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You are in session:
SD20507 - Deploy and Support AutoLISP Programs Like a Pro

You should know:
AutoCAD 2017 (or AutoCAD 2012 and later)

You should want to:

 Implement custom help and improve support

 Deploy custom programs with less stress

Where Am I and Who Should Be Here
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My name is Lee Ambrosius

 Principal Learning Experience Designer at Autodesk

 Work on the Customization, Developer, and CAD Administration 
documentation

 Customizing and programming AutoCAD for about two decades

 Author of the AutoCAD Customization Platform book series 
published by Wiley

My job in a nutshell:
I document the present and past AutoCAD releases for the 
future

Who Am I?
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By the end of this session, you will know how to:

 Create and implement custom help topics

 Support multiple languages

 Deploy programs and define plug-in bundles

 Trust and digitally sign AutoLISP program files

What You Will Learn Today



© 2016 Autodesk© 2016 Autodesk

A few rules for this session:

 Silent your mobile phone and any other device

 If you have to leave at anytime, please do so quietly

 Hold questions until the end

Thanks for your cooperation

Session Rules
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Ready, Set, and Run…
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 My assumption:
Everyone, or most, here already deploy and support AutoLISP 
programs to some extent.

 My hope:
Show you new approaches that can

 Lead to improvements with the user experience you deliver

 Make things easier for you

Overview
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 Who knew writing custom programs was just the beginning?

 After writing a custom program, you most likely wanted to 
share it

 Sharing is commonly referred to as “deploying”

 Deploying a custom program, as you most likely learned

 Isn’t like sending an email

 It takes courage, as everyone has an opinion

 Results in having less time in the day to do other things

Overview
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 Deployment is not

 Linear

 Same for all

Overview
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 Deployment can be affected by:

 Company size (individual, small, medium, large)

 Location (local or remote)

 Make-up of user base (techie vs non-techie; multinational)

 Support is often initially overlooked when deploy custom 
programs:

 Knowledge transfer and training

 Deployment/installing

 Troubleshooting

Overview
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Overview

Knowledge

Deployment

Troubleshoot

 Training sessions (group or 1-1)  Newsletters

 Custom help that is integrated or stand-alone

 Use global command & options  Locating program files

 Loading custom program files  Trust locations

 Test, Debug, Repeat  Patch program files

 Log, catch, handle errors  Trace functions
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Implement Custom Help
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 Comes in all different sizes and shapes

 Prompt and error messages

 Listing of exposed commands or functions

 Information about command options or expected values

 Concepts topics; When would I?

 Tutorials; How do I?

Implement Custom Help
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 Command prompts should be

 Short

 Conform to the AutoCAD standards

 Complex and multiple options might be best broken into multiple 
prompts

 Error messages should be

 Short and informative

 Long explanations should be in the help documentation and not the 
custom program

 Disruptive when appropriate; soft vs hard error messages

Implement Custom Help
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 Explanatory documentation can be

 Provided online and/or offline

 Integrated into the AutoCAD workflow

 Comprise of

 Loose web (HTML, JS, CSS) and image files

 Compiled Help (CHM) files

 WinHelp (HLP) files (Obsolete format)

 CHM files can be created with Microsoft HTML Help 
Workshop

Implement Custom Help
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 These functions can be used to integrate help documentation 
in the command workflow:
 HELP

 SETFUNHELP

 Help file format being displayed by HELP and SETFUNHELP

determines whether the help is opened in:

 Main product help window
-or-

 In its own application window

Implement Custom Help
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 Other documentation formats can be displayed with the 
STARTAPP function

 ASCII text (TXT) file

 Rich Text Format (RTF) file

 Microsoft Word (DOC/DOCx) document file

 Portable Document Format (PDF) file

Demo:

2 - help setfunhelp and startapp.lsp

Implement Custom Help
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Support Multiple Languages
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 Global design firms and teams have their set of challenges

 Time zone differences

 Skillsets

 Local and industry knowledge

 Spoken/written language

 Spoken/written language can be a barrier when supporting 
custom programs

Support Multiple Languages



© 2016 Autodesk© 2016 Autodesk

 These items affect the support for multiple languages

 Prompt strings, keywords, and error messages

 Dialog boxes implemented using DCL

 COMMAND function and scripts

 Commands defined with the DEFUN and VLAX-ADD-CMD functions

 Macros in a loaded CUI/CUIx file

 Help documentation

Support Multiple Languages
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 Users have a better experience when using custom programs 
localized in their native language

