

Todd Blake P.E.

Principal, Souza True & Partners, Inc.

tblake@souzatrue.com

Lin Gallant P.E.

Associate, Souza True & Partners, Inc.

lgallant@souzatrue.com

Firm profile | Souza True & Partners

Structural Consulting Firm Established in 1959

- Waltham, MA
- Single discipline structural
- Small business 17 people
- Clients architects, owners, and
- Primary focus is building design:
 - Health Care
- Laboratory
- Research
- Museums
- Academic
- Historic
- Commercial
- Parking
- Residential
- Commercial
- Typical services:
 - Analysis & Design
- **Evaluations**

CA

Peer reviews

Feasibility

Expert witnesses

Cape Cod Hospital Hyannis, MA

Genetics Resource Building, The Jackson Laboratory Bar Harbor, ME

Health Care International Glasgow, Scotland

Reggie Lewis Track and Athletic Center Boston, MA

Tubman African American Museum Macon, GA

Firm profile | Involvement with Autodesk

- Consulting with Autodesk last 1.5 years
 - Goal make RSA more appealing to US market
 - Review features, workflows, etc.
 - Compare to other software
 - Assist with new features
 - Code interpretation and verification no coding by STP
 - Sample of subjects covered:
 - Wind simulation in RSA
 - Direct Analysis Method
 - And more...

Firm profile | Lin's Involvement with Autodesk

- My involvement
 - Collaborate with RSA team
 - Practicing engineers perspective
 - Workflows
 - Code interpretations no coding
 - White paper
 - Wind Simulation in Robot Structural Analysis Professional published by Autodesk

Class summary

Learn about wind simulation in Robot Structural Analysis Professional (RSA) 2015. We'll review current code-based wind design, the benefits and limitations. We'll examine RSA's unique computational fluid dynamic (CFD) wind simulation tool, and how it compares to the code-based approaches. Using sample wind simulation models, we will review the wind simulation analysis parameters, the analysis process, and viewing results.

Key learning objectives

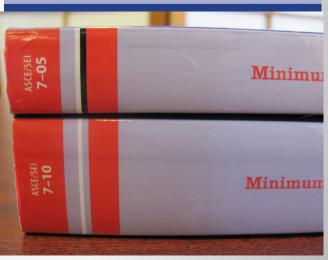
At the end of this class, you will be able to:

- Recognize the applicability and limitations of code-based wind design approaches
- Understand the wind simulation capabilities in RSA
- Learn how to perform a wind simulation on a structure in RSA
- Discover the potential applications and benefits of wind simulation in project workflows

Outline

- US codes
- Wind Simulation in RSA
- Wind Tunnel Validation
- ASCE Validation
- Quick Demo
- Applications of Wind Simulation

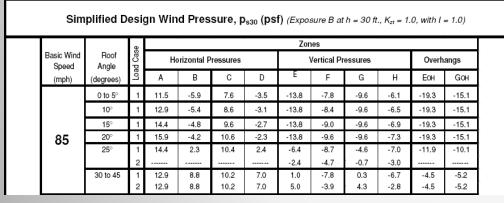

Code-based Approaches



Code-based Approaches | US Codes

- US building reference ASCE 7-05 or ASCE 7-10.
 - Significant differences 7-05 and 7-10 versions
 - Strength design, risk levels, hurricaneprone regions, etc.
- Three wind load analysis methods:
 - Simplified (Envelope) Procedure
 - Analytical (Directional) Procedure
 - Wind Tunnel Testing

Code-based Approaches | Simplified Procedure


General pressure equation:

$$P_{net} = \lambda K_{zt} P_{net30}$$

where:

 λ = building height and exposure K_{zt} = topographic factor

 P_{net30} = exposure B, at h = 30 ft.

Adjustment Factor						
for Building Height and Exposure, λ						
Mean roof	Exposure					
height (ft)	В	С	D			
15	1.00	1.21	1.47			
20	1.00	1.29	1.55			
25	1.00	1.35	1.61			
30	1.00	1.40	1.66			
35	1.05	1.45	1.70			
40	1.09	1.49	1.74			
45	1.12	1.53	1.78			
50	1.16	1.56	1.81			
55	1.19	1.59	1.84			
60	1.22	1.62	1.87			

