
© 2016 Autodesk© 2016 Autodesk Join the conversation #AU2016

SD20507 - Deploy and Support AutoLISP Programs
Like a Pro

Lee Ambrosius
Principal Learning Experience Designer

Twitter: @LeeAmbrosius

© 2016 Autodesk© 2016 Autodesk

You are in session:
SD20507 - Deploy and Support AutoLISP Programs Like a Pro

You should know:
AutoCAD 2017 (or AutoCAD 2012 and later)

You should want to:

 Implement custom help and improve support

 Deploy custom programs with less stress

Where Am I and Who Should Be Here

© 2016 Autodesk© 2016 Autodesk

My name is Lee Ambrosius

 Principal Learning Experience Designer at Autodesk

 Work on the Customization, Developer, and CAD Administration
documentation

 Customizing and programming AutoCAD for about two decades

 Author of the AutoCAD Customization Platform book series
published by Wiley

My job in a nutshell:
I document the present and past AutoCAD releases for the
future

Who Am I?

© 2016 Autodesk© 2016 Autodesk

By the end of this session, you will know how to:

 Create and implement custom help topics

 Support multiple languages

 Deploy programs and define plug-in bundles

 Trust and digitally sign AutoLISP program files

What You Will Learn Today

© 2016 Autodesk© 2016 Autodesk

A few rules for this session:

 Silent your mobile phone and any other device

 If you have to leave at anytime, please do so quietly

 Hold questions until the end

Thanks for your cooperation

Session Rules

© 2016 Autodesk© 2016 Autodesk

Ready, Set, and Run…

© 2016 Autodesk© 2016 Autodesk

 My assumption:
Everyone, or most, here already deploy and support AutoLISP
programs to some extent.

 My hope:
Show you new approaches that can

 Lead to improvements with the user experience you deliver

 Make things easier for you

Overview

© 2016 Autodesk© 2016 Autodesk

 Who knew writing custom programs was just the beginning?

 After writing a custom program, you most likely wanted to
share it

 Sharing is commonly referred to as “deploying”

 Deploying a custom program, as you most likely learned

 Isn’t like sending an email

 It takes courage, as everyone has an opinion

 Results in having less time in the day to do other things

Overview

© 2016 Autodesk© 2016 Autodesk

 Deployment is not

 Linear

 Same for all

Overview

© 2016 Autodesk© 2016 Autodesk

 Deployment can be affected by:

 Company size (individual, small, medium, large)

 Location (local or remote)

 Make-up of user base (techie vs non-techie; multinational)

 Support is often initially overlooked when deploy custom
programs:

 Knowledge transfer and training

 Deployment/installing

 Troubleshooting

Overview

© 2016 Autodesk© 2016 Autodesk

Overview

Knowledge

Deployment

Troubleshoot

 Training sessions (group or 1-1)  Newsletters

 Custom help that is integrated or stand-alone

 Use global command & options  Locating program files

 Loading custom program files  Trust locations

 Test, Debug, Repeat  Patch program files

 Log, catch, handle errors  Trace functions

© 2016 Autodesk© 2016 Autodesk

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Comes in all different sizes and shapes

 Prompt and error messages

 Listing of exposed commands or functions

 Information about command options or expected values

 Concepts topics; When would I?

 Tutorials; How do I?

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Command prompts should be

 Short

 Conform to the AutoCAD standards

 Complex and multiple options might be best broken into multiple
prompts

 Error messages should be

 Short and informative

 Long explanations should be in the help documentation and not the
custom program

 Disruptive when appropriate; soft vs hard error messages

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Explanatory documentation can be

 Provided online and/or offline

 Integrated into the AutoCAD workflow

 Comprise of

 Loose web (HTML, JS, CSS) and image files

 Compiled Help (CHM) files

 WinHelp (HLP) files (Obsolete format)

 CHM files can be created with Microsoft HTML Help
Workshop

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 These functions can be used to integrate help documentation
in the command workflow:
 HELP

 SETFUNHELP

 Help file format being displayed by HELP and SETFUNHELP

determines whether the help is opened in:

 Main product help window
-or-

 In its own application window

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Other documentation formats can be displayed with the
STARTAPP function

 ASCII text (TXT) file

 Rich Text Format (RTF) file

 Microsoft Word (DOC/DOCx) document file

 Portable Document Format (PDF) file

Demo:

2 - help setfunhelp and startapp.lsp

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Global design firms and teams have their set of challenges

