Exploring the InfraWorks API to Help Cities Plan Better Public Transit

Mathews Mathai – Business Consultant, Autodesk, Inc.

Lynda Sharkey – Sustainable Transportation Product Manager, Autodesk, Inc.

Class summary

Congestion and greenhouse gas from private vehicles is a serious cause of worry, and many cities are turning to public transit to make sure citizens have safe, reliable, and regular access to their cities.

Join us for this lab to learn how to use the InfraWorks software API (application programming interface) to create functionality that enables the planning and analysis of public-transit changes in a conceptual design environment. You will also learn how the InfraWorks software API can help determine the walkability of a neighborhood, the access to amenities, and the environmental impact of a route.

Key learning objectives

At the end of this class, you will be able to:

- Explore the scripting environment within Infraworks 360
- Understand the importance of walkability and transit-oriented development
- Integrate walk scores and transit scores into your model via API
- Extend functionality

Challenges facing Cities

Why focus on Transit and Transportation?

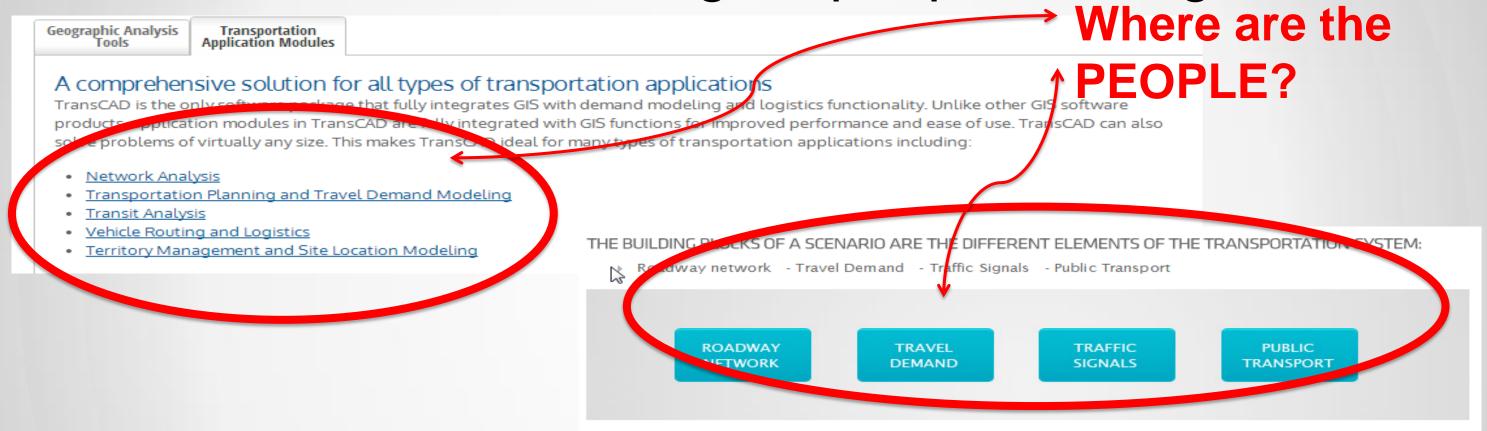
230/0

30%

Transportationsector emissions

Is there a Need for Public Transit?

- "Promoting higher density housing in areas close to transportation stops is an important component of the City's General Plan. Higher density housing with good access to transit helps accommodate the City's growing population and helps relieve traffic congestion, by increasing ridership on public transit..."
 - City of Los Angeles, CDP Questionnaire for Autodesk, 2011
- Walkable neighbourhoods have been deemed 15th out of 300 in the rankings of Sustainability Goals for the Built Environment, with high economic, environmental, social and cost – benefit ratios.
 - Washington DC "Sustainable DC" plan
- "We have always been a city built around transportation first water, then rail, then roads. This will continue to be true as our transportation system continues to evolve. Where we once built expressways that divided our communities, we are now reconnecting neighborhoods with new bus lanes and extensive and expanding bicycle facilities that offer safe, green, and fit ways to travel for all ages."
 - Mayor Emmanuel, City of Chicago, 2011
- "Anything that makes it easier for us to calculate sustainability benefits earlier in the process is going to be super useful"
 - Dan Campbell, City of Vancouver, 2013


What still needs to be done?