 Prompts, error messages, and documentation can be localized 
using

 Machine translation

 Manually by a linguistic 

 Various ways to store and display localized strings can vary

 In the source code

 In an external data file

Support Multiple Languages
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 Need to identify the product language which is done via the 
product key

 Product key is

 Stored in the Windows Registry

 Obtained with the VLAX-PRODUCT-KEY function

 Last three letters of the product key identify product language

Support Multiple Languages



© 2016 Autodesk© 2016 Autodesk

;; AutoCAD 2017 – English

(vlax-product-key)

"Software\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001:409"

;; AutoCAD 2017 – French

(vlax-product-key)

"Software\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001:40C“

Demo:

3 - localize text string example.lsp

Support Multiple Languages
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 Commands have two names

 Local

 Global

 Global command names are

 Same as the English language commands

 Access by prefixing a command name with an (_) underscore

 Use with the COMMAND function, scripts, and command macros

 Use GETCNAME function to identify a global command name

Support Multiple Languages
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;; AutoCAD 2017 – English

Command: (getcname "LINE")

"_LINE"

Command: (getcname "LIGNE")

nil

;; AutoCAD 2017 – French

Commande: (getcname "LINE")

nil

Commande: (getcname "LIGNE")

"_LINE"

Support Multiple Languages
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 DEFUN function defines commands with the same local and 

global name

 VLAX-ADD-CMD function can be used to define commands with 

the different local and global name

 Commands defined with VLAX-ADD-CMD can be used with the 
COMMAND function

Demo:

3 - defun and vlax-add-cmd example.lsp

Support Multiple Languages
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 Similar to command names, options have global names

 Same as the English language option names

 Access by prefixing an option name with an (_) underscore

 Use with the COMMAND function, scripts, and command macros

 Options of standard AutoCAD commands support global names

 Option names defined with INITGET are defined as both local 

and global, but with the same name

 Can define different local and global names with INITGET

Support Multiple Languages
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;; English keywords example

(initget "Blue White Red Green _Blue White Red Green")

(getkword "\nSpecify color [Blue/White/Red/Green]: ")

;; French keywords example

(initget "blEu blAnc Rouge Vert _Blue White Red Green")

(getkword "\nSpécifiez la couleur [blEu/blAnc/Rouge/Vert]: ")

Demo:

3 - initget.lsp

Support Multiple Languages
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Deploy and Load AutoLISP Program Files
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 When deploying custom program files, consider the following:

 Where will the custom programs be stored and loaded from?

 Local

 Network

 Who will be using the custom programs? 

 Internal

 External

 What is the expertise level of the users?

 Techie

 Basic computer skills

Deploy AutoLISP Program Files
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 Custom programs can be deployed by:

 Manually copying files to a drive

 Local

 Network

 Automating the copying of files

 Group policies or script

 Synchronizing with Box, DropBox, Google Drive

 Custom installer

Deploy AutoLISP Program Files
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 Custom programs can be loaded into AutoCAD:

 Manually with the APPLOAD command

 Automatically using the/a

 Startup Suite in the APPLOAD command

 acad.lsp and acaddoc.lsp files

 LSP Files node in a CUI/CUIx file

 MNL file with the same name as a loaded CUI/CUIx file

 LSP file with LOAD and AUTOLOAD function statements

 Plug-in bundle

Load AutoLISP Program Files
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Specify Support File Search Paths
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 Used to help AutoCAD locate program and resource files

 Can be specified with the

 Options dialog box

 ACAD environment variable

 SupportPath property of the AcadPreferencesFiles object in 

the AutoCAD ActiveX library

 AutoCAD installation deployment

 Plug-in bundle

Specify Support File Search Paths
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;; Usage (appendSupportPath "c:\\my programs")

(defun appendSupportPath (folderName / curACADPaths)

(if (vl-file-directory-p folderName)

(progn

(setq curACADPaths (getenv "ACAD"))

(setenv "ACAD" (strcat curACADPaths folderName ";"))

)

)

)

Demo:

5 - support paths.lsp

Specify Support File Search Paths
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Trust Executable Locations
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 Used to identify the locations in which AutoCAD can safely load 
program (executable) files

 Feature initially added in AutoCAD 2013 SP1

 Some of the program files AutoCAD considers executables are:

 LSP, FAS, VLX, MNL

 ARX, DBX, CRX

 DVB

 .NET assemblies

Trust Executable Locations
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 Added initially in AutoCAD 2013 SP1

