

CO4981 - Mortenson Construction Concrete Pour Sequence Tool for Revit Developed by CTC

"Eliminating Waste in Concrete Process"

Mortenson Construction and Cad Technology Center

Introductions

Joel Jacobson
Integrated Construction Coordinator
Mortenson Construction
Chicago

Jeff Burbank
Product Manager
CAD Technology Center, Inc.
Minneapolis

Rick Khan

Director of Integrated Construction

Mortenson Construction

Mortenson Construction

Mortenson Construction

Class summary

At Mortenson Construction we self perform concrete work, as well as other construction activities, which enables our project teams to control a critical component of our construction schedule that we call The Critical Path. Our objective is to improve our virtual design and construction (VDC) integration by increasing the efficiency of our construction system design VDC and integrated work planning (IWP) processes to drive higher value to our concrete planning and execution process. In partnership with Mortenson, CAD Technology Center has developed a plug-in to Revit software that will yield higher efficiency to our issued-for-construction sheet drawings by eliminating waste in our tedious, manual, sheet-generation tasks. The new concrete pour sequence tool will automate the process and reduce the time and effort needed to deliver high-quality drawings to our field crew (which relies on our output to put work in place). We want to spend less time with non-valuable activities and more time integrating with our concrete crews to drive value and revenue to our projects.

Learning Objectives

Process

See how Value Stream Mapping can be used to document, plan and improve your process

Platform

Leverage Revit and CTC Fab Sheets to automate tedious drafting steps to drive continuous improvement

People

How Process Improvement saves valuable time of our people so we can focus on value add activities

Performance

How we measured process improvement and the value added outcomes that resulted from the CTC Plug-in

Agenda

What Problem were we trying to Solve? PROCESS: CONSTRUCTION SYSTEM DESIGN

Problem Approach and Solution CTC POUR SEQUENCE TOOL

Measured OutcomesVALUE ADD

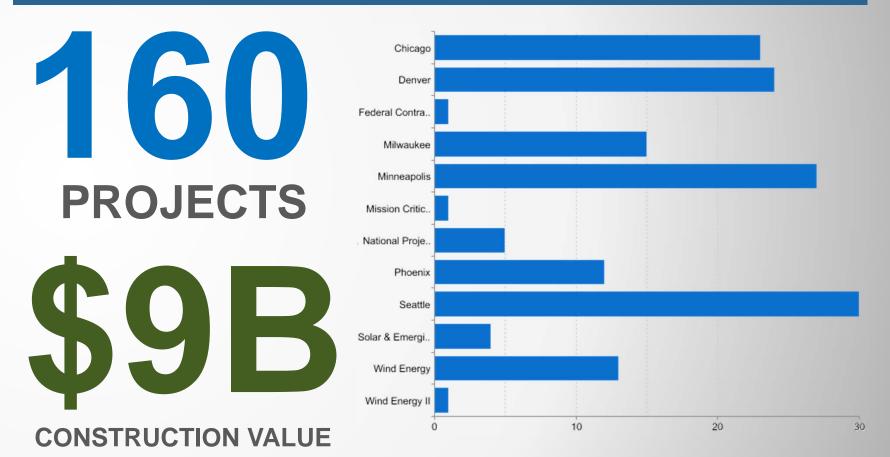
Improving Customer Experience and the facilities we build through Measured VDC Outcomes

VDC in our DNA

For nearly 20 years, our team has helped pioneer the use of Building Information Modeling (BIM) and Virtual Design and Construction (VDC) in all phases, from preconstruction through operations and maintenance. As measured by McGraw Hill, the longer a firm has invested in the use of BIM, the greater the impact to its partners and customers. Our innovation-based culture has led us to develop an experience level that is simply unparalleled in the industry.

www.mortenson.com/vdc-journey

BUILDING WHAT'S NEXT. SM



VIRTUAL DESIGN & CONSTRUCTION

CONSTRUCTION SYSTEM DESIGN SELF PERFORM CONCRETE

CONSTRUCTION SYSTEM DESIGN @ MORTENSON

BUILDING WHAT'S NEXT.SM

What Problem were we trying to Solve? PROCESS: CONSTRUCTION SYSTEM DESIGN

What Problem were we trying to Solve?