Торо	graphic	Factor, K	t - Method	2		$\neg au$				
Figu	re 6-4	$ \tau$								
	Spread-up 2 (Upwind) 3 (Upwind) 4 (Upwind) 4 (Upwind) 4 (Upwind) 5 (Upwind) 4 (Upwind) 5 (Upwind) 5 (Upwind) 5 (Upwind) 5 (Upwind) 7 (Upwi									
				raphic N				AAIST	MIMICINI	CAL III
		K, Multipl	Төрод	raphic N		for Expo			K, Multipl	
H/L _b	2-D Ridge		Төрод	raphic M	Aultipliers	for Expo				
0.20	2-D Ridge	K, Multipl 2-D Escarp.	Topog	x/L _h	Multipliers K ₂ Mu 2-D Escarp.	for Expo	sure C	2-D Ridge	K ₃ Multipl 2-D Escarp.	3-D Axisym Hill
0.20	2-D Ridge 0.29 0.36	K, Multipl 2-D Escarp. 0.17 0.21	Topoglier 3-D Axisym. Hill 0.21 0.26	x/L _h	K ₂ Multipliers 2-D Escarp. 1.00 0.88	for Expo	z/L ₂	2-D Ridge 1.00 0.74	K ₃ Multipl 2-D Escarp. 1.00 0.78	3-D Axisym Hill 1.00 0.67
H/L _h 0.20 0.25 0.30	2-D Ridge 0.29 0.36 0.43	K, Multipl 2-D Escarp.	Topog	x/L _h 0.00 0.50 1.00	Multipliers K ₂ Mu 2-D Escarp.	for Expo	z/L ₃ 0.00 0.10 0.20	2-D Ridge 1.00 0.74 0.55	K ₃ Multipl 2-D Escarp. 1.00 0.78 0.61	3-D Axisym Hill
0.20	2-D Ridge 0.29 0.36 0.43 0.51	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30	Topog lier 3-D Axisym. Hill 0.21 0.26 0.32 0.37	x/L _h 0.00 0.50 1.00 1.50	K ₂ Multipliers K ₂ Multipliers 2-D Escarp. 1.00 0.88 0.75 0.63	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00	sure C z/L ₂ 0.00 0.10 0.20 0.30	2-D Ridge 1.00 0.74 0.55	K ₃ Multipl 2-D Escarp. 1.00 0.78 0.61 0.47	3-D Axisyn Hill 1.00 0.67 0.45 0.30
0.20 0.25 0.30	2-D Ridge 0.29 0.36 0.43 0.51 0.58	K ₁ Multipl 2-D Escarp. 0.17 0.21 0.26	Topog lier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42	x/L _h 0.00 0.50 1.00 1.50 2.00	K ₂ Multipliers K ₂ Multipliers 2-D Escarp. 1.00 0.88 0.75 0.63 0.50	for Expo tiplier All Other Cases 1.00 0.67 0.33	sure C z/L ₂ 0.00 0.10 0.20 0.30 0.40	2-D Ridge 1.00 0.74 0.55 0.41 0.30	Loo Escarp. 1.00 0.78 0.61 0.47 0.37	3-D Axisyn Hill 1.00 0.67 0.45 0.30
0.20 0.25 0.30 0.35 0.40 0.45	2-D Ridge 0.29 0.36 0.43 0.51 0.58 0.65	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30 0.34 0.38	Topog ier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42 0.47	x/L _h 0.00 0.50 1.00 1.50 2.00 2.50	Multipliers K ₂ Multipliers 2-D Escarp. 1.00 0.88 0.75 0.63 0.50 0.38	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00 0.00 0.00	sure C z/L ₂ 0.00 0.10 0.20 0.30 0.40 0.50	2-D Ridge 1.00 0.74 0.55 0.41 0.30	2-D Escarp. 1.00 0.78 0.61 0.47 0.37	3-D Axisym Hill 1.00 0.67 0.45 0.30 0.20
0.20 0.25 0.30 0.35 0.40	2-D Ridge 0.29 0.36 0.43 0.51 0.58	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30 0.34	Topog lier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42	x/L _h 0.00 0.50 1.00 1.50 2.00 2.50 3.00	Multipliers K ₂ Mul 2-D Escarp. 1.00 0.88 0.75 0.63 0.50 0.38 0.25	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00 0.00 0.00	0.00 0.10 0.20 0.30 0.40 0.50	2-D Ridge 1.00 0.74 0.55 0.41 0.30 0.22	2-D Escarp. 1.00 0.78 0.61 0.47 0.37 0.29	3-D Axisym Hill 1.00 0.67 0.45 0.30 0.20 0.14
0.20 0.25 0.30 0.35 0.40 0.45	2-D Ridge 0.29 0.36 0.43 0.51 0.58 0.65	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30 0.34 0.38	Topog ier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42 0.47	x/L _h 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50	Multipliers K ₂ Mu 2-D Escarp. 1.00 0.88 0.75 0.63 0.50 0.38 0.25 0.13	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	2-D Ridge 1.00 0.74 0.55 0.41 0.30 0.22 0.17	K ₃ Multipl 2-D Escarp. 1.00 0.78 0.61 0.47 0.37 0.29 0.22	3-D Axisyr Hill 1.00 0.67 0.45 0.20 0.14 0.09
0.20 0.25 0.30 0.35 0.40 0.45	2-D Ridge 0.29 0.36 0.43 0.51 0.58 0.65	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30 0.34 0.38	Topog ier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42 0.47	x/L _h 0.00 0.50 1.00 1.50 2.00 2.50 3.00	Multipliers K ₂ Mul 2-D Escarp. 1.00 0.88 0.75 0.63 0.50 0.38 0.25	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00 0.00 0.00	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	2-D Ridge 1.00 0.74 0.55 0.41 0.30 0.22 0.17 0.12	K ₃ Multipl 2-D Escarp. 1.00 0.78 0.61 0.47 0.37 0.29 0.22 0.17	3-D Axisym Hill 1.00 0.67 0.45 0.20 0.14 0.09 0.06
0.20 0.25 0.30 0.35 0.40 0.45	2-D Ridge 0.29 0.36 0.43 0.51 0.58 0.65	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30 0.34 0.38	Topog ier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42 0.47	x/L _h 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50	Multipliers K ₂ Mu 2-D Escarp. 1.00 0.88 0.75 0.63 0.50 0.38 0.25 0.13	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	2-D Ridge 1.00 0.74 0.55 0.41 0.30 0.22 0.17	K ₃ Multipl 2-D Escarp. 1.00 0.78 0.61 0.47 0.37 0.29 0.22	3-D Axisyr Hill 1.00 0.67 0.45 0.20 0.14 0.09
0.20 0.25 0.30 0.35 0.40 0.45	2-D Ridge 0.29 0.36 0.43 0.51 0.58 0.65	K, Multipl 2-D Escarp. 0.17 0.21 0.26 0.30 0.34 0.38	Topog ier 3-D Axisym. Hill 0.21 0.26 0.32 0.37 0.42 0.47	x/L _h 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50	Multipliers K ₂ Mu 2-D Escarp. 1.00 0.88 0.75 0.63 0.50 0.38 0.25 0.13	for Expo tiplier All Other Cases 1.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	2-D Ridge 1.00 0.74 0.55 0.41 0.30 0.22 0.17 0.12	K ₃ Multipl 2-D Escarp. 1.00 0.78 0.61 0.47 0.37 0.29 0.22 0.17	3-D Axisym Hill 1.00 0.67 0.45 0.20 0.14 0.09 0.06

