
© 2016 Autodesk© 2016 Autodesk Join the conversation #AU2016

SD20507 - Deploy and Support AutoLISP Programs
Like a Pro

Lee Ambrosius
Principal Learning Experience Designer

Twitter: @LeeAmbrosius

© 2016 Autodesk© 2016 Autodesk

You are in session:
SD20507 - Deploy and Support AutoLISP Programs Like a Pro

You should know:
AutoCAD 2017 (or AutoCAD 2012 and later)

You should want to:

 Implement custom help and improve support

 Deploy custom programs with less stress

Where Am I and Who Should Be Here

© 2016 Autodesk© 2016 Autodesk

My name is Lee Ambrosius

 Principal Learning Experience Designer at Autodesk

 Work on the Customization, Developer, and CAD Administration
documentation

 Customizing and programming AutoCAD for about two decades

 Author of the AutoCAD Customization Platform book series
published by Wiley

My job in a nutshell:
I document the present and past AutoCAD releases for the
future

Who Am I?

© 2016 Autodesk© 2016 Autodesk

By the end of this session, you will know how to:

 Create and implement custom help topics

 Support multiple languages

 Deploy programs and define plug-in bundles

 Trust and digitally sign AutoLISP program files

What You Will Learn Today

© 2016 Autodesk© 2016 Autodesk

A few rules for this session:

 Silent your mobile phone and any other device

 If you have to leave at anytime, please do so quietly

 Hold questions until the end

Thanks for your cooperation

Session Rules

© 2016 Autodesk© 2016 Autodesk

Ready, Set, and Run…

© 2016 Autodesk© 2016 Autodesk

 My assumption:
Everyone, or most, here already deploy and support AutoLISP
programs to some extent.

 My hope:
Show you new approaches that can

 Lead to improvements with the user experience you deliver

 Make things easier for you

Overview

© 2016 Autodesk© 2016 Autodesk

 Who knew writing custom programs was just the beginning?

 After writing a custom program, you most likely wanted to
share it

 Sharing is commonly referred to as “deploying”

 Deploying a custom program, as you most likely learned

 Isn’t like sending an email

 It takes courage, as everyone has an opinion

 Results in having less time in the day to do other things

Overview

© 2016 Autodesk© 2016 Autodesk

 Deployment is not

 Linear

 Same for all

Overview

© 2016 Autodesk© 2016 Autodesk

 Deployment can be affected by:

 Company size (individual, small, medium, large)

 Location (local or remote)

 Make-up of user base (techie vs non-techie; multinational)

 Support is often initially overlooked when deploy custom
programs:

 Knowledge transfer and training

 Deployment/installing

 Troubleshooting

Overview

© 2016 Autodesk© 2016 Autodesk

Overview

Knowledge

Deployment

Troubleshoot

 Training sessions (group or 1-1) Newsletters

 Custom help that is integrated or stand-alone

 Use global command & options Locating program files

 Loading custom program files Trust locations

 Test, Debug, Repeat Patch program files

 Log, catch, handle errors Trace functions

© 2016 Autodesk© 2016 Autodesk

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Comes in all different sizes and shapes

 Prompt and error messages

 Listing of exposed commands or functions

 Information about command options or expected values

 Concepts topics; When would I?

 Tutorials; How do I?

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Command prompts should be

 Short

 Conform to the AutoCAD standards

 Complex and multiple options might be best broken into multiple
prompts

 Error messages should be

 Short and informative

 Long explanations should be in the help documentation and not the
custom program

 Disruptive when appropriate; soft vs hard error messages

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Explanatory documentation can be

 Provided online and/or offline

 Integrated into the AutoCAD workflow

 Comprise of

 Loose web (HTML, JS, CSS) and image files

 Compiled Help (CHM) files

 WinHelp (HLP) files (Obsolete format)

 CHM files can be created with Microsoft HTML Help
Workshop

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 These functions can be used to integrate help documentation
in the command workflow:
 HELP

 SETFUNHELP

 Help file format being displayed by HELP and SETFUNHELP

determines whether the help is opened in:

 Main product help window
-or-

 In its own application window

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

 Other documentation formats can be displayed with the
STARTAPP function

 ASCII text (TXT) file

 Rich Text Format (RTF) file

 Microsoft Word (DOC/DOCx) document file

 Portable Document Format (PDF) file

Demo:

2 - help setfunhelp and startapp.lsp

Implement Custom Help

© 2016 Autodesk© 2016 Autodesk

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Global design firms and teams have their set of challenges

 Time zone differences

 Skillsets

 Local and industry knowledge

 Spoken/written language

 Spoken/written language can be a barrier when supporting
custom programs

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 These items affect the support for multiple languages

