

Pete Lord

Sr. Product Manager

Daniel Lutz

Technical Sales Engineer

Class summary

Manufacturing efficiency is critical to providing the margins necessary to succeed as a business.

Factory Design Suite provides planning and simulation tools that can drive well-built factory lines.

Using Process Analysis 360 and Material Flow Analysis in AutoCAD for Factory Design, we'll show how a step-by-step method to build optimized factory layouts, demonstrating how the two tools complement one another

Key learning objectives

At the end of this class, you will be able to:

- Set up a process analysis
- Set up a material flow analysis
- Link the information between process analysis and material flow analysis
- Optimize your factory with material flow analysis

How to Use FDS to Link MFG activities together

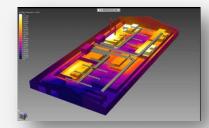
Linking Production Planning, Facility Design, Equipment Layout

Defining Workcell, Workholding, and Conveyance to Support Production Rate

Streamlining Installation and De-commisioning

Autodesk digital factory solutions

Installation & Commissioning



BIM – Building Information Modeling

Clash & clearance analysis

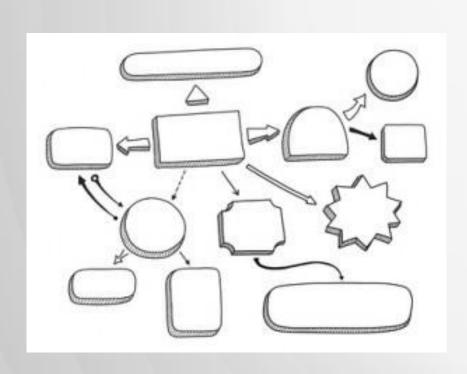
Ventilation / Emission / Energy efficiency CFD simulation

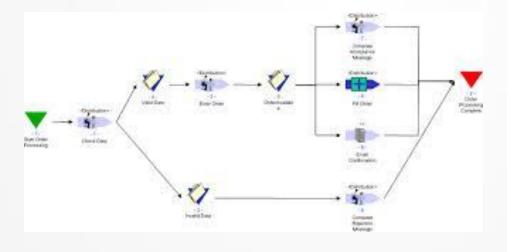
Work cell design

Process Simulation

Factory layout

Multi-CAD / Point cloud review

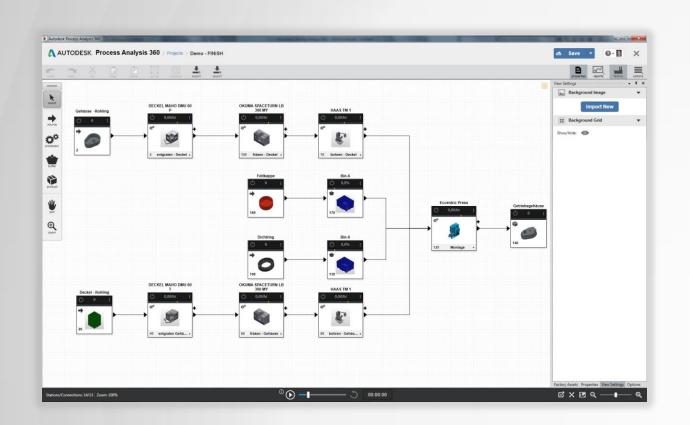

Tool & fixture design



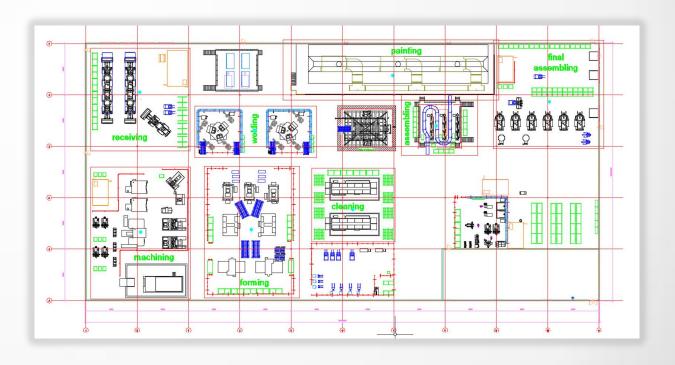
Starting a New Manufacturing Line Building to Plan

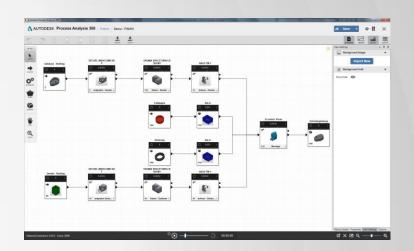
Current Process

- Excel, Visio, PPT or similar tools
- Limited graphics capability
- Difficult to link plan and documentation