Code-based Approaches | Analytical Procedure

General pressure equation:

$$q_z = 0.00256 K_z K_{zt} K_d V^2$$

where

 K_d = directionality factor

 K_z = exposure category factor

 K_{zt} = topographic factor, to account for wind speed up

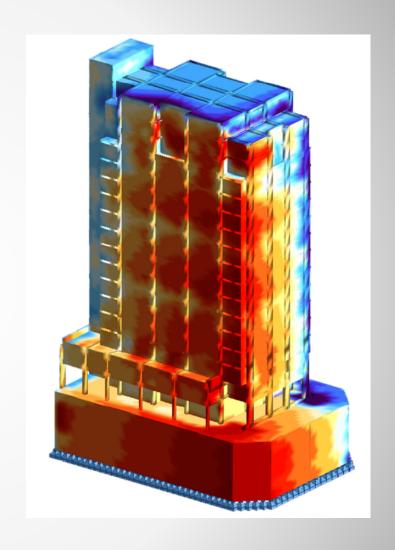
 $G \ or \ G_f$ = gust factor for rigid or flexible buildings

 GC_{pi} = internal pressure coefficient

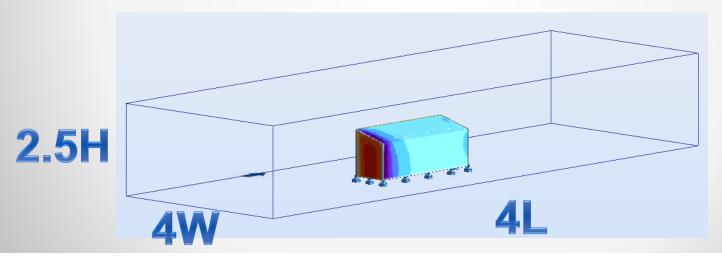
 C_p or GC_p = external pressure coefficient