Purpose

Leverage VDC to support Integrated Work Planning to drive first time quality, Improve productivity and eliminate waste from our process.

VDC Output: a single work plan with all of the required information to build it right the first time.

People

- Team members spend too much time on manual non-value added, but necessary activities
- Team implementing multiple VDC process in parallel
- Work / life balance is poor due to inefficiencies

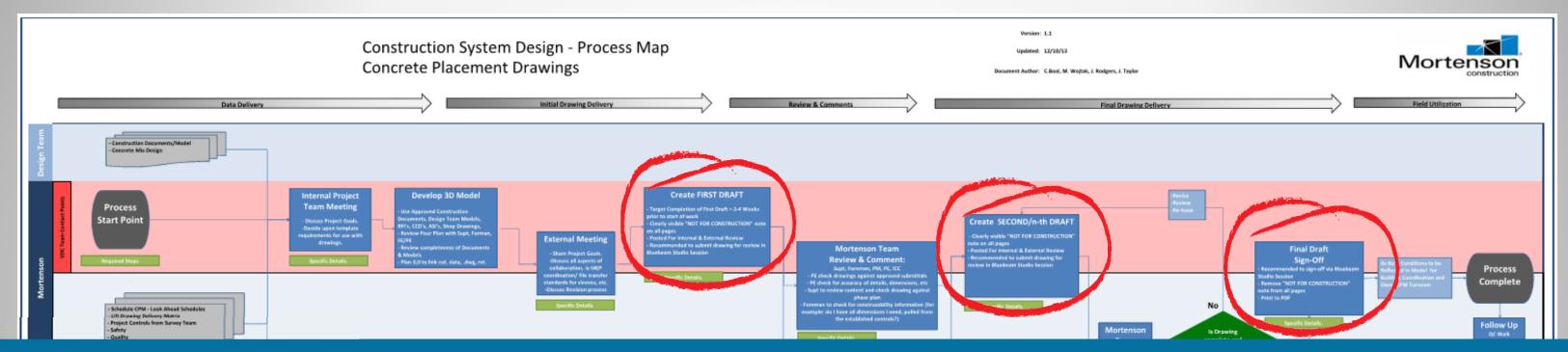
Process

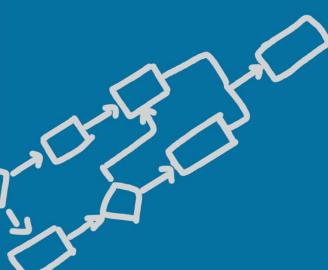
- Labor intensive due to many redundant, time consuming manual steps
- Spend too much time drafting sheets, less time collaborating with team on solutions

Platform

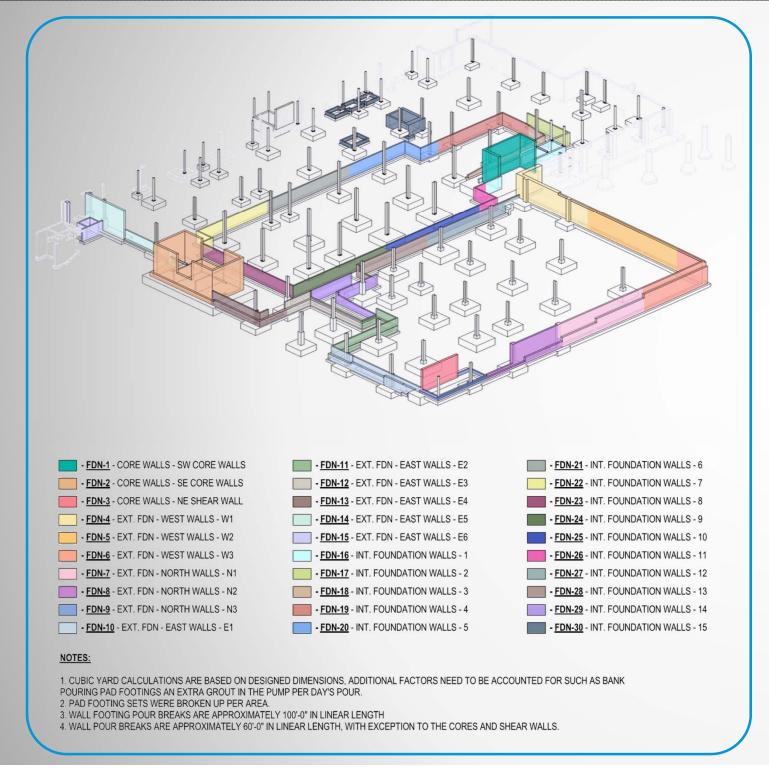
- Revit has become our standard platform for construction system design (concrete/masonry)
- Revit is a robust application and has high learning curve for concrete crew
- Lack of features in Revit Platform to automate key steps in drafting process