N3	37		+ :	X	~	fx								
4		Α	В		С	D	E	F		G		н	I	
1	ID		Туре	X		Υ	Name	Quantity		Infinite		OutputRate	Variability	
2		1		0	400	40	0 housing		10		0	60		
3		2		0	400	60	0 cover		10		0	60		
4		3		0	400	80	0 shaft with friction bearin	g	10		0	60		
5		4		0	400	100	0 Malteser wheel		10		0	60		
6		5		0	0		0 cam shaft		10		0	60		
7		6		0	0	20	0 carrier		10		0	60		
8		7		0	0	40	0 sleeve		10		0	60		
8 9		8		0	0	60	0 washer		10		0	60		
LO		9		0	0	80	0 snap ring		10		0	60		
1		10		0	400	120	0 screws		100		0	600		
12	ID		Туре	X		Υ	Name	Capacity		Capacity Upper		Capacity Bottom		
L3		20		2	700	20	0 Buffer		5					
4	ID		Type	Х		Υ	Name	MTBF		MTBF Variability		MTTR	MTTR Variability	Utilizat
15		50		1	1000	60	0 assembling		4400			60		
16		60		1	400	20	0 preinstallation		4400			60		
.7	ID		Type	Х		Υ	Name	Target Quantit	у					
18		200		3	1300	60	0 Gearbox		10					
19	ID		Туре	Na	me	FromID	ToID	Load Time		UnLoadTime		Trasportation Time	Variability	LotSize
20		101		5 C1			1	50	1		1	1		
21		102		5 C2			2	50	1		1	1		
22		103		5 C3			3	50	1		1	1		
23		104		5 C4			4	50	1		1	1		
4		105		5 C5			6	50	1		1	1		
25		106		5 C6		2	0	50	1		1	1		
26		110		5 C7			5	50	1		1	1		
27		111		5 C8		6	0	20	1		1	1		
28		112		5 C9			7	50	1		1	1		
9		113		5 C1	0		8	50	1		1	1		
0		114		5 C1	1		9	50	1		1	1		
1		116		5 C1	3	5	0 2	00	1		1	1		
32		117		5 C1	4	1	0	50	1		1	1		


Autodesk Tools for Process and Layout



Why Use Process Analysis 360?

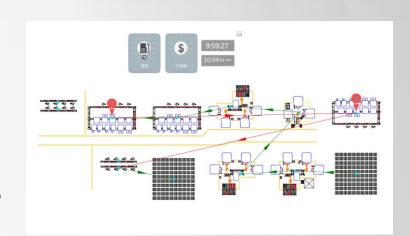
- Provide line configuration needed for planned production rate
 - Equipment and Process Time
 - Conveyance and Setup
- Evaluate production improvements
 - Which steps an necessary?
 - Which sequence?
 - Balance time on station
- Ensure efficient equipment and manpower utilization
 - Identify bottlenecks in setup, process or transport
 - Easy to read graphical display and reports

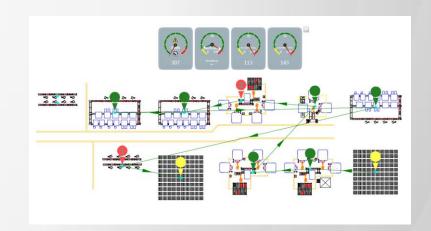
Process Analysis – Key Capability

- PA360 integrated with Factory Design Suite
 - Stand-Alone PA360 Free
 - Needs A360 credentials
 - FDS Subscription unlocks integration workflows
- PA360 provides schematic representation
 - No physical constraints
 - Supports exploration of work distribution and process timing
 - Provides goal or target process sequence
- Exchange Data from Scheduling/ To Documentation
 - Import from MRP spreadsheet
 - Export plan to CSV or DWG for check and documentation
 - Export reports as CSV for deeper dive analysis

Process Analysis

Process Analysis - Review

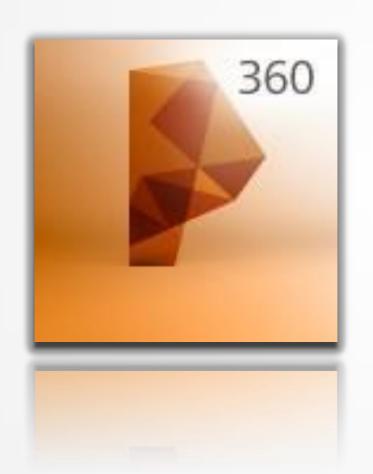

- Easy to move between Excel and PA360
- Factory Asset Warehouse automates data exchange
- Fast graphical review
- Use existing DWG underlay as placement guide
- Export fromPA360 to ACAD for quickstart on documentation


AutoCAD – Material Flow Analysis

 FDS adds layout-specific utilities to AutoCAD Architecture and AutoCAD Mechanical (supports user preference)

- Material Flow Analysis examines transportation timings in the pyhsical confines of the actual factory
- Specific transportation path and conveyance options can be made
- Data from PA360 shared into the DWG environment

AutoCAD – material flow



AutoCAD Factory Layout- Review

- Quick start based on PA360 configuration
- Asset Library enables data re-use
- Easy-to-read graphical representation of transportation and processing impact
- One click workflow to 3D

... any questions?