 Prompt strings, keywords, and error messages

 Dialog boxes implemented using DCL

 COMMAND function and scripts

 Commands defined with the DEFUN and VLAX-ADD-CMD functions

 Macros in a loaded CUI/CUIx file

 Help documentation

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Users have a better experience when using custom programs
localized in their native language

 Prompts, error messages, and documentation can be localized
using

 Machine translation

 Manually by a linguistic

 Various ways to store and display localized strings can vary

 In the source code

 In an external data file

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Need to identify the product language which is done via the
product key

 Product key is

 Stored in the Windows Registry

 Obtained with the VLAX-PRODUCT-KEY function

 Last three letters of the product key identify product language

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

;; AutoCAD 2017 – English

(vlax-product-key)

"Software\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001:409"

;; AutoCAD 2017 – French

(vlax-product-key)

"Software\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001:40C“

Demo:

3 - localize text string example.lsp

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Commands have two names

 Local

 Global

 Global command names are

 Same as the English language commands

 Access by prefixing a command name with an (_) underscore

 Use with the COMMAND function, scripts, and command macros

 Use GETCNAME function to identify a global command name

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

;; AutoCAD 2017 – English

Command: (getcname "LINE")

"_LINE"

Command: (getcname "LIGNE")

nil

;; AutoCAD 2017 – French

Commande: (getcname "LINE")

nil

Commande: (getcname "LIGNE")

"_LINE"

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 DEFUN function defines commands with the same local and

global name

 VLAX-ADD-CMD function can be used to define commands with

the different local and global name

 Commands defined with VLAX-ADD-CMD can be used with the
COMMAND function

Demo:

3 - defun and vlax-add-cmd example.lsp

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

 Similar to command names, options have global names

 Same as the English language option names

 Access by prefixing an option name with an (_) underscore

 Use with the COMMAND function, scripts, and command macros

 Options of standard AutoCAD commands support global names

 Option names defined with INITGET are defined as both local

and global, but with the same name

 Can define different local and global names with INITGET

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

;; English keywords example

(initget "Blue White Red Green _Blue White Red Green")

(getkword "\nSpecify color [Blue/White/Red/Green]: ")

;; French keywords example

(initget "blEu blAnc Rouge Vert _Blue White Red Green")

(getkword "\nSpécifiez la couleur [blEu/blAnc/Rouge/Vert]: ")

Demo:

3 - initget.lsp

Support Multiple Languages

© 2016 Autodesk© 2016 Autodesk

Deploy and Load AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 When deploying custom program files, consider the following:

 Where will the custom programs be stored and loaded from?

 Local

 Network

 Who will be using the custom programs?

 Internal

 External

 What is the expertise level of the users?

 Techie

 Basic computer skills

Deploy AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Custom programs can be deployed by:

 Manually copying files to a drive

 Local

 Network

 Automating the copying of files

 Group policies or script

 Synchronizing with Box, DropBox, Google Drive

 Custom installer

Deploy AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Custom programs can be loaded into AutoCAD:

 Manually with the APPLOAD command

 Automatically using the/a

 Startup Suite in the APPLOAD command

 acad.lsp and acaddoc.lsp files

 LSP Files node in a CUI/CUIx file

 MNL file with the same name as a loaded CUI/CUIx file

 LSP file with LOAD and AUTOLOAD function statements

 Plug-in bundle

Load AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

Specify Support File Search Paths

© 2016 Autodesk© 2016 Autodesk

 Used to help AutoCAD locate program and resource files

 Can be specified with the

 Options dialog box

 ACAD environment variable

 SupportPath property of the AcadPreferencesFiles object in

the AutoCAD ActiveX library

 AutoCAD installation deployment

 Plug-in bundle

Specify Support File Search Paths

© 2016 Autodesk© 2016 Autodesk

;; Usage (appendSupportPath "c:\\my programs")

(defun appendSupportPath (folderName / curACADPaths)

(if (vl-file-directory-p folderName)

(progn

(setq curACADPaths (getenv "ACAD"))

(setenv "ACAD" (strcat curACADPaths folderName ";"))

)

)

)

Demo:

5 - support paths.lsp

Specify Support File Search Paths

© 2016 Autodesk© 2016 Autodesk

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 Used to identify the locations in which AutoCAD can safely load
program (executable) files

 Feature initially added in AutoCAD 2013 SP1

 Some of the program files AutoCAD considers executables are:

 LSP, FAS, VLX, MNL

 ARX, DBX, CRX

 DVB

 .NET assemblies

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 Added initially in AutoCAD 2013 SP1

 Default trusted folders and subfolders on Windows

 C:\Program Files\

 C:\Program Files (x86)\

 Default trusted folders and subfolders on Mac

 ~\Applications\

 Locations should be read-only

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 Locations can be specified with the

 Options dialog box

 TRUSTEDPATHS system variable

 AutoCAD installation deployment

 SECURELOAD system variable affects the use of trusted
locations

 Recommended to not change the default value

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

 User is warned when a file is loaded outside a trusted location

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

;; Usage (appendTrustedLocation "C:\\My Programs\\LSPs")

;; Usage (appendTrustedLocation "C:\\My Programs\\LSPs\\..")