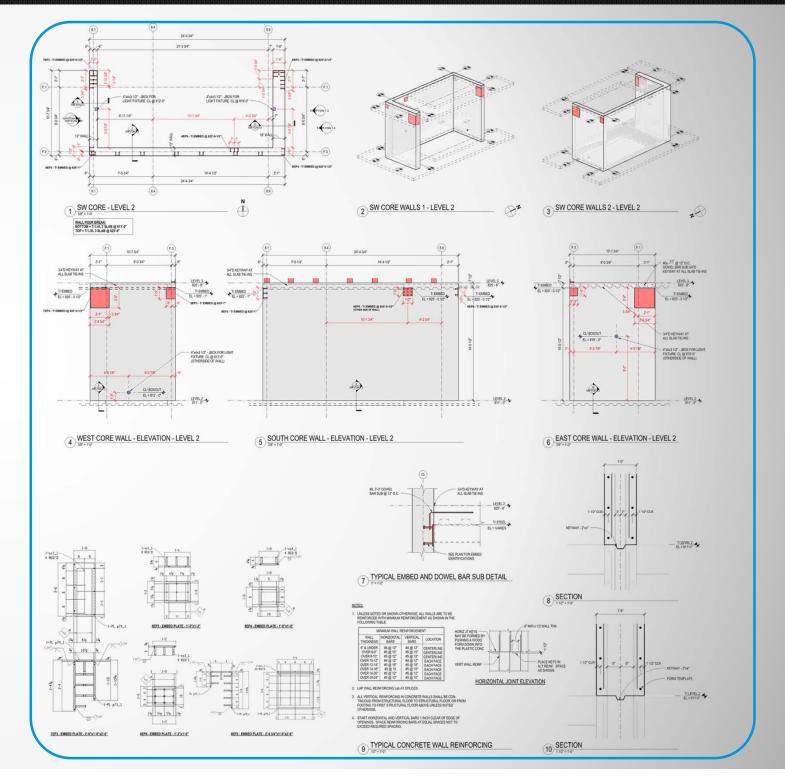
© VDC Model Use


CONSTRUCTION SYSTEM DESIGN


Plan	Design	Build	Operate
Existing Conditions Modeling			
Cost Estimation (5D)			
Phase Plant	ning (Macro 4D)		
Programming			
Site Analysis			
Design Revi	iews		
3D Visualization			
	Design Authoring		
	Engineering Analysis		
	Code Validation		
	3D Coordination		
	Site Utilization Planning		
	Construction System D	esign	
	Digital Fabrication	2D Control And Dlanning	
		3D Control And Planning Record Model	
		Record Model	Maintenance Scheduling
			Building Systems Analysis
			Asset Management
			Space Management
Mortenson Primary Model Us	ses		Building Maintenance
Secondary Model Uses – Usually			Disaster Planning