 Default trusted folders and subfolders on Windows

 C:\Program Files\

 C:\Program Files (x86)\

 Default trusted folders and subfolders on Mac

 ~\Applications\

 Locations should be read-only

Trust Executable Locations
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 Locations can be specified with the

 Options dialog box

 TRUSTEDPATHS system variable

 AutoCAD installation deployment

 SECURELOAD system variable affects the use of trusted 
locations

 Recommended to not change the default value

Trust Executable Locations
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 User is warned when a file is loaded outside a trusted location

Trust Executable Locations
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;; Usage (appendTrustedLocation "C:\\My Programs\\LSPs")

;; Usage (appendTrustedLocation "C:\\My Programs\\LSPs\\..")

(defun appendTrustedLocation (folderName / curTrustedPaths)

(setq curTrustedPaths (getvar "trustedpaths"))

...

)

Demo:

6 - trusted locations.lsp

Trust Executable Locations
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Compile and Protect AutoLISP Files
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 AutoLISP program files don’t need to be compiled

 Compiling or protecting AutoLISP program files does deter 
people from modifying and copying the source code, but not 
the file itself

 Program files can be protected using these utilities:

 Kelvinate (kelvinate.exe)

 Protect (protect.exe)

 Visual LISP IDE (VLIDE command)

Compile and Protect AutoLISP Files
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 It is recommended to not use Kelvinate and Protect; they are 
legacy utilities that are not as good as the Visual LISP IDE

 Visual LISP IDE can compile a program file into two formats:

 VLX – Can contain one or more program and resource files in a 
single compiled file; supported on Windows only

 FAS – Represents a single compiled program file

Compile and Protect AutoLISP Files
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Digitally Sign AutoLISP Program Files
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 Digitally signing AutoLISP program files help the user know 
that the files came from a reputable vendor

 A digitally signed file doesn’t necessary mean the file is safe

 To digitally sign a file, you need a/the:

 Digital certificate from a Certificate Authority (CA)

 Attach Digital Signatures utility

Digitally Sign AutoLISP Program Files
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 Not all digital certificates are created equal

 Most developers use Code Signing Certificates

 Some use Personal Authentication Certificate

 Some of the common CAs are:

 DocuSign

 Comodo

 GlobalSign

 IdenTrust

Digitally Sign AutoLISP Program Files
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 A digitally signed file can be identified in Windows Explorer or 
File Explorer

Digitally Sign AutoLISP Program Files
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 Properties of a digital signature can be viewed by right-clicking 
a file and choosing Properties

Digitally Sign AutoLISP Program Files
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Build Plug-in Bundles for AutoLISP 
Programs
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 Plug-in bundles:

 Provide a consistent way to deploy and load LSP files

 A file and folder structure that contains an XML file named 
PackageContents.xml

 PackageContents.xml is

 Placed in the root folder of a bundle

 Describes the files in the bundle to AutoCAD and defines how they 
should be loaded

Build Plug-in Bundles for AutoLISP Programs
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 Plug-in bundles can help:

 Control the files that should be loaded by product release

 Limit the operating systems the custom programs can be loaded

 Support multiple languages

 Specify support file search and tool palette paths

 Implement custom help; CHM or loose HTM/HTML files

 Set the values of a Windows Registry keys

 Set the values of system and/or environment variables

Build Plug-in Bundles for AutoLISP Programs
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 Example structure of a bundle named GardenPath:

Gardenpath.bundle

|-> DCL

|-> gpdialog.dcl

|-> LSP

|-> ddgpmain.lsp

|-> gpdraw.lsp

|-> gp-io.lsp

|-> gpmain.lsp

|-> utils.lsp

|-> PackageContents.xml

Build Plug-in Bundles for AutoLISP Programs
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 Basic example of a PackageContents.xml file:

<?xml version="1.0" encoding="utf-8"?>

<ApplicationPackage

SchemaVersion="1.0"

AppVersion="1.0"

Name="AU2016 IT20496-L"

Description="AU2016 Example for session IT20496-L."

Author="HyperPics, LLC"

ProductCode="{45F619FE-E286-4C4E-8134-B50E8DFC23E3}"

>

Build Plug-in Bundles for AutoLISP Programs
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<CompanyDetails

Name="HyperPics, LLC"

Url="http://www.hyperpics.com"

/>

<Components Description="Windows and Mac OS operating systems">

<RuntimeRequirements

OS="Win32|Win64|Mac"

SeriesMin="R19.0"

Platform="AutoCAD*"

/>

Build Plug-in Bundles for AutoLISP Programs
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<ComponentEntry Description="Your custom file"

AppName="AU2016Examples"

Version="1.0"

ModuleName="./au2016.lsp">

</ComponentEntry>

</Components>

</ApplicationPackage>

Build Plug-in Bundles for AutoLISP Programs
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 Access the AutoCAD Online Help system for more information 
on the PackageContents.xml file.