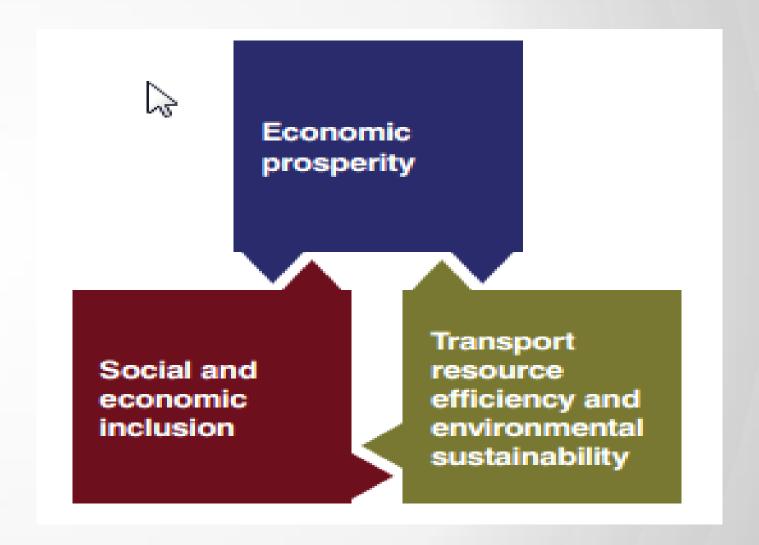
- Modeling more than vehicles
- Address changing transportation paradigm
- Triple Bottom Line analysis for transportation plans
- Provide ways to access traffic, transit and demographic data via Model Builder

Why model more than vehicles?

Traditional methods disregard people moving

- Transit oriented development and 'Walkable Neighbourhoods'
 - Portland, OR Pearl District
 - Arlington, VA Rosslyn Ballston Corridor
 - Boston, MA Haymarket

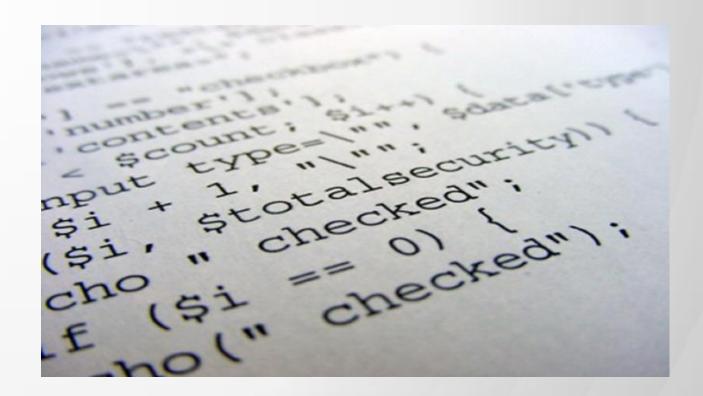
Why address the changing transportation paradigm?


- Accessibility over mobility
- Connected networks over hierarchical networks
- Evolution of LOS report card
- Greater collaboration

	O!d Paradigm	New Paradigm		
Definition of Transportation	Mobility (physical travel)	Accessibility (people's overall ability to reach services and activities)		
Modes considered	Mainly automobile	Multi-modal: Walking, cycling, public transport, automobile, telework and delivery services		
Objectives	Congestion reduction; roadway cost savings; vehicle cost savings; and reduced crash and emission rates per vehicle-kilometer	Congestion reduction; road and parking cost savings; consumer savings and affordability; improved access for disadvantaged people; safety and security, energy consumption and emission reductions; public fitness and health; support for strategic land use objectives (reduced sprawl)		
Impacts considered	Travel speeds and congestion delays, vehicle operating costs and fares, crash and emission rates.	Various economic, social and environmental impacts, including indirect impacts		
Favored transport improvement options	Roadway capacity expansion.	Improve transport options (walking, cycling, public transit, etc.). Transportation demand management. More accessible land development.		
Performance indicators	Vehicle traffic speeds, roadway Level-of-Service (LOS), distance- based crash and emission rates	Quality of accessibility for various groups. Multi- modal LOS. Various economic, social and environmental impacts.		

Why address the triple bottom line?