(defun appendTrustedLocation (folderName / curTrustedPaths)

(setq curTrustedPaths (getvar "trustedpaths"))

...

)

Demo:

6 - trusted locations.lsp

Trust Executable Locations

© 2016 Autodesk© 2016 Autodesk

Compile and Protect AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

 AutoLISP program files don’t need to be compiled

 Compiling or protecting AutoLISP program files does deter
people from modifying and copying the source code, but not
the file itself

 Program files can be protected using these utilities:

 Kelvinate (kelvinate.exe)

 Protect (protect.exe)

 Visual LISP IDE (VLIDE command)

Compile and Protect AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

 It is recommended to not use Kelvinate and Protect; they are
legacy utilities that are not as good as the Visual LISP IDE

 Visual LISP IDE can compile a program file into two formats:

 VLX – Can contain one or more program and resource files in a
single compiled file; supported on Windows only

 FAS – Represents a single compiled program file

Compile and Protect AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Digitally signing AutoLISP program files help the user know
that the files came from a reputable vendor

 A digitally signed file doesn’t necessary mean the file is safe

 To digitally sign a file, you need a/the:

 Digital certificate from a Certificate Authority (CA)

 Attach Digital Signatures utility

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Not all digital certificates are created equal

 Most developers use Code Signing Certificates

 Some use Personal Authentication Certificate

 Some of the common CAs are:

 DocuSign

 Comodo

 GlobalSign

 IdenTrust

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 A digitally signed file can be identified in Windows Explorer or
File Explorer

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

 Properties of a digital signature can be viewed by right-clicking
a file and choosing Properties

Digitally Sign AutoLISP Program Files

© 2016 Autodesk© 2016 Autodesk

Build Plug-in Bundles for AutoLISP
Programs

© 2016 Autodesk© 2016 Autodesk

 Plug-in bundles:

 Provide a consistent way to deploy and load LSP files

 A file and folder structure that contains an XML file named
PackageContents.xml

 PackageContents.xml is

 Placed in the root folder of a bundle

 Describes the files in the bundle to AutoCAD and defines how they
should be loaded

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Plug-in bundles can help:

 Control the files that should be loaded by product release

 Limit the operating systems the custom programs can be loaded

 Support multiple languages

 Specify support file search and tool palette paths

 Implement custom help; CHM or loose HTM/HTML files

 Set the values of a Windows Registry keys

 Set the values of system and/or environment variables

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Example structure of a bundle named GardenPath:

Gardenpath.bundle

|-> DCL

|-> gpdialog.dcl

|-> LSP

|-> ddgpmain.lsp

|-> gpdraw.lsp

|-> gp-io.lsp

|-> gpmain.lsp

|-> utils.lsp

|-> PackageContents.xml

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Basic example of a PackageContents.xml file:

<?xml version="1.0" encoding="utf-8"?>

<ApplicationPackage

SchemaVersion="1.0"

AppVersion="1.0"

Name="AU2016 IT20496-L"

Description="AU2016 Example for session IT20496-L."

Author="HyperPics, LLC"

ProductCode="{45F619FE-E286-4C4E-8134-B50E8DFC23E3}"

>

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

<CompanyDetails

Name="HyperPics, LLC"

Url="http://www.hyperpics.com"

/>

<Components Description="Windows and Mac OS operating systems">

<RuntimeRequirements

OS="Win32|Win64|Mac"

SeriesMin="R19.0"

Platform="AutoCAD*"

/>

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

<ComponentEntry Description="Your custom file"

AppName="AU2016Examples"

Version="1.0"

ModuleName="./au2016.lsp">

</ComponentEntry>

</Components>

</ApplicationPackage>

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

 Access the AutoCAD Online Help system for more information
on the PackageContents.xml file.