Value Stream Mapping




3 Non Value Added but Necessary steps

Integrated Work Plan Lift Drawing

Metrics BEFORE CTC PLUG-IN

Existing Process Tact Time

29 Hours

17 Steps

10 Areas For Improvements

PROCESS IMPROVEMENT TARGETS

50% TIME REDUCTION

ELIMINATE 10 WASTED STEPS

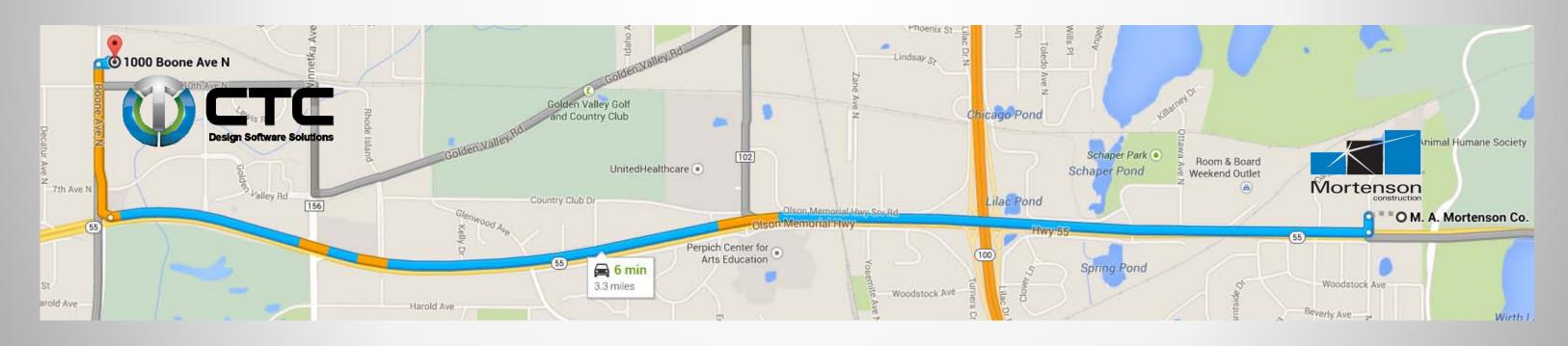
Concrete Coordination Process Steps

	12	Footing Pours, 12 Wall Pours; 2 CPP (24 pours)		Minutes
	1	Transfer Project Standards from Project Template		5
	2	Create 3D and Plan "Coordination Views"		15
0	3	Create/Edit/Assign Work-sets		15
i	4	Create Text Shared Parameter per Pour Sequence		15
	5	Split and Assign Pour Sequence Parameter		60
	6	Create Color Filters		30
	7	Create/Edit Title-blocks		10
	8	Create Overall Pour Sequence IWP		120
	9	Create View Templates	⊗	15
		Subtotal (ho	urs)	5

Drafting IWP Process Steps

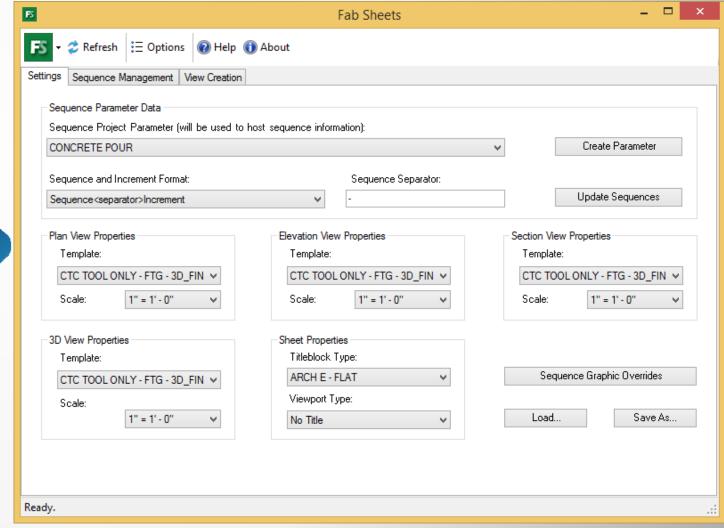
Dra	fting Tasks/Regardless of Scope and Project		Minutes
1	Create Plan View	₩	10
2	Create Elevation View(s)		10
3	Create 3D View(s)		5
4	Create Sheet		5
5	Copy/Paste Relevant Information from Previous Sheets		5
6	Add All Required Views to Sheet		15
7	Add All Required Drafting/Detail Views to Sheet		5
8	Adjust and Renumber View Titles		5
	Tact Time for 1 IWP (hou	rs)	1.00
	Total Tact Time Hours for 24 IWP's (hou	rs)	24
	Concrete Coordination + IWP Drafting = Total Process Ho	urs	29
	Number of Process Ste	eps	17