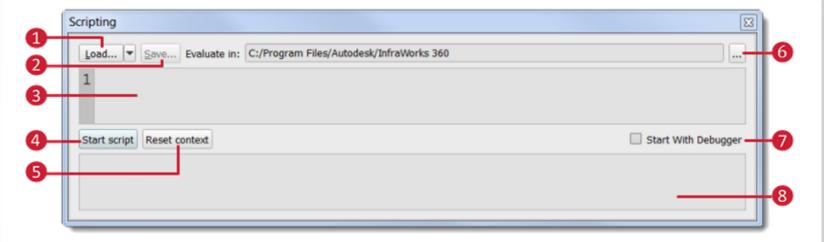
- Environmental impacts
- Economic impacts
- Social impacts



Scripting Using InfraWorks 360

- Why Script
 - Simply Workflows
 - Automate Workflows
 - Extend Existing or Introduce
 Additional Capabilities
 - Integrate with Other Applications
- Types of Scripts
 - Project Specific
 - Standalone

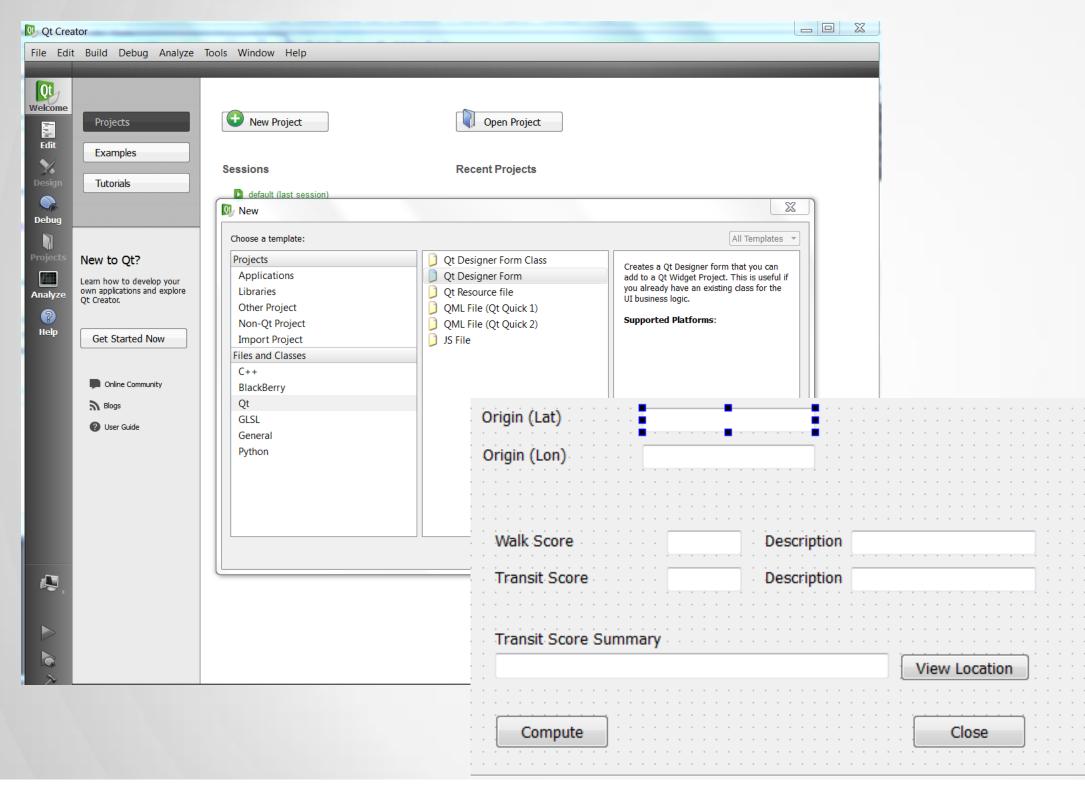
- Scripting Language
 - Javascript
 - Javascript Tutorials
 - InfraWorks API Documentation
 - Un-supported



Scripting Using InfraWorks 360

Project Specific

Standalone



- 1. Load a JavaScript file to use.
- 2. Save the current script.
- 3. Click in the Scripting Area and type or paste in a script.
- 4. Click to start the script.
- 5. Reset the context of the script.
- Browse to a different location to evaluate the script in. This is the directory where the script will be run.
- 7. Select Start with Debugger to open the debugger window once a script is started.
- 8. Script results are returned here.