 Note: The ProductCode value (GUID) must be unique for each
bundle. - http://www.guidgenerator.com/

 A bundle is deployed by copying all the files and folders of a
bundle to one of these folders:

 All Users Profile folder

 User Profile folder

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

Trusted and recommended locations

 Windows 7 and later:
%PROGRAMFILES%\Autodesk\ApplicationPlugins
%PROGRAMFILES(x86) %\Autodesk\ApplicationPlugins

 Mac OS X:
~/Applications/Autodesk/ApplicationAddins

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

Other supported locations, but they are not trusted by default

 Windows 7 and later:
%ALLUSERSPROFILE%\Autodesk\ApplicationPlugins
%APPDATA%\Autodesk\ApplicationPlugins

 Mac OS X:
~/Autodesk/ApplicationAddins

Demo:

SD20507.bundle

SD20507 - Advanced.bundle

Build Plug-in Bundles for AutoLISP Programs

© 2016 Autodesk© 2016 Autodesk

Troubleshoot and Debug AutoLISP Files

© 2016 Autodesk© 2016 Autodesk

 Core AutoLISP does not provide specific debugging functions

 During execution these functions can display information
 ALERT

 PRINC

 PROMPT

Basic Debugging

© 2016 Autodesk© 2016 Autodesk

 In addition to PRINC, these functions can write

values/messages out to a file
 PRIN1

 PRINT

Demo:

10 - debug - basic.lsp

10 - debug - custom.lsp

Basic Debugging

© 2016 Autodesk© 2016 Autodesk

 Core AutoLISP provides a few functions to monitor the usage of
a function
 TRACE

 UNTRACE

 When tracing is enabled, you can see:

 The values passed to the function

 Results from the function

Tracing Functions

© 2016 Autodesk© 2016 Autodesk

 Results of tracing a function named OddOrEven

Demo:

10 - trace and untrace.lsp

Tracing Functions

© 2016 Autodesk© 2016 Autodesk

 Errors are common in programming, it is how you handle them
that is key

 Error handlers should be designed to handle the errors you
cannot recover from

 IF and COND functions when used with operators are an

important part of performing conditional tests, but are not
always enough alone

Catching Errors

© 2016 Autodesk© 2016 Autodesk

 These functions are used to catch an error that might be caused
by a function after it is evaluated
 VL-CATCH-ALL-APPLY

 VL-CATCH-ALL-ERROR-P

 VL-CATCH-ALL-ERROR-MESSAGE

Demo:

10 - catch error.lsp

Catching Errors

© 2016 Autodesk© 2016 Autodesk

 Custom error handlers are essential to a great user experience
and are often under utilized

 These functions are used to implement custom error handlers
 ERROR

 PUSH-ERROR-USING-COMMAND

 PUSH-ERROR-USING-STACK

 POP-ERROR-MODE

Defining Custom Error Handlers

© 2016 Autodesk© 2016 Autodesk

 The exit and quit functions can be called from your AutoLISP
program to force it to return to the Command prompt

 VLX projects with separate namespaces can return a message
or value from the VLX error handler to the *error* handler using:
 VL-EXIT-WITH-ERROR

 VL-EXIT-WITH-VALUE

Demo:

10 - error handling.lsp

10 - VLX-exit-with.lsp

Defining Custom Error Handlers

© 2016 Autodesk© 2016 Autodesk

 The UNDO command allows the grouping of multiple calls to
COMMAND function into a single operation

 Without groupings, each command is undone one at a time if
the U command is used by the user

 All operations that recorded as part of an Undo record are
rolled back with a single U command

 Groupings can be helpful if your AutoLISP program fails part
way through execution

Grouping and Rolling Back Changes

© 2016 Autodesk© 2016 Autodesk

 Use the following options of the UNDO command to begin and
end a grouping
 BEgin

 End

Demo:

10 - undo grouping.lsp

Grouping and Rolling Back Changes

© 2016 Autodesk© 2016 Autodesk

Final Thoughts and Questions

© 2016 Autodesk© 2016 Autodesk

Scripting and programming can:

 Enhance productivity

 Improve or introduce new workflows

Programming has many similarities to
the rabbit hole in Lewis Caroll’s Alice’s
Adventures in Wonderland. Both:

 Are virtually endless

 Hold many mysteries waiting to be discovered

Final Thoughts and Questions

© 2016 Autodesk© 2016 Autodesk

Thanks for choosing this session.

Don’t forget to complete this session’s online evaluation.

If you have any further questions, contact me via:
email: lee.ambrosius@autodesk.com
twitter: @leeAmbrosius

Closing Remarks

Autodesk is a registered trademark of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and
services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2016 Autodesk, Inc. All rights reserved.

© 2016 Autodesk. All rights reserved.

http://www.autodesk.com/creativecommons
http://www.autodesk.com/creativecommons