 Note: The ProductCode value (GUID) must be unique for each 
bundle. - http://www.guidgenerator.com/

 A bundle is deployed by copying all the files and folders of a 
bundle to one of these folders:

 All Users Profile folder

 User Profile folder

Build Plug-in Bundles for AutoLISP Programs
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Trusted and recommended locations

 Windows 7 and later: 
%PROGRAMFILES%\Autodesk\ApplicationPlugins
%PROGRAMFILES(x86) %\Autodesk\ApplicationPlugins

 Mac OS X:
~/Applications/Autodesk/ApplicationAddins

Build Plug-in Bundles for AutoLISP Programs
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Other supported locations, but they are not trusted by default

 Windows 7 and later: 
%ALLUSERSPROFILE%\Autodesk\ApplicationPlugins
%APPDATA%\Autodesk\ApplicationPlugins

 Mac OS X:
~/Autodesk/ApplicationAddins

Demo:

SD20507.bundle

SD20507 - Advanced.bundle

Build Plug-in Bundles for AutoLISP Programs
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Troubleshoot and Debug AutoLISP Files
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 Core AutoLISP does not provide specific debugging functions

 During execution these functions can display information
 ALERT

 PRINC

 PROMPT

Basic Debugging
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 In addition to PRINC, these functions can write 

values/messages out to a file
 PRIN1

 PRINT

Demo:

10 - debug - basic.lsp

10 - debug - custom.lsp

Basic Debugging
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 Core AutoLISP provides a few functions to monitor the usage of 
a function
 TRACE

 UNTRACE

 When tracing is enabled, you can see:

 The values passed to the function

 Results from the function

Tracing Functions
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 Results of tracing a function named OddOrEven

Demo:

10 - trace and untrace.lsp

Tracing Functions
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 Errors are common in programming, it is how you handle them 
that is key

 Error handlers should be designed to handle the errors you 
cannot recover from

 IF and COND functions when used with operators are an 

important part of performing conditional tests, but are not 
always enough alone

Catching Errors
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 These functions are used to catch an error that might be caused 
by a function after it is evaluated
 VL-CATCH-ALL-APPLY

 VL-CATCH-ALL-ERROR-P

 VL-CATCH-ALL-ERROR-MESSAGE

Demo:

10 - catch error.lsp

Catching Errors
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 Custom error handlers are essential to a great user experience 
and are often under utilized

 These functions are used to implement custom error handlers
 *ERROR*

 *PUSH-ERROR-USING-COMMAND*

 *PUSH-ERROR-USING-STACK*

 *POP-ERROR-MODE*

Defining Custom Error Handlers
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 The exit and quit functions can be called from your AutoLISP 
program to force it to return to the Command prompt

 VLX projects with separate namespaces can return a message 
or value from the VLX error handler to the *error* handler using:
 VL-EXIT-WITH-ERROR

 VL-EXIT-WITH-VALUE

Demo:

10 - error handling.lsp

10 - VLX-exit-with.lsp

Defining Custom Error Handlers
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 The UNDO command allows the grouping of multiple calls to 
COMMAND function into a single operation

 Without groupings, each command is undone one at a time if 
the U command is used by the user

 All operations that recorded as part of an Undo record are 
rolled back with a single U command

 Groupings can be helpful if your AutoLISP program fails part 
way through execution

Grouping and Rolling Back Changes
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 Use the following options of the UNDO command to begin and 
end a grouping
 BEgin

 End

Demo:

10 - undo grouping.lsp

Grouping and Rolling Back Changes
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Final Thoughts and Questions
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Scripting and programming can:

 Enhance productivity

 Improve or introduce new workflows

Programming has many similarities to 
the rabbit hole in Lewis Caroll’s Alice’s 
Adventures in Wonderland.  Both:

 Are virtually endless

 Hold many mysteries waiting to be discovered

Final Thoughts and Questions
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Thanks for choosing this session.

Don’t forget to complete this session’s online evaluation.

If you have any further questions, contact me via:
email: lee.ambrosius@autodesk.com
twitter: @leeAmbrosius

Closing Remarks
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