...and many more

Code-based Approaches | Wind Tunnel Procedure


- Wind tunnel testing
 - Most accurate
 - Time and \$\$

- Recognized literature
 - Applicability must fit project and site conditions


Wind Simulation in RSA

Wind Simulation in RSA | General

- Wind simulation approach in RSA
 - Computational Fluid Dynamics (CFD)
 - Calculate pressure on meshed surfaces
 - Resolve pressures into loads applied to members

Wind Simulation in RSA | Theory

Wind Theory in RSA

Dynamic fluid pressure:

$$q = \frac{1}{2} \rho V^2$$

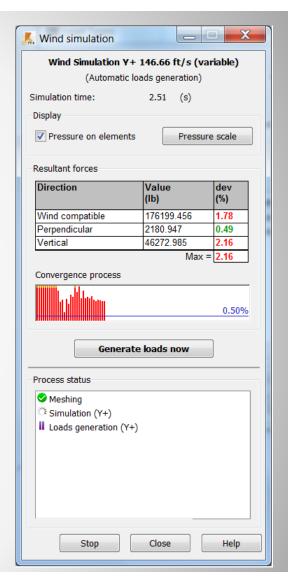
where:

q = the dynamic pressure

 ρ = the density of air

V = the velocity of air

Bernoulli's Principle (Hydrodynamica 1738)
Is a conservation of energy equation that states that the sum of all forms of energy in a fluid along a streamline is the same at all points along the streamline. A result of his experiments showed a linear relationship between pressure and flow speed squared. It is this dynamic pressure component which we seek to calculate and apply to our building surfaces.

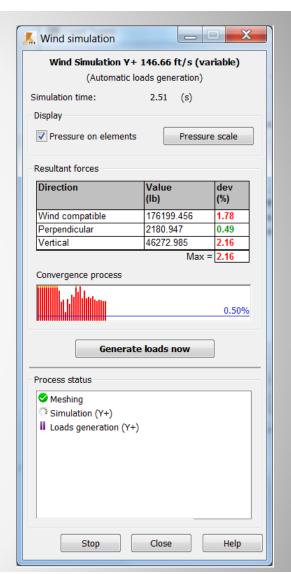

Wind Simulation in RSA | Convergence

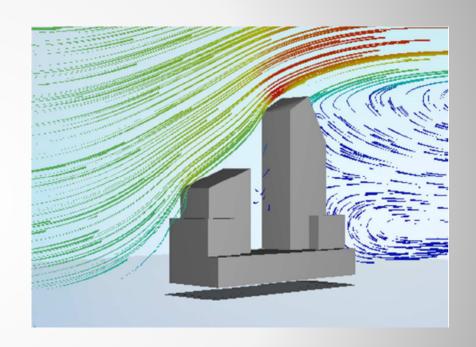
Transient Loading

 Measure wind forces at each solution step, compare to last step, and compare difference to convergence criteria.

Resultant forces

- Fx_{wind} in the direction of the wind
- Fywind horizontal and perpendicular to the wind direction
- Fz_{wind} vertical direction

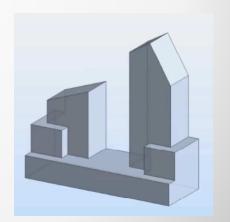



Wind Simulation in RSA | Convergence

Convergence criteria

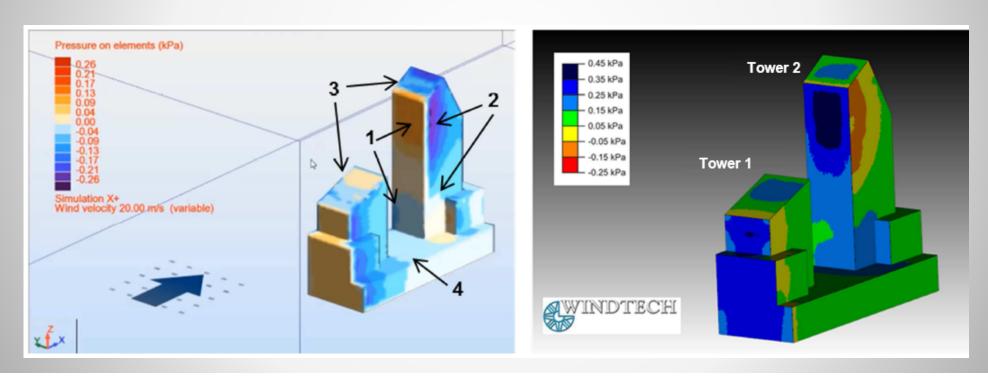
- $\Delta F x_{wind} = \max(|F x_{wind} F i x_{wind}|)$
- $\Delta F y_{wind} = \max(|Fy_{wind} Fiy_{wind}|)$
- $\Delta F z_{wind} = \max(|F z_{wind} F i z_{wind}|)$
- $Max(\Delta F x_{wind}, \Delta F y_{wind}, \Delta F z_{wind})$ ≤ convergence tolerance (0.5% default)