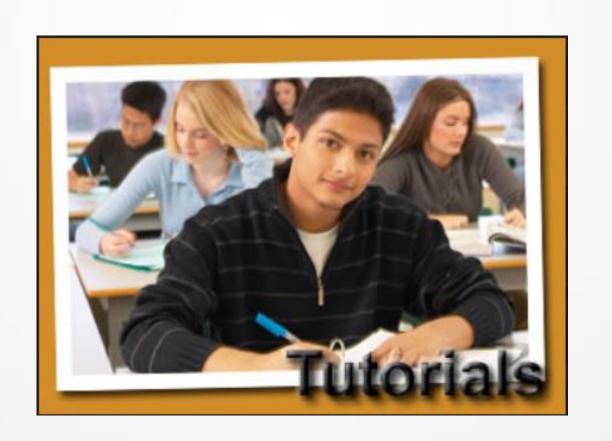
Creating a User Interface Using Qt Creator

LocationOriginLatText : QLineEdit					
Property	Value				
△ QObject					
objectName	LocationOriginLatText				
△ QWidget					
enabled	V	Ξ			
▷ geometry	[(140, 10), 141 x 20]				
	[Expanding, Fixed, 0, 0]				
▶ minimumSize	0 x 0				
▶ maximumSize	16777215 x 16777215				
▷ sizeIncrement	0 x 0				
▶ baseSize	0 x 0				
palette	Inherited				
▶ font	▲ [MS Shell Dlg 2, 8]				
cursor] IBeam				
mouseTracking	V				
focusPolicy	StrongFocus				
contextMenuPolicy	DefaultContextMenu				
acceptDrops		v			

Essentials of InfraWorks API Programming

- Examples of InfraWorks API
 Classes & Members
 - Application
 - ActiveModel
 - OpenUrl()
 - GetUnit()
 - UI
- LoadForm()
- Styles
 - getStyles()
- Qt Creator Objects & Properties
 - Widgets
 - Pushbutton
 - Name
 - Text
 - Line Edit (Text Box)
 - Combo Boxes

- Common Scripting Operations
 - Loading and Showing a Custom Form
 - var form = ui.LoadForm("InfraWorks_Walkscore_Form.ui");
 - form.show();
 - Retrieving Values from a Text Box Widget
 - OriginLatStr = form.findChild("LocationOriginLatText").text;
 - Assigning Calculated Results to a Text Box Widget
 - form.findChild("WalkScoreText").setText(json.walkscore);
 - Connecting Pushbuttons to Actions


form.findChild("ComputePushButton").clicked.connect (CalculateWalkAndTransitScoreResults);

