotating the tiles with the
“FamilyInstance.SetRotation” tile.

Page 16

Now to visualize our cut and fill data, we would like to show the cut areas and the fill areas with
different colors. This requires some conditional logic in Dynamo. We need to go through our
data points and figure out which are which. This requires a technique in Dynamo called filtering
by Boolean mask. Basically, we right a test, is the elevation difference positive or negative.

We select the correct columns from our earlier list and input them into the X value. And then
input 0 into the Y value. If the elevation difference is positive it will return true and negative will
return false. This new list of true false values can be used to filter another list. We use the
“Filter.ByBoolMask” node to do that.

It splits our list of tiles into two separate lists. One for the positive values and one for the
negative values. Now we can use these exports to color each differently.

We can use the same type of script we used in the second example for the
coloration. But now we will need two of them to operate on each list separately. One of
these lists we can vary with one color scheme, while the second list can have another.

Page 17

I chose to use green as a value closest to zero, or no cut and no fill. And then more blue as you
need to fill more and more yellow as you need to cut more. I think this color option worked out
quite well.

We can then use all the scheduling and annotation features of Revit to explain the analysis and
data in greater detail.

Page 18

Marble Tile Installation Simulation

On one of our projects we were building a very high end fountain. The tiles that the water would
run over were very expensive marble tiles and they were also an area where people had to be
able to walk and kids had to play. The design left out critical slope information on these tiles and
they had not been modeled by the Architect. We weren’t sure if these large tiles would have fit
the curvature and slope of the fountain without having some very sharp protruding corners. The
project team was worried that they would have to cut the tiles in half to make them match the
slope smoothly. Which would have been really terrible for the design intent. So we used dynamo
to simulate the installation of these tiles to see if the design would work or not.

This is an image of the flatten tile pattern modeled in Revit. This is just the one quadrant that we
tested representing the worst condition for sloping in the entire design. These are simply a
series of floors approximating the shape and curvature of the designed fountain tiles.
 The real challenge in this project is that the fountain has a form known as double
curvature. Basically, it’s shaped like the inside of a sphere. When you try to fit planar surfaces to
this shape it’s very difficult to reproduce the shape accurately. With smaller tiles or triangular
tiles the problem is much easier to solve and the shape can be represented fairly accurately.
Solving this type of problem is a very common challenge people use visual programming for.
Lets look at how to solve this in Dynamo:
The first new node we are using is the “Select Model Element” node

Page 19

This node allows you to manually select an element from the Revit environment and interact
with it. I used them to bring the curves representing the fountaing footprint into the Dynamo
enironment. We then use a couple of other nodes to vary the elevation of the inner elipse

The “Element.GetLocation” node allows us to work with the geometry of the ellipse. We feed
that into a “Geometry.Translate” node which allows us to vary the position of the geometry.
Below that, we are building a vector to move the geometry. In this case we have hooked in a
number slider to the Z value so we can move the inner ellipse up and down.

Then we make a list out of the inner and outer ellipses. We feed that into the “Surface.ByLoft”
node. This node takes a series of shapes and will attempt to make a geometry that will transition
from one to the other. Many times if you order your geometry incorrectly or don’t have the right
type of shapes this node will fail. However, when used correctly it can create shapes and forms
that are very interesting and complex. Also when making lofts you are quickly heading into the
territory of difficult to build structures and shapes. But it allows us to represent the “ideal” shape
of the designed fountain accurately.
 Now that we have the ideal form of the fountain, we need to bring in the shape and
geometry of the tiles that need to fit to this form.

In this case we are going to use the “Select Faces” node. This node is similar to the select
element node we used earlier but allows you to select multiple faces. Be sure to press the finish
button on the toolbar after making a selection using this node.
 After we select the faces, we use the “Face.Vertices” node in order to get the corners of
the faces. Then we use the “Vertex.PointGeometry” to convert these corners into points.

Page 20

Eventually we need to draw these corners onto the curved surface of the fountain, we will use a
“Geometry.Intersect” node in order to do that. However, first we need to make some type of
Geometry out of these corner points that will intersect the fountain. To do that we use this series
of nodes.

Again we are making a downward pointing vector and putting that into the
“Line.ByStartPointDirectionLength”. For this node, the vector serves as the direction, and then
all we need to add is how long the line should be. It doesn’t matter too much as long as it is
intersecting the fountain.
 After drawing those lines, we feed them and the lofted geometry we made earlier into the
“Geometry.Intersect” node mentioned earlier. And then we do a little more list cleanup similar to
the second example.

At the end of the list cleanup, we are going to have a list of sub-lists. Each sub-list contains four
points representing the location each tile intersects the fountain geometry. Which may seem like
the solution we want but there is one more problem to solve before we can make new geometry
with those points.
 The problem is that these points are not on the same plane. Imagine if you pressed a
book into the inside of a sphere. You could make three of the corners of the book touch the
sphere but not all four. This principle is the same as what makes a chair rock on uneven ground.
If the chair had only three legs it wouldn’t rock. In our case, if our tiles had only three corners, or
were triangular then they could match the surface of the fountain quite easily.
 So now we need to come up with a solution, and Dynamo has an answer for us:

Page 21

We use the “Plane.ByBestFitThroughPoints” node. Basically this will average the location of our
four corners to a plane. It is sort of the digital shimmying you might do with your hands if you
were installing these tiles yourself. After we know what plane the tile will sit on, we need to find
the new corners. Again we use the “Geometry.Intersect” node but this time we intersect the
planes we’ve just created with the lines we used earlier. The output of this is four points on the
same plane on the corners of where the tiles were drawn to be. Which is our solution to this
problem. However, we still haven’t determined whether the design will work as drawn. We need
to make these points into some sort of geometry inside of Revit. In this case, a typical family
wouldn’t work and instead I had to use an adaptive component.

This adaptive component takes four points and creates a rectangular shape and
extrudes them. It’s a fairly good analog for our tiles.

Placing an adaptive component in Revit is very similar to placing family instances. However
instead of a single point for a location you need to input a list of points. It still has the same
family type requirement. Both of those feed into the “AdaptiveComponent.ByPoints” node.

And that’s it, with that node set up correctly, you can choose which tiles you want to use
Dynamo to model and get something that looks like this:

Page 22

 In our scenario, it was determined that the differences between the tiles was not
significant enough to cause any issues during installation. But because of this simulation we
knew it to be the case way in advance and it set everyone’s minds at ease. Below you can see
a finished picture of the actual install.