Problem Approach and Solution CTC POUR SEQUENCE TOOL



Our Approach to the Problem

- Understand the Issue
- **Understand the Culture**
- Reverse Engineer Existing Model and Process
- **Develop User Interface and Functional Specification**



Our Approach to Problem

Beta Testing & Refinement Pour Sequence Tool to Fab Sheets

			Pour Sequence Options
			Save
			Sequence Project Parameter:
Pour Sequence View Creator			Pour Sequence ▼
Pour 5	uence Assignment equence Format quence Name: Separator: ce Increment: chice Format: chice Name <separator>Sequence Increment of swap sequence value</separator>	☐ Create P☐ Create E☐ North	 Pour Sequence Create Squence Project Parameter Plan View Template: Pour View Template Template Schedule Pour Schedule Template Titleblock A4 Whatever
		Start	Cancel

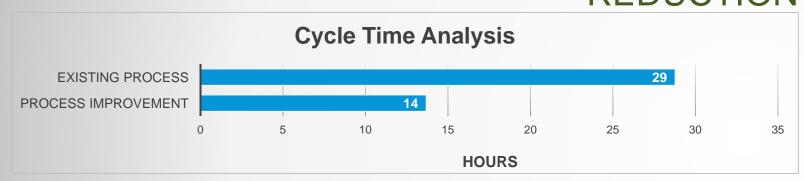
Our Approach to Problem

Fab Sheets Demo

Measured Outcomes VALUE ADD

Metrics WITH CTC PLUG-IN

Process Improvement Time



14 Hours

48% TIME REDUCTION

Concrete Coordination Process Steps

12	Footing Pours, 12 Wall Pours; 2 CPP (24 pours)		Minutes
1	Transfer Project Standards from Project Template		5
2	Create 3D and Plan "Coordination Views"		10
3	Create/Edit/Assign Work-sets		15
4	Create Text Shared Parameter per Pour Sequence	₩	0
5	Split and Assign Pour Sequence Parameter		60
6			0
7	Create/Edit Title-blocks		0
7	Setup / Run Concrete Pour Sequence Tool		15
8	Create Overall Pour Sequence IWP		120
9	Create View Templates	₩	0
	Subtotal (hou	ırs)	4
Dra	fting IWP Process Steps		
4	Create Plan View	₩	0
2	Create Elevation View(s)	₩	0
3	Create 3D View(s)	₩	0
4	Create Sheet	⊗	0
5	Copy/Paste Relevant Information from Previous Sheets		5
6	Add All Required Views to Sheet	⊗	0
7	Organize Views on Sheet		15
8	Add All Required Drafting/Detail Views to Sheet		5
8	Adjust and Renumber View Titles		0
	Tact Time for 1 IWP (hou	ırs)	0.4
	Total Tact Time Hours for 24 IWP's (hou	ırs)	10
	Concrete Coordination + IWP Drafting = Total Process Ho	urs	14
	Number of Process Sto	eps	9

48% Time reduction eliminated non-value added activities

Spend more time on value add:

- Coordination and management of trades
- Improve review time and problem solving with team
- Improve planning time for quality and safety