Wind Tunnel Example



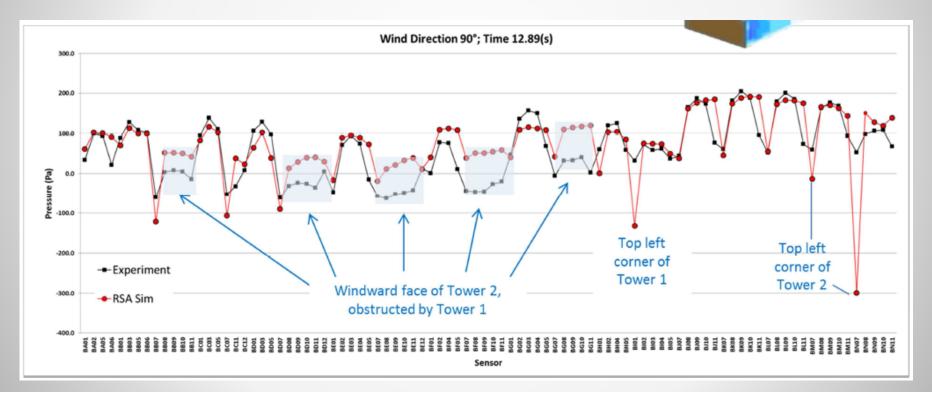
Wind Simulation in RSA | Wind Tunnel Validation

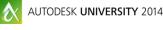
- Autodesk Validation Study
 - Wind tunnel testing
 - Wind simulations
- See validation paper "Autodesk Robot Structural Analysis Professional wind simulator validation brief published by Autodesk



Wind Simulation in RSA | Wind Tunnel Validation

Results general match with some exceptions





Wind Simulation in RSA | Wind Tunnel Validation

Results general match with some exceptions

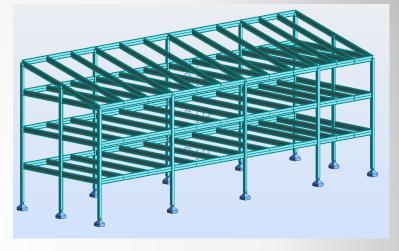
Wind Simulation Example

Wind Simulation ASCE Example | Applicability

- Simulation vs. ASCE 7
 - Low-rise to mid-rise
 - Typically regular shaped
 - Validation

Wind Simulation ASCE Example | Applicability

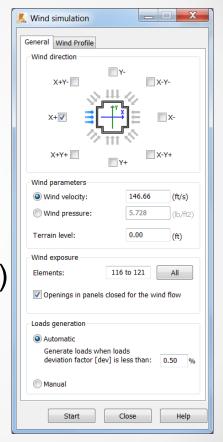
- Simplified (Envelope) Procedure
 - Simple Diaphragms
 - Low-rise
 - Enclosed
 - Regular Shape
 - Rigid
 - No dynamic response
 - Symmetric cross section
 - Torsion load

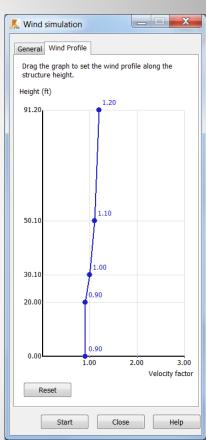

Code-based Approaches | Applicability

- Analytical (Directional) Procedure
 - Regular Shape
 - No dynamic response

Wind Simulation Example | Example Model

- Low rise structure:120' x 36' x 46'with monoslope roof
- Exposure Category C (ASCE)
- V = 100 mph (146.66 ft/s)