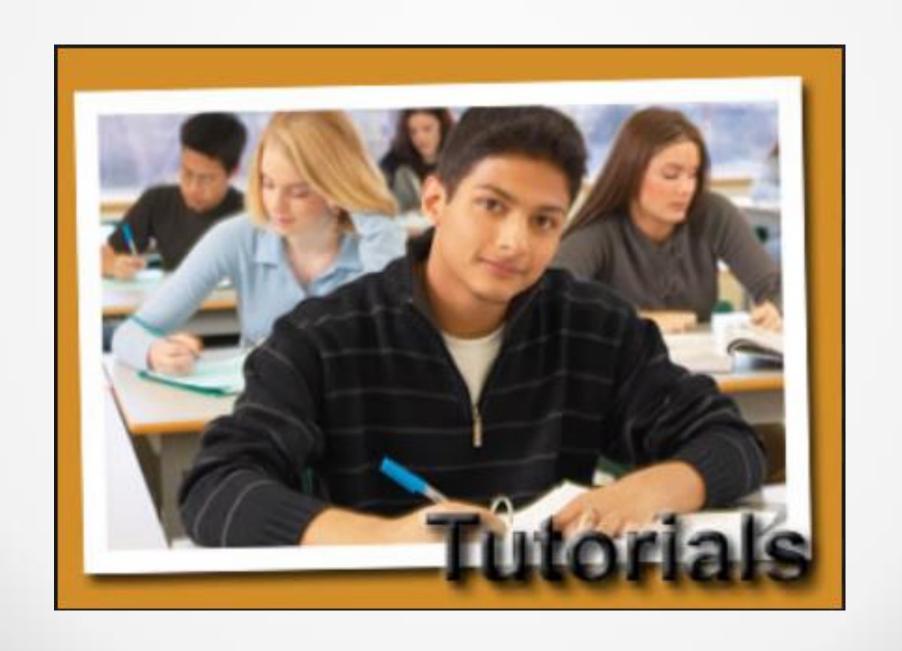
Tutorial #1

Extending InfraWorks Using Project Level Scripting

Data at C:\Datasets\Hands-On Labs\

Walkscore, Transit Score and Travel Time

A little more information


Features

- Walkscore API returns 'as-is' information using existing open data
 - Walkability around a project or city
 - Measures walkability on a scale from 0 100 based on walking routes to destinations such as grocery stores, schools, parks, restaurants, and retail
 - Transit friendliness according to existing transit infrastructure
 - Measures transit accessibility on a scale from 0 100.
 - Calculates distance to closest stop on each route, analyses route frequency and type.
 - Includes location of all transit stops, routes, route frequency, and route type.
 - Access isochrones
 - Measures accessibility via walking, biking, public transit or driving
 - Takes into account natural and man-made barriers, speed limits, transit options
 - A useful way of measuring 'freedom' of movement

Tutorial #2

Creating an InfraWorks Walk & Transit Score Application

Trying to Predict the Future

- Walk Score and Transit
 Score have no predictive capability
- How can we simulate what effect changes to a transit network or neighbourhood will be?
- Need to get creative with the maths.

```
TRANSIT SCORE DELTA CALCULATIONS:
                                                                 Scerario 4:
                                                                                                             SCENARIO 2:
                                                                 PROPOSED POUTE -D BUS
                                                                                                           mm
                                                                 FREQUENCY - 50 times per week
                                                                                                             PROPOSED ROVTE - CABLE CAR
                                                                 SUPER ROUTE -D 1008
 DRAW IN ROUTE AND STORS
                                                                                                             FREQUENCY -D 70 HIMES PER WEEK
                                                                 TRANSIT SCORE - 50
- GET 400 YD BUFFER AROUND STOPS
                                                                                                             "SUPER ROUTE" -> 1008
                                                                 TS A = (50) X 1 X (100-90)
                                                                                                             TRANSIT SCORE -D 84
- GET TRANSIT SCORE FOR BUFFER AREAS
                                                                                                             TSA = \begin{bmatrix} 10 \\ 1008 \end{pmatrix} \times (1.5) \times (100-84)
                                                                      = 6.049 × 10
 - PUN CALCULATION & UPDATE BUFFER SCORES
                                                                     = 0.49
                                                                                                                                    : TS △ ≈ 1.5
                                                                                                                 = 0.104 x 16
                                                                  1. TS A = 0.5
             TRANSIT SCORE DELTA
               = ROUTE VALUE X POTENTIAL FOR IMPROVEMENT
                                                                      SCENARIO 3:
                                                                                                                                    SCENARIO 4!
             ROUTE VALUE = FREQUENCY
                      "SUPER ROUTE"FREQUENCY * MODE WEIGHT
                                                                                                                                    mm
                                                                      PROPOSED ROUTE +> BUS
                                                                                                                                  PROPOSED ROUTE - TRAIN
                                                                      FREQUENCY - 140
             POTENTIAL FOR IMPROVEMENT = 100 - TRANSIT
                                                                                                                                  FREQUENCY - 105
                                                                      "SUPER ROUTE" - 1008
                                                                                                                                   "SUPER ROUTE '- 504
                                                                      TRANSIT SCORE -DG5
                                                                                                                                   TRANSIT SCORE - 117
                                                                       TSA = [(140 ) × 1] × (100 -65)
           to since it's not possible to get the normalisation factor,
                                                                                                                                   TS A = [(105) x2] × (100-42)
             We can normalise the route Based on a
                                                                                         1. TS 6 25
                                                                                                                                       = 0.83 \times 58
           4 Eq : if we assume the maximum times a route could
                                                                                                                                       = 48.33
                 possibly Run is every lomins, 24 hrs a Day, 7 bays
                 a week, then the "SUPER ROUTE" FREQUENCY IS
                                                                                                                                    1. TS △ ≈ 48
             WE can change THIS UP OF DOWN TO SUIT OUR NEEDS
```

Changes in Transit Score

TRANSIT SCORE DELTA CALCULATIONS:

- DRAW IN ROUTE AND STORS
- GET 400 YD BUFFER AROUND STOPS
- GET TRANSIT SCORE FOR BUFFER AREAS
- RUN CALCULATION & UPDATE BUFFER SCORES

```
TRANSIT SCORE DELTA

= ROUTE VALUE X POTENTIAL FOR IMPROVEMENT

WHERE:

ROUTE VALUE = FREQUENCY X MODE WEIGHT

"SUPER ROUTE" FREQUENCY*

POTENTIAL FOR IMPROVEMENT = 100 - TRANSIT

SCORE
```

- * SUPER ROUTE"
- We can normalise the route Based on a theoretical maximum
- 4 Eq: if we assume the maximum times a route could possibly Run is every lomins, 24 hrs a Day, 7 bays a week, then the "super route" FREQUENCY IS 1008.