 Time zone differences

 Skillsets

 Local and industry knowledge

 Spoken/written language

 Spoken/written language can be a barrier when supporting
custom programs

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 These items affect the support for multiple languages

 Prompt strings, keywords, and error messages

 Dialog boxes implemented using DCL

 COMMAND function and scripts

 Commands defined with the DEFUN and VLAX-ADD-CMD functions

 Macros in a loaded CUI/CUIx file

 Help documentation

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Users have a better experience when using custom programs
localized in their native language

 Prompts, error messages, and documentation can be localized
using

 Machine translation

 Manually by a linguistic

 Various ways to store and display localized strings can vary

 In the source code

 In an external data file

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Need to identify the product language which is done via the
product key

 Product key is

 Stored in the Windows Registry

 Obtained with the VLAX-PRODUCT-KEY function

 Last three letters of the product key identify product language

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

;; AutoCAD 2017 – English

(vlax-product-key)

"Software\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001:409"

;; AutoCAD 2017 – French

(vlax-product-key)

"Software\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001:40C“

Demo:

3 - localize text string example.lsp

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Commands have two names

 Local

 Global

 Global command names are

 Same as the English language commands

 Access by prefixing a command name with an (_) underscore

 Use with the COMMAND function, scripts, and command macros

 Use GETCNAME function to identify a global command name

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

;; AutoCAD 2017 – English

Command: (getcname "LINE")

"_LINE"

Command: (getcname "LIGNE")

nil

;; AutoCAD 2017 – French

Commande: (getcname "LINE")

nil

Commande: (getcname "LIGNE")

"_LINE"

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 DEFUN function defines commands with the same local and

global name

 VLAX-ADD-CMD function can be used to define commands with

the different local and global name

 Commands defined with VLAX-ADD-CMD can be used with the
COMMAND function

Demo:

3 - defun and vlax-add-cmd example.lsp

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Similar to command names, options have global names

 Same as the English language option names

 Access by prefixing an option name with an (_) underscore

 Use with the COMMAND function, scripts, and command macros

 Options of standard AutoCAD commands support global names

 Option names defined with INITGET are defined as both local

and global, but with the same name

 Can define different local and global names with INITGET

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

;; English keywords example

(initget "Blue White Red Green _Blue White Red Green")

(getkword "\nSpecify color [Blue/White/Red/Green]: ")

;; French keywords example

(initget "blEu blAnc Rouge Vert _Blue White Red Green")

(getkword "\nSpécifiez la couleur [blEu/blAnc/Rouge/Vert]: ")

Demo:

3 - initget.lsp

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

Deploy and Load AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 When deploying custom program files, consider the following:

 Where will the custom programs be stored and loaded from?

 Local

 Network

 Who will be using the custom programs?

 Internal

 External

 What is the expertise level of the users?

 Techie

 Basic computer skills

Deploy AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Custom programs can be deployed by:

 Manually copying files to a drive

 Local

 Network

 Automating the copying of files

 Group policies or script

 Synchronizing with Box, DropBox, Google Drive

 Custom installer

Deploy AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Custom programs can be loaded into AutoCAD:

 Manually with the APPLOAD command

 Automatically using the/a

 Startup Suite in the APPLOAD command

 acad.lsp and acaddoc.lsp files

 LSP Files node in a CUI/CUIx file

 MNL file with the same name as a loaded CUI/CUIx file

 LSP file with LOAD and AUTOLOAD function statements

 Plug-in bundle

Load AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

Specify Support File Search Paths

© 2016 Autodesk© 2016 Autodesk

 Used to help AutoCAD locate program and resource files

 Can be specified with the

 Options dialog box

 ACAD environment variable

 SupportPath property of the AcadPreferencesFiles object in

the AutoCAD ActiveX library

 AutoCAD installation deployment

 Plug-in bundle

Specify Support File Search Paths

© 2016 Autodesk© 2016 Autodesk

;; Usage (appendSupportPath "c:\\my programs")

(defun appendSupportPath (folderName / curACADPaths)

(if (vl-file-directory-p folderName)

(progn

(setq curACADPaths (getenv "ACAD"))

(setenv "ACAD" (strcat curACADPaths folderName ";"))

)

)

)

Demo:

5 - support paths.lsp

Specify Support File Search Paths

© 2016 Autodesk© 2016 Autodesk

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 Used to identify the locations in which AutoCAD can safely load
program (executable) files

 Feature initially added in AutoCAD 2013 SP1

 Some of the program files AutoCAD considers executables are:

 LSP, FAS, VLX, MNL

 ARX, DBX, CRX

 DVB

 .NET assemblies

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 Added initially in AutoCAD 2013 SP1

 Default trusted folders and subfolders on Windows

 C:\Program Files\

 C:\Program Files (x86)\

 Default trusted folders and subfolders on Mac

 ~\Applications\

 Locations should be read-only

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 Locations can be specified with the

 Options dialog box

 TRUSTEDPATHS system variable

 AutoCAD installation deployment

 SECURELOAD system variable affects the use of trusted
locations

 Recommended to not change the default value

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 User is warned when a file is loaded outside a trusted location

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

;; Usage (appendTrustedLocation "C:\\My Programs\\LSPs")

;; Usage (appendTrustedLocation "C:\\My Programs\\LSPs\\..")

(defun appendTrustedLocation (folderName / curTrustedPaths)

(setq curTrustedPaths (getvar "trustedpaths"))

...

)

Demo:

6 - trusted locations.lsp

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

Compile and Protect AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

 AutoLISP program files don’t need to be compiled

 Compiling or protecting AutoLISP program files does deter
people from modifying and copying the source code, but not
the file itself

 Program files can be protected using these utilities:

 Kelvinate (kelvinate.exe)

 Protect (protect.exe)

 Visual LISP IDE (VLIDE command)

Compile and Protect AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

 It is recommended to not use Kelvinate and Protect; they are
legacy utilities that are not as good as the Visual LISP IDE

 Visual LISP IDE can compile a program file into two formats:

 VLX – Can contain one or more program and resource files in a
single compiled file; supported on Windows only

 FAS – Represents a single compiled program file

Compile and Protect AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Digitally signing AutoLISP program files help the user know
that the files came from a reputable vendor

 A digitally signed file doesn’t necessary mean the file is safe

 To digitally sign a file, you need a/the:

 Digital certificate from a Certificate Authority (CA)

 Attach Digital Signatures utility

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Not all digital certificates are created equal

 Most developers use Code Signing Certificates

 Some use Personal Authentication Certificate

 Some of the common CAs are:

 DocuSign

 Comodo

 GlobalSign

 IdenTrust

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 A digitally signed file can be identified in Windows Explorer or
File Explorer

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Properties of a digital signature can be viewed by right-clicking
a file and choosing Properties

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

Build Plug-in Bundles for AutoLISP
Programs

© 2016 Autodesk© 2016 Autodesk

 Plug-in bundles:

 Provide a consistent way to deploy and load LSP files

 A file and folder structure that contains an XML file named
PackageContents.xml

 PackageContents.xml is

 Placed in the root folder of a bundle

 Describes the files in the bundle to AutoCAD and defines how they
should be loaded

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Plug-in bundles can help:

 Control the files that should be loaded by product release

 Limit the operating systems the custom programs can be loaded

 Support multiple languages

 Specify support file search and tool palette paths

 Implement custom help; CHM or loose HTM/HTML files

 Set the values of a Windows Registry keys

 Set the values of system and/or environment variables

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Example structure of a bundle named GardenPath:

Gardenpath.bundle

|-> DCL

|-> gpdialog.dcl

|-> LSP

|-> ddgpmain.lsp

|-> gpdraw.lsp

|-> gp-io.lsp

|-> gpmain.lsp

|-> utils.lsp

|-> PackageContents.xml

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Basic example of a PackageContents.xml file:

<?xml version="1.0" encoding="utf-8"?>

<ApplicationPackage

SchemaVersion="1.0"

AppVersion="1.0"

Name="AU2016 IT20496-L"

Description="AU2016 Example for session IT20496-L."

Author="HyperPics, LLC"

ProductCode="{45F619FE-E286-4C4E-8134-B50E8DFC23E3}"

>

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

<CompanyDetails

Name="HyperPics, LLC"

Url="http://www.hyperpics.com"

/>

<Components Description="Windows and Mac OS operating systems">

<RuntimeRequirements

OS="Win32|Win64|Mac"

SeriesMin="R19.0"

Platform="AutoCAD*"

/>

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

<ComponentEntry Description="Your custom file"

AppName="AU2016Examples"

Version="1.0"

ModuleName="./au2016.lsp">

</ComponentEntry>

</Components>

</ApplicationPackage>

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Access the AutoCAD Online Help system for more information
on the PackageContents.xml file.