Implementation – University Residence Hall Case Study

Approach: Design Build

Size: 400,000 SF

Structure: Concrete >95% = Self Perform

1 ICC – Estimated @ 1,440 Hours Estimate Uses 8Hrs/IWP as Baseline 180 Concrete Lift Drawings Expected

Concrete Individual Pour IWPs - 177

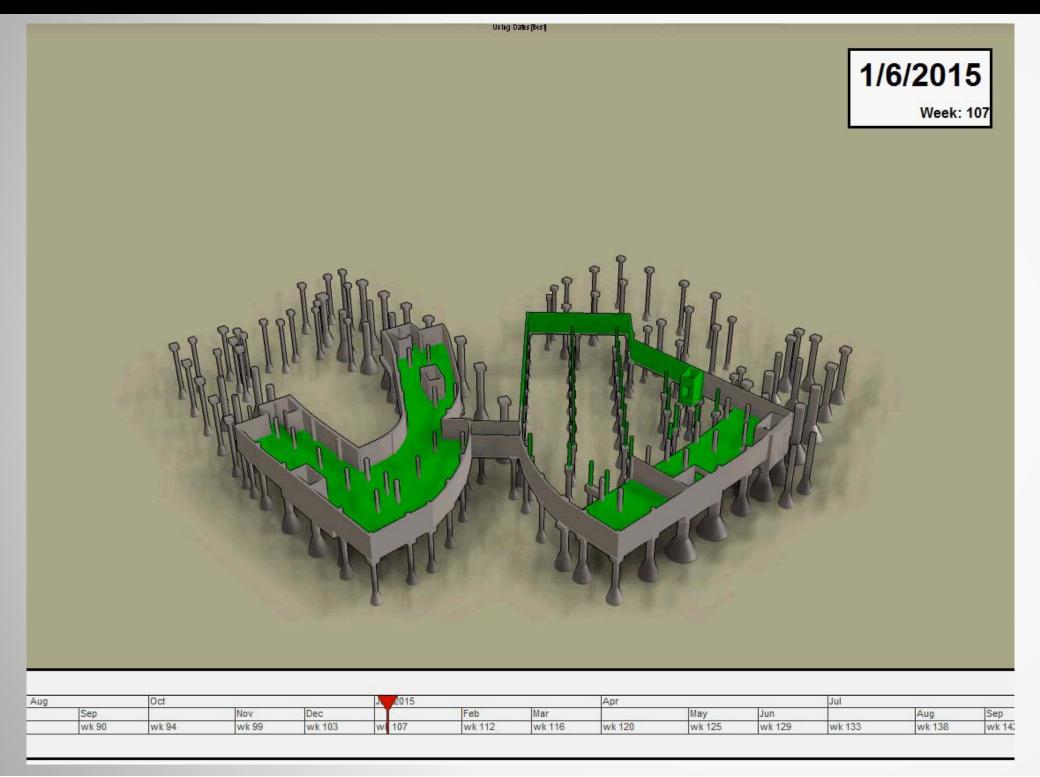
- Pilasters
- Foundations (Walls and Footings)
- Core/Shear Walls (Each Level)

*Concrete Composite Plans - "IWP-Light" - 82

- Slab on Grade and Elevated Decks 41
- Caisson Capitals/Interior Columns -39
- Waterproofing 2
- *"IWP-Light" Not Figured into 177 IWPs

Existing Process drafting time:

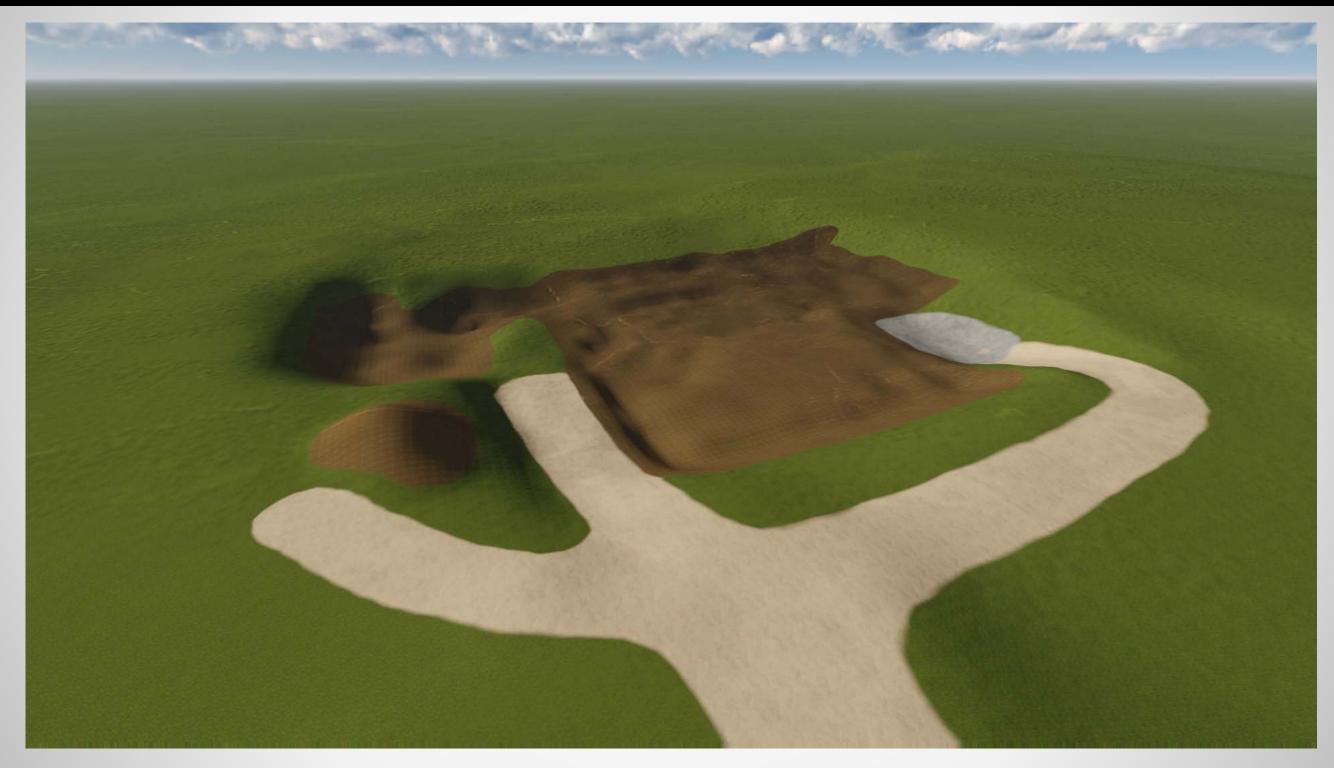
 $1h \times 177 = \pm 177 \text{ hours}$


New Process drafting time:

.4h x $177 = \pm 71$ hours



OUTCOMES


FDN-26-0-CD - WALLS				
WALL TYPE	LENGTH	SURFACE AREA (BOTH SIDES)	VOLUME	
Concrete - 12"	9'-9 1/2"	62.11 SF	1.15 CY	
Concrete - 12"	18'-0"	129.00 SF	2.39 CY	
Concrete - 15"	1'-3 3/8"	46.46 SF	1.08 CY	
Concrete - 15"	5'-6"	185.79 SF	4.30 CY	
Concrete - 15"	8'-3 3/4"	252.19 SF	5.84 CY	
Concrete - 15"	11'-0"	399.67 SF	9.25 CY	
Concrete - 15"	19'-2 5/8"	680.21 SF	15.75 CY	
Concrete - 15"	34'-5 1/2"	1026.28 SF	23.76 CY	
Grand total	107'-6 3/4"	2781.71 SF	63.51 CY	
	FDN-26-0-	CD - COLUMNS		
COLUMN TYPE	HEIGHT	SURFACE AREA (ALL SIDES)	VOLUME	
CD-5 - 24" x 24"	16'-0"	128.00 SF	1.23 CY	
CD-3 - 18" x 24"	16'-0"	112.00 SF	1.64 CY	
CD-3 - 18" x 24"	19'-0"	133.00 SF	2.11 CY	
Grand total		373.00 SF	4.98 CY	

Study OUTCOMES