WE can change this up or bown to SUIT OUR NEEDS

```
Scenario 4:

PROPOSED POUTE -D BUS

FREQUENCY -D 50 times per week

SUPER ROUTE -D 1008

TRANSIT SCORE -D 90

TS \Delta = \begin{bmatrix} 50 \\ 1008 \end{bmatrix} \times (100-90)

= 0.049 × 10

= 0.49

1. TS \Delta = 0.5
```

```
SCENARIO 2:

PROPOSED ROVTE \rightarrow CABLE CAR

FREQUENCY \rightarrow 70 HIMES PER WEEK

'SUPER ROUTE" \rightarrow 1008

TRANSIT SCORE \rightarrow 84

TSA = \begin{bmatrix} 10 \\ 1008 \end{bmatrix} \times (100-84)

= 0.104 × 16 : TSA \approx 1.5

= 1.66
```

```
= 4.86 \qquad \text{i. Ts} \triangle \%5
```

```
SCENARIO 4!

PROPOSED ROUTE → TRAIN

FREQUENCY → 105

"SUPER ROUTE → 504

TRANSIT SCORE → 42

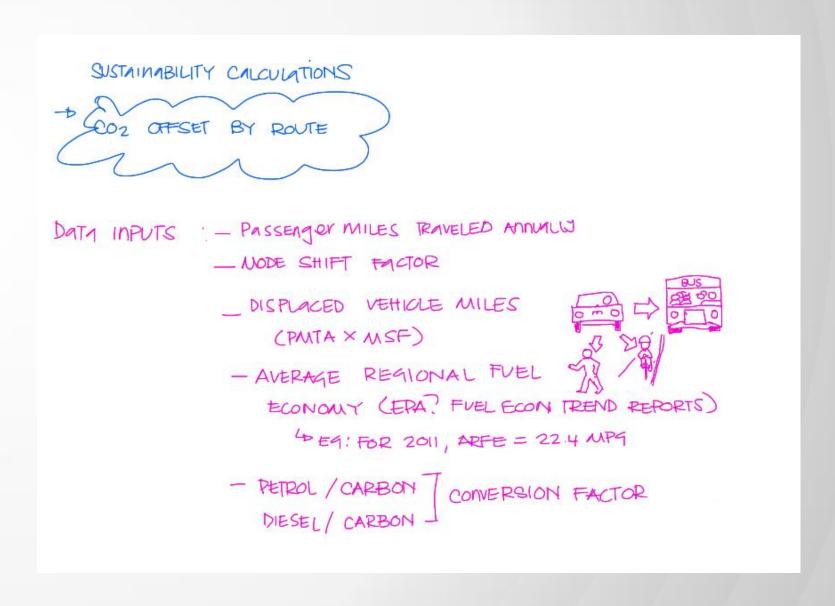
TS Δ = [(105) ×2] ×(100-42)

= 0.83 × 58

= 48.33

∴ TS Δ ≈ 48
```

Calculating Environmental Impacts – CO2e emitted


- Impact of the route on the environment
 - CO2e emissions for each fuel type
 - MPG equivalent
 - Route length
 - Route frequency
- Output
 - CO2 emitted
 - Estimated fuel usage

FUEL TYPE	K9 COz /9al	CH4/GAL	arams NOz/GAL
BUS DIESEL	10.96	0,44	0,9
LP9	5,79	6.28	0.6
BIODIESEL	9,45	0.14	0.01
CNG	7.517	N/ 4	N/A.
			,
TRAIN DIESEL	11.27	0,45	0,09

Calculating Environmental Impacts – CO2e mitigated

- Estimated passenger miles travelled annually
- Mode shift
- Displaced vehicle miles
- Fuel economy
- Conversion factor

Students, educators, and schools now have

FREE access to Autodesk design software & apps.

Download at www.autodesk.com/education