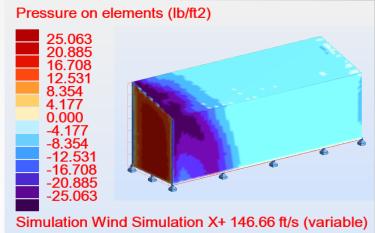


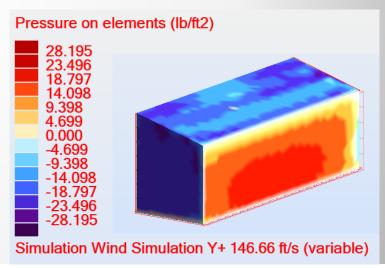


Wind Simulation Example | Example Model

Wind Parameters:

- V = 146.66 ft/s
- Terrain level = 0 ft
- Cladding and panels exposed
- Validation directions: X and Y
- ASCE Wind Profile (Kz Exposure C)


Wind Simulation Example | RSA Results


X Direction

- Max pressure 25.1 psf
- Avg. pressure 23.3 psf

Y Direction

- Max pressure 28.2 psf
- Avg. pressure 25.2 psf

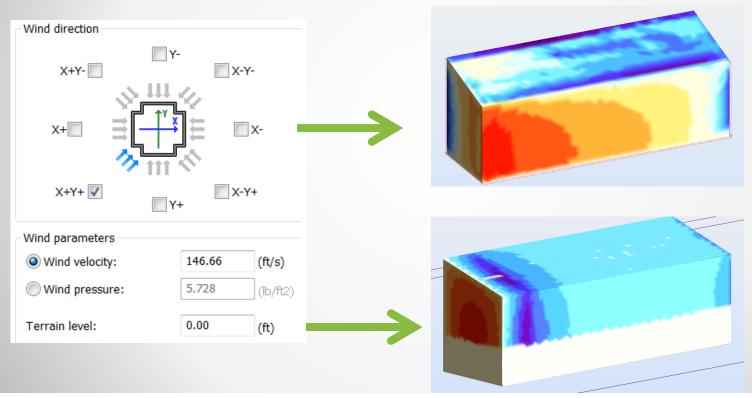
Wind Simulation Example | Results

Pressure comparisons

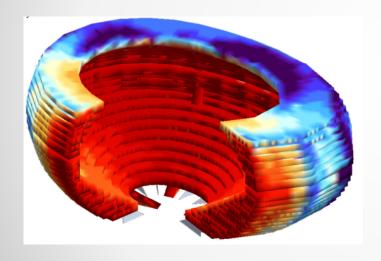
- ASCE 24.5 psf
- RSA 23.3 and 25.2 psf
- -4.9% Deviation in X
- +4.6% Deviation in Y

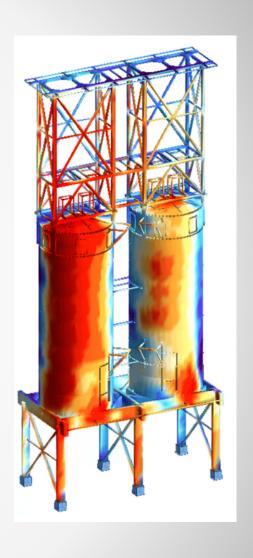
Method	Pressures	Along-wind direction		
Metriou	110334103	Fx (psf)	Fy (psf)	
	Base Pressure	25.60 20.84 24.51		
ASCE 7-05	Design Pressure			
	Design Pressure no Kd			
	Windward (psf)	16.08	16.9	
RSA	Leeward (psf)	7.22	8.3	
	Net Pressure (psf)	23.30	25.2	
Bernoulli	Pressure	25.57		

Wind Simulation Demo



Wind Simulation Takeaways


Wind Simulation | Many Options


Many options to investigate

Wind Simulation Takeaways

Investigate Complex Structures

Wind Simulation Takeaways

- Wind Simulation in RSA
 - Fast and easy to implement
 - Wind tunnel in your model
 - Supplement to approved ASCE 7 methods
 - Validation
 - Guide other methods (wind tunnel testing)
 - Unique tool

Session Feedback

- Via the Survey Stations, email or mobile device
- AU 2015 passes given out each day!

Best to do it right after the session

Instructors see results in real-time

Autodesk is a registered trademark of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2013 Autodesk, Inc., All rights reserved.

Students, educators, and schools now have

FREE access to Autodesk design software & apps.

Download at www.autodesk.com/education

Earn your professional Autodesk Certification at AU

Visit the AU Certification Lab