 Note: The ProductCode value (GUID) must be unique for each
bundle. - http://www.guidgenerator.com/

 A bundle is deployed by copying all the files and folders of a
bundle to one of these folders:

 All Users Profile folder

 User Profile folder

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

Trusted and recommended locations

 Windows 7 and later:
%PROGRAMFILES%\Autodesk\ApplicationPlugins
%PROGRAMFILES(x86) %\Autodesk\ApplicationPlugins

 Mac OS X:
~/Applications/Autodesk/ApplicationAddins

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

Other supported locations, but they are not trusted by default

 Windows 7 and later:
%ALLUSERSPROFILE%\Autodesk\ApplicationPlugins
%APPDATA%\Autodesk\ApplicationPlugins

 Mac OS X:
~/Autodesk/ApplicationAddins

Demo:

SD20507.bundle

SD20507 - Advanced.bundle

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

Troubleshoot and Debug AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

 Core AutoLISP does not provide specific debugging functions

 During execution these functions can display information
 ALERT

 PRINC

 PROMPT

Basic Debugging

© 2016 Autodesk© 2016 Autodesk

 In addition to PRINC, these functions can write

values/messages out to a file
 PRIN1

 PRINT

Demo:

10 - debug - basic.lsp

10 - debug - custom.lsp

Basic Debugging

© 2016 Autodesk© 2016 Autodesk

 Core AutoLISP provides a few functions to monitor the usage of
a function
 TRACE

 UNTRACE

 When tracing is enabled, you can see:

 The values passed to the function

 Results from the function

Tracing Functions

© 2016 Autodesk© 2016 Autodesk

 Results of tracing a function named OddOrEven

Demo:

10 - trace and untrace.lsp

Tracing Functions

© 2016 Autodesk© 2016 Autodesk

 Errors are common in programming, it is how you handle them
that is key

 Error handlers should be designed to handle the errors you
cannot recover from

 IF and COND functions when used with operators are an

important part of performing conditional tests, but are not
always enough alone

Catching Errors

© 2016 Autodesk© 2016 Autodesk

 These functions are used to catch an error that might be caused
by a function after it is evaluated
 VL-CATCH-ALL-APPLY

 VL-CATCH-ALL-ERROR-P

 VL-CATCH-ALL-ERROR-MESSAGE

Demo:

10 - catch error.lsp

Catching Errors

© 2016 Autodesk© 2016 Autodesk

 Custom error handlers are essential to a great user experience
and are often under utilized

 These functions are used to implement custom error handlers
 *ERROR*

 *PUSH-ERROR-USING-COMMAND*

 *PUSH-ERROR-USING-STACK*

 *POP-ERROR-MODE*

Defining Custom Error Handlers

© 2016 Autodesk© 2016 Autodesk

 The exit and quit functions can be called from your AutoLISP
program to force it to return to the Command prompt

 VLX projects with separate namespaces can return a message
or value from the VLX error handler to the *error* handler using:
 VL-EXIT-WITH-ERROR

 VL-EXIT-WITH-VALUE

Demo:

10 - error handling.lsp

10 - VLX-exit-with.lsp

Defining Custom Error Handlers

© 2016 Autodesk© 2016 Autodesk

 The UNDO command allows the grouping of multiple calls to
COMMAND function into a single operation

 Without groupings, each command is undone one at a time if
the U command is used by the user

 All operations that recorded as part of an Undo record are
rolled back with a single U command

 Groupings can be helpful if your AutoLISP program fails part
way through execution

Grouping and Rolling Back Changes

© 2016 Autodesk© 2016 Autodesk

 Use the following options of the UNDO command to begin and
end a grouping
 BEgin

 End

Demo:

10 - undo grouping.lsp

Grouping and Rolling Back Changes

© 2016 Autodesk© 2016 Autodesk

Final Thoughts and Questions

© 2016 Autodesk© 2016 Autodesk

Scripting and programming can:

 Enhance productivity

 Improve or introduce new workflows

Programming has many similarities to
the rabbit hole in Lewis Caroll’s Alice’s
Adventures in Wonderland. Both:

 Are virtually endless

 Hold many mysteries waiting to be discovered

Final Thoughts and Questions

© 2016 Autodesk© 2016 Autodesk

Thanks for choosing this session.

Don’t forget to complete this session’s online evaluation.

If you have any further questions, contact me via:
email: lee.ambrosius@autodesk.com
twitter: @leeAmbrosius

Closing Remarks

Autodesk is a registered trademark of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and
services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2016 Autodesk, Inc. All rights reserved.

© 2016 Autodesk. All rights reserved.

http://www.autodesk.com/creativecommons
http://www.autodesk.com/creativecommons

